高考数学分布列专题及答案

合集下载

高三数学随机变量的分布列试题

高三数学随机变量的分布列试题

高三数学随机变量的分布列试题1.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【答案】D【解析】由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.2. [2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A.B.C.D.【答案】C【解析】设事件A在每次试验中发生的概率为p,则事件A在4次独立重复试验中,恰好发生k 次的概率为pk=p k(1-p)4-k(k=0,1,2,3,4),∴p0=p0(1-p)4=(1-p)4,由条件知1-p=,∴(1-p)4=,∴1-p=,∴p=.∴p1=p·(1-p)3=4××()3=,故选C.3.[2014·唐山检测]2013年高考分数公布之后,一个班的3个同学都达到一本线,都填了一本志愿,设Y为被录取一本的人数,则关于随机变量Y的描述,错误的是()A.Y的取值为0,1,2,3B.P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=1C.若每录取1人学校奖励300元给班主任,没有录取不奖励,则班主任得奖金数为300Y D.若每不录取1人学校就扣班主任300元,录取不奖励,则班主任得奖金数为-300Y【答案】D【解析】由题意知A、B正确.易知C正确.对于D,若每不录取1人学校就扣班主任300元奖金,录取不奖励,则班主任得奖金数为-300(3-Y)=300Y-900.4.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,V(η)=,求a∶b∶c.【答案】(1)ξ的分布列为(2)3∶2∶1【解析】(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)==;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)==;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)==;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)==;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)==.所以ξ的分布列为ξ23456由已知得到:η有三种取值即1,,所以η的分布列为所以,所以b=2c,a=3c,所以a∶b∶c=3∶2∶1.5.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.【答案】(1)0.5(2)0.8(3)ξ0123【解析】解:记A表示事件:进入商场的1位顾客购买甲种商品;记B表示事件:进入商场的1位顾客购买乙种商品;记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1)C=A·B+A·B,P(C)=P(A·B+A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P()·P(B)=0.5×0.4+0.5×0.6=0.5.(2)D=A·B,P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2,P(D)=1-P(D)=0.8.(3)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=×0.8×0.22=0.096;P(ξ=2)=×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.【答案】(1)、、(2)X的分布列为【解析】(1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)==,P(A2)=××=,P(A3)=××=.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是、、;(2)设“乙队以3∶2胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=××=.由题意,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=,P(X=1)=P(A3)=,P(X=2)=P(A)=,4P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.故X的分布列为7.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.【答案】(1);(2)随机变量的分布列为:346随机变量的数学期望 .【解析】(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;(2) 随机变量的可能取值为.计算相应概率即得随机变量的分布列为:数学期望 .试题解析:(1):设取出的小球中有相同编号的事件为,编号相同可分成一个相同和两个相同 2分4分(2) 随机变量的可能取值为:3,4,6 6分, 7分, 8分9分所以随机变量的分布列为:346所以随机变量的数学期望 . 12分【考点】古典概型,互斥事件,离散型随机变量的分布列及数学期望.8.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.9.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.【答案】(1)(2)(3)【解析】(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则P(E)=1-P( )=1-P()P()P( )=1-××=.(2)由题意,得X的可能取值是,2,,3.因为P(X=)=P()=,P(X=2)=P(A )+P(B)+P(C )=,P(X=)=P(AB)+P(A C)+P( B C)==,P(X=3)=P(ABC)=,所以X的分布列为:(3)由(2)知E(X)=×+2×+×+3×==.10.随机变量的分布列如右:其中成等差数列,若,则的值是.【答案】.【解析】由题意,则.【考点】随机变量的期望和方差.11.一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.【答案】(Ⅰ);(Ⅱ)所以的分布列:数学期望.【解析】(1)随机变量的分布列问题,首先确定随机变量的所有可能值;(2))本题属古典概型,各随机变量所对应的事件包含的基本事件无法用公式求出,需一一列举出来.列举时要注意避免重复和遗漏,这是极易出错的地方试题解析:(Ⅰ)当时,最大。

2024全国高考真题数学汇编:排列、组合与二项式定理章节综合

2024全国高考真题数学汇编:排列、组合与二项式定理章节综合

2024全国高考真题数学汇编排列、组合与二项式定理章节综合一、单选题1.(2024全国高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2024北京高考真题)在 4x的展开式中,3x的系数为()A.6B.6 C.12D.12二、填空题3.(2024天津高考真题)在63333xx的展开式中,常数项为.4.(2024上海高考真题)在(1)nx 的二项展开式中,若各项系数和为32,则2x项的系数为.5.(2024全国高考真题)1013x的展开式中,各项系数中的最大值为.6.(2024全国高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于12的概率为.7.(2024全国高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.参考答案1.B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24 ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243.故选:B 2.A【分析】写出二项展开式,令432r,解出r 然后回代入二项展开式系数即可得解.【详解】 4x 的二项展开式为 442144C C1,0,1,2,3,4r rrr rr r T x xr,令432r,解得2r ,故所求即为 224C 16 .故选:A.3.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x的展开式的通项为63636216633C 3C ,0,1,,63rrr r r r r x T xr x,令 630r ,可得3r ,所以常数项为0363C 20 .故答案为:20.4.10【分析】令1x ,解出5n ,再利用二项式的展开式的通项合理赋值即可.【详解】令1x ,(11)32n ,即232n ,解得5n ,所以5(1)x 的展开式通项公式为515C rr r T x ,令52r -=,则3r ,32245C 10T x x .故答案为:10.5.5【分析】先设展开式中第1r 项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x,010r 且r Z ,设展开式中第1r 项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r,294334r r,即293344r ,又r Z ,故8r ,所以展开式中系数最大的项是第9项,且该项系数为28101C 53.故答案为:5.6.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b ,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120 种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b ,故2()3c a b ,故32()3c a b ,故323a b c a b ,若1c ,则5a b ,则 ,a b 为: 2,3,3,2,故有2种,若2c ,则17a b ,则 ,a b 为: 1,3,1,4,1,5,1,6,3,4,3,1,4,1,5,1,6,1,4,3,故有10种,当3c ,则39a b ,则 ,a b 为:1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, 2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c ,则511a b ,同理有16种,当5c ,则713a b ,同理有10种,当6c ,则915a b ,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为 22101656 ,故所求概率为56712015.故答案为:7157.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124 种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152******** .故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.。

高中数学-分布列10题解析

高中数学-分布列10题解析
分布列 10 题
1.(2022·全国·统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每 个项目胜方得 10 分,负方得 0 分,没有平局.三个项目比赛结束后,总得分高的学校 获得冠军.已知甲学校在三个项目中获胜的概率分别为 0.5,0.4,0.8,各项目的比赛结 果相互独立. (1)求甲学校获得冠军的概率; (2)用 X 表示乙学校的总得分,求 X 的分布列与期望. 【答案】(1) 0.6 ;
(2)分布列见解析, E X 13 .
【分析】(1)设甲在三个项目中获胜的事件依次记为 A, B,C ,再根据甲获得冠军则至少 获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出; (2)依题可知, X 的可能取值为 0,10, 20,30 ,再分别计算出对应的概率,列出分布列, 即可求出期望. 【详解】(1)设甲在三个项目中获胜的事件依次记为 A, B,C ,所以甲学校获得冠军的概 率为
中抽取
6
人,则男生、女生分别抽到
2
人和
4
人,所以
P
C
2 4
C62
6 15
2 5
,所以选中的
2
人都是女生的概率为 2 . 5
4.(2023·黑龙江齐齐哈尔·统考一模)随着春季学期开学,某市市场监管局加强了对学
校食堂食品安全管理,助力推广校园文明餐桌行动,培养广大师生文明餐桌新理念,以
(1)完成列联表,并判断能否在犯错误的概率不超过 0.025 的前提下认为“运动达标”与“性 别”有关.
运动达标 运动不达标 总计
男生 女生
总计 (2)现从“不达标”的学生中按性别用分层随机抽样的方法抽取 6 人,再从这 6 人中任选 2 人进行体育运动指导,求选中的 2 人都是女生的概率. 参考数据: P( 2 k0) 0.25 0.10 0.05 0.025 0.010 0.001

2024年新高考新结构数学7个大题逐一击破概率与分布列归类含答案

2024年新高考新结构数学7个大题逐一击破概率与分布列归类含答案

概率与分布列归类目录【题型一】超几何分布型分布列【题型二】二项分布型分布列【题型三】正态分布型【题型四】分布列均值与方差【题型五】竞技比赛型分布列【题型六】多人比赛竞技型分布列【题型七】递推数列型【题型八】三人传球递推数列型【题型九】导数计算型分布列最值【题型十】机器人跳棋模式求分布列【题型一】超几何分布型分布列总数为N 的两类物品,其中一类为M 件,从N 中取n 件恰含M 中的m 件,m =0,1,2⋯,k ,其中k 为M与n 的较小者,P ξ=m =C m M C n -mN -MC nN,称ξ服从参数为N ,M ,n 的超几何分布,记作ξ~H N ,M ,n ,此时有公式E ξ=nMN。

一般地,假设一批产品共有N 件,其中有M 件次品. 从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC nN,k =m ,m +1,m +2,⋯,r . 其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max {0,n -N +M },r =min {n ,M }. 如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布_.E (X )=np .2024年新高考新结构数学7个大题逐一击破概率与分布列归类(学生版)1(2023·湖北·模拟预测)某区域中的物种P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某生物研究小组计划在该区域中捕捉100个物种P ,统计其中A 种的数目后,将捕获的生物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i (i =1,2,⋯,20).设该区域中A 种的数目为M ,B 种的数目为N ,每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E (X i +X j )=E (X i )+E (X j ),D (X i +X j )=D (X i )+D (X j );(ⅰ)证明:E (X )=E (X 1),D (X )=120D (X 1);(ⅱ)该小组完成所有试验后,得到X i 的实际取值分别为x i (i =1,2,⋯,20).数据x i (i =1,2,⋯,20)的平均值x=40,方差s 2=1.176.采用x和s 2分别代替E (X )和D (X ),给出M ,N 的估计值.2(23·24高三上·江苏南通·阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有X 个红球,则分得X 个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.3(2024·广东广州·二模)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据x i,y i(i=1,2,⋯,20),其中x i,和y i,分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得∑20i=1x i-x2=80,∑20i=1y i-y2=9000,∑20i=1x i-xy i-y=800.(1)求样本x i,y i(i=1,2,⋯,20)的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;(2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.附:相关系数r=∑ni=1x i-xy i-y∑ni=1x i-x2∑ni=1y i-y2,2≈1.414【题型二】二项分布型分布列若在一次实验中事件发生的概率为p0<p<1,则在n次独立重复实验中恰好发生k次概率pξ=k =C k n p k1-p,Eξ=np,D i= n-k k=0,1,2,⋯,n,称ξ服从参数为n,p的二项分布,记作ξ~B n,pnpq.1(2024·云南昆明·一模)聊天机器人(chatterbot)是一个经由对话或文字进行交谈的计算机程序.当一个问题输入给聊天机器人时,它会从数据库中检索最贴切的结果进行应答.在对某款聊天机器人进行测试时,如果输入的问题没有语法错误,则应答被采纳的概率为80%,若出现语法错误,则应答被采纳的概率为30%.假设每次输入的问题出现语法错误的概率为10%.(1)求一个问题的应答被采纳的概率;(2)在某次测试中,输入了8个问题,每个问题的应答是否被采纳相互独立,记这些应答被采纳的个数为X,事件X=k(k=0,1,⋯,8)的概率为P(X=k),求当P(X=k)最大时k的值.2(2024·全国·模拟预测)某地文旅部门为了增强游客对本地旅游景区的了解,提高旅游景区的知名度和吸引力,促进旅游业的发展,在2023年中秋国庆双节之际举办“十佳旅游景区”评选活动,在坚持“公平、公正公开”的前提下,经过景区介绍、景区参观、评选投票、结果发布、颁发奖牌等环节,当地的6个“自然景观类景区”和4个“人文景观类景区”荣获“十佳旅游景区”的称号.评选活动结束后,文旅部门为了进一步提升“十佳旅游景区”的影响力和美誉度,拟从这10个景区中选取部分景区进行重点推介.(1)若文旅部门从这10个景区中先随机选取1个景区面向本地的大学生群体进行重点推介、再选取另一个景区面向本地的中学生群体进行重点推介,记面向大学生群体重点推介的景区是“自然景观类景区”为事件A,面向中学生群体重点推介的景区是“人文景观类景区”为事件B,求P B A,P B;(2)现需要从“十佳旅游景区”中选4个景区,且每次选1个景区(可以重复),分别向北京、上海、广州、深圳这四个一线城市进行重点推介,记选取的景区中“人文景观类景区”的个数为X,求X的分布列和数学期望.3(2023·广东肇庆·二模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X.(1)当n=6时,求P X≤2(2)已知切比雪夫不等式:对于任一随机变量Y,若其数学期望E Y 和方差D Y 均存在,则对任意正实数a,有P Y-E Y<a≥1-D Ya2.根据该不等式可以对事件“Y-E Y<a”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n的最小值.【题型三】正态分布型(1)若X 是正态随机变量,其概率密度曲线的函数表达式为f x =12π⋅σe -x -μ22σ2,x ∈R (其中μ,σ是参数,且σ>0,-∞<μ<+∞)。

专题八 概率与统计 第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计  第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计 第二讲 概率,随机变量及分布列1.为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为( ) A.112B.16C.15D.132.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为( ) A.14B.13C.49D.3163.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110B.15C.310D.254.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.15.设两个相互独立事件A ,B 都不发生的概率为19,则A 与B 都发生的概率的取值范围是( )A.80,9⎡⎤⎢⎥⎣⎦B.15,99⎡⎤⎢⎥⎣⎦C.28,39⎡⎤⎢⎥⎣⎦D.40,9⎡⎤⎢⎥⎣⎦6.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.13C.49D.197.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A.25B.1225C.1625D.458.(多选)从甲袋中摸出1个红球的概率是13,从乙袋中摸出1个红球的概率是12.从甲袋、乙袋各摸出1个球,则下列结论正确的是( )A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为129. (多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A.两件都是一等品的概率是13B.两件中有1件是次品的概率是12C.两件都是正品的概率是13D.两件中至少有1件是一等品的概率是5610. (多选)在一次随机试验中,A,B,C,D是彼此互斥的事件,且A B C D+++是必然事件,则下列说法正确的是( )A.A B+与C是互斥事件,也是对立事件B.B+C与D是互斥事件,但不是对立事件C.A C+与B D+是互斥事件,但不是对立事件D.A与B C D++是互斥事件,也是对立事件11.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________.12.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.13.从甲、乙、丙、丁四人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为_____________.14.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求2n m<+的概率..假定甲、乙两位同学15.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案以及解析1.答案:D解析:6架飞机的降落顺序有66A 种,而1号与6号相邻降落的顺序有2525A A 种,所以所求事件的概率252566A A 1A 3P ==.故选D.2.答案:A解析:甲、乙各摸一次球,有可能的结果有4416⨯=(种),甲摸的数字在前,乙摸的数字在后,则甲获胜的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种. 其中甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数有4种,则所求概率41164P ==. 3.答案:D解析:先后有放回地抽取2张卡片的情况有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.其中满足条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10种情况.因此所求的概率102255P ==.故选D. 4.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为0.90.10.09⨯=,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A. 5.答案:D解析:设事件A ,B 发生的概率分别为()P A x =,()P B y =,则1()()()(1)(1)9P AB P A P B x y ==-⋅-=,即11199xy x y +=++≥+x y =时取“=”,211)9∴≥23≤43(舍去),409xy ∴≤≤.4()()()0,9P AB P A P B xy ⎡⎤∴==∈⎢⎥⎣⎦.6.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,()()P AB P AB =.设()P A x =,()P B y =,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得2,323x y ⎧=⎪⎪⎨⎪=⎪⎩或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是23.故选A.7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,42()()105P A P B ===,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:ACD解析:设“从甲袋中摸出1个红球”为事件1A ,“从乙袋中摸出1个红球为事件2A ,则()113P A =,()212P A =,且1A ,2A 独立.对于A 选项,2个球都是红球为12A A ,其概率为111326⨯=,故A 正确;对于B 选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为15166-=,故B 错误;对于C 选项,2个球中至少有1个红球的概率为()()1221211323P A P A -=-⨯=,故C 正确;对于D 选项,2个球中恰有1个红球的概率为1121132322⨯+⨯=,故D 正确.故选ACD. 9.答案:BD解析:由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种. 对于A ,两件都是一等品的基本情况有(,)a b ,共1种,故两件都是一等品的概率116P =,故A 错误; 对于B ,两件中有1件是次品的基本情况有(,)a d ,(,)b d ,(,)c d ,共3种,故两件中有1件是次品的概率23162P ==,故B 正确;对于C ,两件都是正品的基本情况有(,)a b ,(,)a c ,(,)b c ,共3种,故两件都是正品的概率33162P ==,故C 错误;对于D ,两件中至少有1件是一等品的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,共5种,故两件中至少有1件是一等品的概率456P =,故D 正确. 10.答案:BD解析:由于A ,B ,C ,D 彼此互斥,且A B C D +++是必然事件,故事件的关系如图所示.由图可知,任何一个事件与其余三个事件的和事件互为对立,任何两个事件的和事件与其余两个事件中任何一个是互斥事件,任何两个事件的和事件与其余两个事件的和事件互为对立,故B,D 中的说法正确.11.答案:35解析:设此队员每次罚球的命中率为p ,则216125p -=,所以35p =. 12.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=.13.答案:23解析:从甲、乙、丙、丁四人中随机选取两人,有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},共6种结果;其中甲、乙两人中有且只有一人被选取,有甲,丙},{甲,丁},{乙,丙},{乙,丁},共4种结果. 故甲、乙两人中有且只有一人被选取的概率为4263=. 14.答案:(1)13. (2)概率为1316. 解析:(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个, 因此所求事件的概率为2163P ==.(2)先从袋中随机取一个球,记下编号为,放回后,再从袋中随机取一个球,记下编号为m , 试验的样本空间{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),Ω=(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点.又满足条件2n m ≥+的样本点有:(1,3),(1,4),(2,4),共3个. 所以满足条件2n m ≥+的事件的概率为1316P =,故满足条件2n m <+的事件的概率为1313111616P -=-=. 15.答案:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C ,0,1,2,333kkk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以随机变量X的分布列为随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭,且{3,1}{2,0}M X Y X Y ===⋃==.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(1)知()P M =({3,1}{2,0})(3,1)(2,P X Y X Y P X Y P X ==⋃=====+=8240)(3)(1)(2)(0)2799Y P X P Y P X P Y ====+===⨯+⨯12027243=.。

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

6.6 分布列基础(精练)(基础版)1.(2022·云南·昆明市第一中学西山学校)国家“双减”政策落实之后,某市教育部门为了配合“双减”工作,做好校园课后延时服务,特向本市小学生家长发放调查问卷了解本市课后延时服务情况,现从中抽取100份问卷,统计了其中学生一周课后延时服务总时间(单位:分钟),并将数据分成以下五组:[)[)[)[)[]100,120,120,140,140,160,160,180,180,200,得到如图所示的频率分布直方图.(1)根据如图估计该市小学生一周课后延时服务时间的众数、平均数、中位数(保留小数点后一位);(2)通过调查分析发现,若服务总时间超过160分钟,则学生有不满情绪,现利用分层随机抽样的方法从样本问卷中随机抽取8份,再从抽取的8份问卷中抽取3份,记其中有不满情绪的问卷份数为X ,求X 的分布列及均值.【答案】(1)150,151,150.9;(2)分布列见解析,34.【解析】(1)众数:150;第1到5组频率分别为:0.05,0.15,0.55,0.2,0.05,平均数:1100.051300.151500.551700.21900.05151x =⨯+⨯+⨯+⨯+⨯=, 设中位数为x ,则中位数在第3组,则()0.21400.02750.5x +-⨯=,150.9x ≈; (2)用分层随机抽样抽取8份问卷,其中学生有不满情绪的有8×(0.2+0.05)=2份,∴X 的可能取值为0,1,2,∴()306238C C 5C 140P X ===,()216238C C 15C 281P X ===,()126238C C 3C 282P X ===,∴X 的分布列为:题组一 超几何分布∴()515330121428284E X =⨯+⨯+⨯=. 2.(2022·北京·高三专题练习)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X >为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;(2)从图中考核成绩满足[]70,79X ∈的学生中任取3人,设Y 表示这3人中成绩满足8510X -≤的人数,求Y 的分布列和数学期望;(3)根据以往培训数据,规定当8510.510X P ⎛-⎫≤≥⎪⎝⎭时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.【答案】(1)15(2)分布列见解析,()158E Y = (3)有效,理由见解析 【解析】(1)解:设该名学生的考核成绩优秀为事件A ,由茎叶图中的数据可知,30名同学中,有6名同学的考核成绩为优秀,故()15P A =. (2)解:由8510X -≤可得7595X ≤≤,所以,考核成绩满足[]70,79X ∈的学生中满足8510X -≤的人数为5,故随机变量Y 的可能取值有0、1、2、3,()3338C 10C 56P Y ===,()213538C C 151C 56P Y ===,()123538C C 152C 28P Y ===,()3538C 53C 28P Y ===,所以,随机变量Y 的分布列如下表所示:因此,()115155150123565628288E Y =⨯+⨯+⨯+⨯=. (3)解:由85110X -≤可得7595X ≤≤,由茎叶图可知,满足7595X ≤≤的成绩有16个, 所以851610.51030X P ⎛-⎫≤=≥⎪⎝⎭,因此,可认为此次冰雪培训活动有效. 3.(2022·宁夏中卫·三模(理))共享电动车(sharedev )是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为0.4P =,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X 的分布列与数学期望. 【答案】(1)12;(2)分布列见解析,数学期望为65.【解析】(1)因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A 为“从中任取3辆共享单车中恰好有一辆是橙色”,则()2164310C C 1C 2P A ⨯==. (2)随机变量X 的所有可能取值为0,1,2,3.所以()3064310C C 10C 6P X ⨯===,()2164310C C 11C 2P X ⨯===, ()()1264310C C 32C 10P X P A ⨯====,()0364310C C 13C 30P X ⨯===.所以分布列为数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.4.(2022·广东·华南师大附中三模)“双减”政策实施后,为了解某地中小学生周末体育锻炼的时间,某研究人员随机调查了600名学生,得到的数据统计如下表所示:(1)估计这600名学生周末体育锻炼时间的平均数t ;(同一组中的数据用该组区间的中点值作代表) (2)在这600人中,用分层抽样的方法,从周末体育锻炼时间在[)40,60内的学生中抽取15人,再从这15人中随机抽取3人,记这3人中周末体育锻炼时间在[)50,60内的人数为X ,求X 的分布列以及数学期望()E X . 【答案】(1)58.5;(2)分布列答案见解析,数学期望:95.【解析】(1)估计这600名学生周末体育锻炼时间的平均数 350.1450.2550.3650.15750.15850.158.5t =⨯+⨯+⨯+⨯+⨯+⨯=.(2)依题意,周末体育锻炼时间在[)40,50内的学生抽6人,在[)50,60内的学生抽9人,则()363154091C P X C ===,()216931527191C C P X C ===,()12693152162455C C P X C ===,()3931512365C P X C ===,故X 的分布列为: 则()42721612901239191455655E X =⨯+⨯+⨯+⨯=. 5.(2022·云南保山·模拟预测(理))某高中学校为了解学生的课外体育锻炼时间情况,在全校学生中随机抽取了200名学生进行调查,并将数据分成六组,得到如图所示的频率分布直方图.将平均每天课外体育锻炼时间在[40,60)上的学生评价为锻炼达标,将平均每天课外体育锻炼时间在[0,40)上的学生评价为锻炼不达标(1)根据频率分布直方图估计这200名学生每天课外体育锻炼时间的众数、中位数;(2)为了了解学生课外体育锻炼时间不达标的原因,从上述锻炼不达标的学生中按分层抽样的方法抽取10人,再从这10人中随机抽取3人,记这三人中每天课外体育锻炼时间在[0,20)的人数为ξ,求ξ的分布列和数学期望.【答案】(1)中位数为28.125,众数等于25(2)分布列见解析,0.9【解析】(1)众数就是直方图中最高矩形底边中点的横坐标,则样本众数等于25.由频率分布直方图可得,在[0,10)上的频率为0.08,在[10,20)上的频率为0.16,在[20,30)上的频率为0.32,0.080.160.50.080.160.32<<+++,则中位数在区间[20,30)上.设中位数为0x ,则()00.24200.0320.5+-⨯=x ,028.125x =,即样本中位数为28.125.(2)根据题意,在[0,10),[10,20),[20,30),[30,40)上抽取的人数分别为1,2,4,3,其中在[0,20)上抽取的人数为3,则0ξ=,1,2,3.3127373310103576321(0),(1),1202412040ξξ⨯========C C C P P C C , 2133733310102171(2),(3)12040120C C C P P C C ξξ=====⨯==. 从而得到随机变量ξ的分布列如下表:随机变量ξ的期望72171()01230.9244040120E ξ=⨯+⨯+⨯+⨯=6.(2022·北京市朝阳区人大附中朝阳分校模拟预测)自“新型冠状肺炎”疫情爆发以来,科研团队一直在积极地研发“新冠疫苗”.在科研人员不懈努力下,我国公民率先在2020年年末开始使用安全的新冠疫苗,使我国的“防疫”工作获得更大的主动权.研发疫苗之初,为了测试疫苗的效果,科研人员以白兔为实验对象,进行了一些实验:(1)实验一:选取10只健康白兔,编号1至10号,注射一次新冠疫苗后,再让它们暴露在含有新冠病毒的环境中,实验结果发现:除2号、3号、7号和10号四只白兔仍然感染了新冠病毒,其他白兔未被感染.现从这10只白兔中随机抽取3只进行研究,将仍被感染的白兔只数记作X ,求X 的分布列和数学期望.(2)实验二:疫苗可以再次注射第二针、加强针,但两次疫苗注射时间间隔需大于三个月.科研人员对白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响.试问:若将实验一中未被感染新冠病毒的白兔的频率当做疫苗的有效率,那么一只白兔注射两次疫苗后的有效率能否保证达到90%?如若可以,请说明理由;若不可以,请你参考上述实验给出注射疫苗后有效率在90%以上的建议. 【答案】(1)分布列见解析;数学期望()65E X =; (2)无法保证;建议:需要将注射一次疫苗的有效率提高到90%以上. 【解析】(1)由题意得:X 所有可能的取值为0,1,2,3,()3631020101206C P X C ∴====;216431060111202C C P XC ; 1264310363212010C C P X C ;3431041312030C P XC ; X ∴的分布列为:∴数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=; (2)由已知数据知:实验一中未被感染新冠病毒的白兔的频率为0.6,则注射一次疫苗的有效率为0.6, ∴一只白兔注射两次疫苗的有效率为:()2110.60.8484%90%--==<, ∴无法保证一只白兔注射两次疫苗后的有效率达到90%;设每支疫苗有效率至少达到x 才能满足要求,()21190%x ∴--≥,解得:0.990%x ≥=,∴需要将注射一次疫苗的有效率提高到90%以上才能保证一只白兔注射两次疫苗后的有效率达到90%.7.(2022·全国·高三专题练习(理))高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(1)求选出的4 人均选《数学解题思想与方法》的概率;(2)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望. 【答案】(1)415(2)分布列见解析,期望为1 【解析】(1)解:设“从第一小组选出的2人选《数学解题思想与方法》”为事件A ,“从第二小组选出的2人选《数学解题思想与方法》”为事件B ,由于事 件A 、B 相互独立,且22542266C C 22(),()C 3C 5P A P B ====, 所以选出的4人均选《数学解题思想与方法》的概率为224()()()3515P A B P A P B ⋅=⋅=⨯=.(2)解:由题意,随机变量ξ可能的取值为0,1,2,3,可得4(0)15P ξ==,211125524422226666C C C C C 22(1)C C C C 45P ξ==⋅+⋅=,152266C 11(3)C C 45P ξ==⋅=,2(2)1(0)(1)(3)9P P P P ξξξξ==-=-=-==, 所以随机变量ξ的分布列为:ξ0 1 23 P415224529145所以随机变量ξ的数学期望 42221012311545945E ξ=⨯+⨯+⨯+⨯=. 1.(2022·北京·人大附中三模)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号分组频数1[)0,262 [)2,48题组二 二项分布每周课外阅读时间小于6小时的学生我们称之为“阅读小白”,大于等于6小时且小于12小时的学生称之为“阅读新手”,阅读时间大于等于12小时的学生称之为“阅读达人”.(1)从样本中随机选取一名学生,已知这名学生的阅读时间大于等于6小时,问这名学生是“阅读达人”概率; (2)从该校学生中选取3人,用样本的频率估计概率,记这3人中“阅读新手和阅读小白”的人数和为X ,求X 的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论) 【答案】(1)1069(2)分布列答案见解析,()2710E X =(3)第4组【解析】(1)解:从样本中随机选取一名学生,其中阅读时间大于等于6小时的学生人数为1003169-=, “阅读达人”的学生人数为10,故所求概率为1069. (2)解:从该校学生中任选一人,该学生是“阅读小白”或“阅读新人”的概率为90910010=, 所以,9~3,10X B ⎛⎫ ⎪⎝⎭,则()3110101000P X ⎛⎫=== ⎪⎝⎭,()397293101000P X ⎛⎫=== ⎪⎝⎭,()21391271C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭,()223912432C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:()927310100E X =⨯=. (3)解:样本中的100名学生该周课外阅读时间的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.68.因此,样本中的100名学生该周课外阅读时间的平均数在第4组.2.(2022·安徽·合肥一六八中学模拟预测(理))《关于加快推进生态文明建设的意见》,正式把“坚持绿水青山就是金山银山”的理念写进中央文件,成为指导中国加快推进生态文明建设的重要指导思想.为响应国家号召,某市2020年植树节期间种植了一批树苗,2022年市园林部门从这批树苗中随机抽取100棵进行跟踪检测,得到树高的频率分布直方图如图所示:(1)求树高在225-235cm 之间树苗的棵数,并求这100棵树苗树高的平均值;(2)若将树高以等级呈现,规定:树高在185-205cm 为合格,在205-235为良好,在235-265cm 为优秀.视该样本的频率分布为总体的频率分布,若从这批树苗中机抽取3棵,求树高等级为优秀的棵数ξ的分布列和数学期望.【答案】(1)15;220.5(2)分布列见解析;期望为0.6【解析】(1)树高在225-235cm 之间的棵数为:()10010.00530.0150.02000250.011015⎡⎤⨯-⨯++++⨯=⎣⎦..树高的平均值为:0.051900.152000.22100.252200.152300.12400.052500.05260220.5⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)可知,树高为优秀的概率为:0.10.050.050.2++=, 由题意可知()~3,0.2B ξ,则ξ的所有可能取值为0,1,2,3,()0330C 0.80.512P ξ===, ()1231C 0.80.20.384P ξ==⨯=, ()2232C 0.80.20.096P ξ==⨯=,()3333C 0.20.008P ξ===,故ξ的分布列为:因为()~3,0.2B ξ,所以()30.20.6E ξ=⨯=3.(2022·新疆克拉玛依·三模(理))第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中的a 值,并根据直方图估计该市全体中学生的测试分数的中位数和平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)将频率作为概率,若从该市全体中学生中抽取4人,记这4人中测试分数不低于90分的人数为X ,求X 的分布列及数学期望.【答案】(1)0.02a =,中位数为74.3,平均数为74.5;(2)分布列见解析,25.【解析】(1)由频率分布直方图和茎叶图知,测试分数在[50,60),[60,70),[70,80),[90,100]的频率依次为:0.1,0.25,0.35,0.1,因此,测试分数位于[)80,90的频率为10.10.250.350.10.2----=,则0.20.0210a ==, 显然测试分数的中位数t 在区间[70,80)内,则有:()700.0350.50.10.25t -⨯=--,解得:74.3t ≈, 测试分数的平均数为:550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=. (2)测试分数不低于90分的频率为110,X 的所有可能值是:0,1,2,3,4, 显然1(4,)10XB ,()4419C ()(),N,41010k k k P X k k k -==∈≤, 所以X 的分布列为:数学期望()124105E X =⨯=. 4.(2022·全国·模拟预测)为了中国经济的持续发展制定了从2021年2025年发展纲要,简称“十四五”规划,为了普及“十四五”的知识,某党政机关举行“十四五”的知识问答考试,从参加考试的机关人员中,随机抽取100名人员的考试成绩的部分频率分布直方图,其中考试成绩在[)70,80上的人数没有统计出来.(1)估算这次考试成绩的平均分数;(2)把上述的频率看作概率,把考试成绩的分数在[]80,100的学员选为“十四五”优秀宣传员,若从党政机关所有工作人员中,任选3名工作人员,其中可以作为优秀宣传员的人数为ξ,求ξ的分布列与数学期望.【答案】(1)70.5(2)分布列见解析,数学期望为0.9【解析】(1)设分数在[)70,80内的频率为x ,根据频率分布直方图得,()0.010.0150.020.0250.005101x ++++⨯+=,解得0.25x =,可知分数在[)70,80内的频率为0.25,则考试成绩的平均分数为450.10550.15650.2750.25850.25950.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图可知考试成绩在[]80,100的频率为()0.0250.005100.3+⨯=,则0,1,2,3ξ=.()003334300.30.71000P C ξ==⨯=,()12344110.30.71000P C ξ==⨯=()22318920.30.71000P C ξ==⨯=,()3332730.31000P C ξ===,故随机变量ξ的分布列为因为该分布为二项分布,所以该随机变量的数学期望为()30.30.9E ξ=⨯=.5.(2022·江苏苏州·模拟预测)如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为X .(1)若该质点共移动2次,位于原点O 的概率;(2)若该质点共移动6次,求该质点到达数字X 的分布列和数学期望. 【答案】(1)12;(2)分布列见解析,0.【解析】(1)质点移动2次,可能结果共有224⨯=种,若质点位于原点O ,则质点需要向左、右各移动一次,共有12C 2=种,故质点位于原点O 的概率2142P ==. (2)质点每次移动向左或向右,设事件A 为“向右”,则A 为“向左”,故1()()2P A P A ==, 设Y 表示6次移动中向左移动的次数,则1(6,)2Y B ,质点到达的数字62X Y =-,所以06611(6)(0)C ()264P X P Y =====,16613(4)(1)C ()232P X P Y =====,266115(2)(2)C ()264P X P Y =====, 36615(0)(3)C ()216P X P Y =====,466115(2)(4)C ()264P X P Y =-====, 56613(4)(5)C ()232P X P Y =-====,66611(6)(6)C ()264P X P Y =-====, 所以X 的分布列为:1()(62)2()626602E X E Y E Y =-=-+=-⨯⨯+=.6.(2022·北京通州·模拟预测)第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A 、B 、C 、D 、E 五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明) (2)求甲单板滑雪项目各次测试分数的众数和平均数;(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X ,求X 的分布列(频率当作概率使用).【答案】(1)乙比甲的单板滑雪成绩更稳定 (2)众数为3分,平均数为2.9分 (3)分布列答案见解析【解析】(1)解:由图可知,乙比甲的单板滑雪成绩更稳定.(2)解:因为甲单板滑雪项目测试中4分和5分成绩的频率之和为0.325, 3分成绩的频率为0.375,所以,甲单板滑雪项目各次测试分数的众数为3分,测试成绩2分的频率为10.20.3750.250.0750.1----=,所以,甲单板滑雪项目各次测试分数的平均数为10.220.130.37540.2550.075 2.9⨯+⨯+⨯+⨯+⨯=. (3)解:由题意可知,在每次测试中,甲的成绩为4分,并且乙的成绩为3分或4分的概率为30.250.375216⨯⨯=, 依题意,3~2,16X B ⎛⎫ ⎪⎝⎭,所以,()2131********P X ⎛⎫=== ⎪⎝⎭,()12313391C 1616128P X ==⋅⋅=,()239216256P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:X0 1 2 P1692563912892561.(2022·全国·高三专题练习(理))冰壶是2022年2月4日至2月20日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN 的左侧)有一个发球区,运动员在发球区边沿的投掷线MN 将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O 的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O 中,得3分,冰壶的重心落在圆环A 中,得2分,冰壶的重心落在圆环B 中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为13,14;甲、乙得2分的概率分别为25,12;甲、乙得1分的概率分别为15,16.(1)求甲所得分数大于乙所得分数的概率;(2)设甲、乙两人所得的分数之差的绝对值为X ,求X 的分布列和期望.题组三 独立重复实验【答案】(1)1130(2)分布列见解析,期望为:169180【解析】(1)由题意知甲得0分的概率为1211135515---=,乙得0分的概率为1111142612---=,甲所得分数大于乙所得分数分为:甲得3分乙得2或1或0分,甲得2分乙得1或0分,甲得1分乙得0分所以所求概率为1121111(1)()3456125123011⨯-+⨯++⨯=.(2)X 可能取值为0,1,2,3,()11211111290345256151290P X ==⨯+⨯+⨯+⨯=()112111111111++35565251283246121805P X ==⨯+⨯+⨯+⨯⨯⨯=()11111121231215180P X ==⨯+⨯+⨯+⨯=()11211121545334P X ==⨯+⨯=所以,随机变量X 的分布列为:所以()298331216918001239018018405E X =⨯+⨯+⨯+⨯= 2.(2022·全国·高三专题练习(理))为弘扬奥运精神,某校开展了“冬奥”相关知识趣味竞赛活动.现有甲、乙两名同学进行比赛,共有两道题目,一次回答一道题目.规则如下:∴抛一次质地均匀的硬币,若正面向上,则由甲回答一个问题,若反面向上,则由乙回答一个问题.∴回答正确者得10分,另一人得0分;回答错误者得0分,另一人得5分.∴若两道题目全部回答完,则比赛结束,计算两人的最终得分.已知甲答对每道题目的概率为45,乙答对每道题目的概率为35,且两人每道题目是否回答正确相互独立.(1)求乙同学最终得10分的概率;(2)记X 为甲同学的最终得分,求X 的分布列和数学期望. 【答案】(1)37100(2)分布列见解析,X 的数学期望为10【解析】(1)记“乙同学最终得10分”为事件A ,则可能情况为甲回答两题且错两题;甲、乙各答一题且各对一题;乙回答两题且对一题错一题, 则()1111141313123722252525252525100P A =⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=,所以乙同学得10分的概率是37100. (2)甲同学的最终得分X 的所有可能取值是0,5,10,15,20. ()1111111313131640225252525252510025P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()111213121645222525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯==,()141114*********102225252525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()1412164152252510025P X ==⨯⨯⨯⨯==,()141416420252510025P X ==⨯⨯⨯==.X 的分布列为()4191105101520102525252525E X =⨯+⨯+⨯+⨯+⨯=,所以X 的数学期望为10. 3.(2022·青海·海东市第一中学模拟预测(理))“民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为35,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 【答案】(1)9923125(2)分布列见解析,2541625【解析】(1)设“选手甲被淘汰”为事件A ,因为甲答对每个题的概率均为35,所以甲答错每个题的概率均为25.则甲答了3题都错,被淘汰的概率为33328C 5125⎛⎫= ⎪⎝⎭;甲答了4个题,前3个1对2错,被淘汰的概率为22323272C 555625⎛⎫⨯⨯= ⎪⎝⎭;甲答了5个题,前4个2对2错,被淘汰的概率为2224322432C 5553125⎛⎫⎛⎫⋅⨯= ⎪⎪⎝⎭⎝⎭. 所以选手甲被海的概率()87243299212562531253125P A =++=. (2)易知X 的可能取值为3,4,5,对应甲被淘汰或进入复赛的答题个数,则()3333333273C C 5525P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭, ()2224322165C 55625P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. X 的分布列为则()7234216256225413456255625E X =⨯+⨯+⨯=. 4.(2022·湖南·长沙一中模拟预测)某靶场有A ,B 两种型号的步枪可供选用,其中甲使用A B ,两种型号的步枪的命中率分别为14,13;,(1)若出现连续两次子弹脱靶或者子弹打光耗尽的现象便立刻停止射击,若击中标靶至少3次,则可以获得一份精美礼品,若甲使用B 型号的步枪,并装填5发子弹,求甲获得精美礼品的概率;(2)现在A B ,两把步枪中各装填3发子弹,甲打算轮流使用A B ,两种步枪进行射击,若击中标靶,则继续使用该步枪,若未击中标靶,则改用另一把步枪,甲首先使用A 种型号的步枪,若出现连续两次子弹脱靶或者其中某一把步枪的子弹打光耗尽的现象便立刻停止射击,记X 为射击的次数,求X 的分布列与数学期望. 【答案】(1)1381(2)分布列见解析;X 的数学期望为3512.【解析】(1)甲击中5次的概率为513⎛⎫ ⎪⎝⎭1243=,甲击中4次的概率为14511C (1)()33-⋅10243=,甲击中3次的概率为()322511C 3133⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭28243=, 所以甲获得精美礼品的概率为11028391324324324324381++==. (2)X 的所有可能取值为2,3,4,5,(2)P X =11(1)(1)43=--321432=⨯=,(3)P X ==111113(1)(1)14434416⨯--+⨯⨯=,(4)P X ==1111111(1)1(1)(1)(1)4334334-⨯⨯⨯+-⨯⨯-⨯-524=,11111111(5)(1)(1)1(1)(1)144334334P X ==⨯-⨯⨯-⨯+-⨯⨯-⨯⨯1111(1)14433+⨯-⨯⨯⨯548=,所以X 的分布列为:所以1355()23452162448E X =⨯+⨯+⨯+⨯3512=. 5.(2022·全国·二模(理))“百年征程波澜壮阔,百年初心历久弥坚”.为庆祝中国建党一百周年,哈市某高中举办了“学党史、知党情、跟党走”的党史知识竞赛.比赛分为初赛和决赛两个环节,通过初赛选出两名同学进行最终决赛.若该高中A ,B 两名学生通过激烈的竞争,取得了初赛的前两名,现进行决赛.规则如下:设置5轮抢答,每轮抢到答题权并答对则该学生得1分,答错则对方得1分.当分差达到2分或答满5轮时,比赛结束,得分高者获胜.已知A ,B 每轮均抢答且抢到答题权的概率分别为23,13,A ,B 每一轮答对的概率都为12,且两人每轮是否回答正确均相互独立. (1)求经过2轮抢答A 赢得比赛的概率;:(2)设经过抢答了X 轮后决赛结束,求随机变量X 的分布列和数学期望.【答案】(1)14(2)分布列见解析;期望为134【解析】(1)记事件C 为“经过2轮抢答A 赢得比赛” A 学生每轮得一分的概率()2111132322P A =⨯+⨯=,B 学生每轮得一分的概率()1121132322P B =⨯+⨯=,()21124P C ⎛⎫== ⎪⎝⎭,所以经过2轮抢答A 赢得比赛的概率为14.(2)X 的可能取值为2,4,5.2轮比赛甲赢或乙赢的概率为()2221122C 22P X ⎛⎫=== ⎪⎝⎭,4轮比赛甲赢或乙赢的概率为()121111142C 22224P X ==⨯⨯⨯=, 5轮比赛甲赢或乙赢的概率为()11151424P X ==--=.X 的分布列为:()111132452444E X =⨯+⨯+⨯=,数学期望为134.6.(2022·湖南·长沙市明德中学二模)沙滩排球是一项每队由两人组成的两队在由球网分开的沙地上进行比赛的运动.它有多种不同的比赛形式以适应不同人、不同环境下的比赛需求.国家沙滩排球队为备战每年一次的世界沙滩排球巡回赛,在文昌高隆沙湾国家沙滩排球训练基地进行封闭式训练.在某次训练中,甲、乙两队进行对抗赛,每局依次轮流发球(每队不能连续发球),连续赢得2个球的队获胜并结束该局比赛,并且每局不得超过5个球.通过对甲、乙两队过去对抗赛记录的数据分析,甲队发球甲队赢的概率为23,乙队发球甲队赢的概率为12,每一个球的输赢结果互不影响,已知某局甲先发球. (1)求该局第二个球结束比赛的概率;(2)若每赢1个球记2分,每输一个球记0分,记该局甲队累计得分为ξ,求ξ的分布列及数学期望. 【答案】(1)12(2)分布列见解析,18754【解析】(1)记:“甲队发球甲队赢”为事件A ,“乙队发球甲队赢”为事件B ,“第二个球结束比赛”为事件C ,则()23P A =,()12P B =,()()1132P A P B ==,,C AB AB =,因为事件AB 与AB 互斥,所以()()()()P C P ABAB P AB P AB ==+()()()()P A P B P A P B =+2111132322=⨯+⨯=,所以该局第二个球结束比赛的概率为12.(2)依题意知随机变量ξ的所有可能取值为0246,,, ()()()()1110326P P AB P A P B ξ====⨯=;()()()()2P P ABA ABAB P ABA P ABAB ξ===+21111115323323236=⨯⨯+⨯⨯⨯=; ()()4P P AB ABAABABAABABA ξ==()()()()P AB P ABA P ABABA P ABABA=+++21112111112121153++=323233232332323108=⨯+⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ()()()()()6P P ABAB ABABA ABABA P ABAB P ABABA P ABABAξ===++21212121211112113232323233232354=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=. 所以ξ的分布列为ξ0 2 46 P16536531081154故数学期望()15531118702466361085454E ξ=⨯+⨯+⨯+⨯=. 1.(2022·江苏省木渎高级中学模拟预测)2012年国家开始实施法定节假日高速公路免费通行政策,某收费站统计了2021年中秋节前后车辆通行数量,发现该站近几天车辆通行数量2100(,)0N ξσ~,若()(1200,80)01200P a P b ξξ>=<<=,则当82ab b a ≥+时下列说法正确的是( )A .12a =B .14b =C .34a b +=D .12a b -=【答案】C【解析】因2100(,)0N ξσ~,且()(1200,80)01200P a P b ξξ>=<<=,则有122b a +=,即21a b =-,不等式82ab b a ≥+为:24(1)1(21)0b b b -≥⇔-≤,则12b =,14a =, 所以34a b +=,14a b -=-,A ,B ,D 均不正确,C 正确.故选:C2.(2022·江苏·高三专题练习)随机变量()2,XN μσ,已知其概率分布密度函数22()21()e2x f x μσσπ-=在2x =处取得最大值为12π,则(0)P X >=( )附:()0.6827,(22)0.9545P X P X μσμσμσμσ-≤≤+=-≤≤+=. A .0.6827 B .0.84135C .0.97725D .0.9545【答案】B【解析】由题意2μ=,1122σππ=,2σ=,所以2(2)41()e2x f x π-=, (022)0.6827P X ≤≤=,所以1(0)(10.6827)0.158652P X <=-=, (0)10.158650.84135P X ≥=-=.故选:B .3.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量题组四 正态分布(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人);故选:B4.(2022·广东·大埔县虎山中学高三阶段练习)(多选)已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为(]60,300,若使标准分X 服从正态分布N()180,900,()0.6826P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=,则( )A .这次考试标准分超过180分的约有450人B .这次考试标准分在(]90,270内的人数约为997C .甲、乙、丙三人恰有2人的标准分超过180分的概率为38D .()2402700.0428P X <≤= 【答案】BC【解析】依题意得180μ=,2900σ=,30σ=,因为()()11802P X P X μ>=>=, 所以这次考试标准分超过180分的约有110005002⨯=人,故A 不正确;()()90270180330180330P X P X <≤=-⨯<≤+⨯(33)P X μσμσ=-<≤+=0.9973,所以这次考试标准分在(]90,270内的人数约为10000.9973997⨯≈人,故B 正确; 依题意可知,每个人的标准分超过180分的概率为12,所以甲、乙、丙三人恰有2人的标准分超过180分的概率为223113C 1228⎛⎫⎛⎫⋅⋅-= ⎪⎪⎝⎭⎝⎭,故C 正确; ()240270P X <≤()180230180330P X =+⨯<≤+⨯()23P X μσμσ=+<≤+。

高考数学分布列专题及答案

高考数学分布列专题及答案

分布列1.(本小题满分14分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5.(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产(Ⅰ)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。

(1)试求选出的3种商品中至少有一种日用商品的概率;(2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。

在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;(Ⅱ)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望..(本小题满分14分)分布列参考答案1.(本小题满分14分)解:(1) 列联表补充如下:----------------------------------------3分(2)∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯------------------------6分 ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------7分(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.-------------------------9分其概率分别为021*******(0)20C C P C ξ===,1110152251(1)2C C P C ξ===,2010152253(2)20C C P C ξ===--------------------------12分故ξ的分布列为:--------------------------13分ξ的期望值为:7134012202205E ξ=⨯+⨯+⨯= 2.(本小题满分14分)解:(Ⅰ)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+=…………….6分(Ⅱ)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………………….10分其分布列为5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯= …………………….14分3.解:(1)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共有39C 种不同的选法,选出的3种商品中,没有日用商品的选法有35C 种,……2分 所以选出的3种商品中至少有一种日用商品的概率为 3539537114242C P C =-=-=……4分 (2)顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为0,100,200,300。

高考科学复习解决方案-数学(名校内参版)第十章10.5离散型随机变量的分布列(共15)

高考科学复习解决方案-数学(名校内参版)第十章10.5离散型随机变量的分布列(共15)

P(X=0)=1-0.8=0.2,P(X=20)=0.8×(1-0.6)=0.32,P(X=100)=
0.8×0.6=0.48.
故随机变量 X 的分布列如下:
X
0
20
100
P
0.2
0.32
0.48
基础知识过关 核心素养例析 课时作业
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理 由.
3.随机变量的均值是一个重要的数字特征,它反映了随机变量取值的 平均水平或分布的“集中趋势”.因为随机变量的取值围绕其均值波动,而 随机变量的均值无法反映波动幅度的大小.随机变量的方差和标准差都可以 度量随机变量取值与其均值的偏离程度,反映了随机变量取值的离散程 度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机 变量的取值越分散.
基础知识过关 核心素养例析 课时作业
1.(2021·新高考Ⅰ卷)某学校组织“一带一路”知识竞赛,有 A,B 两 类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个 问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再 随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中 的每个问题回答正确得 20 分,否则得 0 分;B 类问题中的每个问题回答正 确得 80 分,否则得 0 分.
么 X 的分布列如下表所示.
X
0
1
P
1-p
p
我们称 X 服从两点分布或 0-1 分布.
E(X)= □01 p ,D(X)= □02 p(1-p)

基础知识过关 核心素养例析 课时作业
1.思考辨析(正确的打“√”,错误的打“×”) (1)D(ax+b)=aD(x)+b.( × ) (2)离散型随机变量的分布列中,各个概率之和可以小于 1.( × ) (3)随机变量的均值是一个确定数,样本均值具有随机性.( √ ) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )

高考数学复习:概率与分布列题型

高考数学复习:概率与分布列题型

高考数学复习:概率与分布列题型1.已知随机变量且1211211P X P X P X μμμμ-<+-≥++≤<+=,则()A.1-B.0C.1D.22.已知随机变量ξ服从正态分布()2,N μσ,若函数()(2)f x P x x ξ=≤≤+是偶函数,则实数μ=()A.0B.12C.1D.23.随机变量ξ服从正态分布()3,4N ,且()()322P a P a ξξ-≥=≤,则=a ()A.12B.1C.43D.34.设X~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.0228,那么向正方形OABC 中随机投掷20000个点,则落入阴影部分的点的个数的估计值为()[附:随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544]A.12076B.13174C.14056D.7539题型二:二项分布型求参二项分布:若在一次实验中事件发生的概率为p ()01p <<,则在n 次独立重复实验中恰好发生k 次概率()=p k ξ=()1n kk k n C p p --()0,1,2,,k n =⋯,称ξ服从参数为,n p 的二项分布,记作ξ~(),B n p ,E ξ=npi =D npq .1.在n 次独立重复试验(伯努利试验)中,若每次试验中事件A 发生的概率为p ,则事件A 发生的次数X 服从二项分布(),B n p ,事实上,在伯努利试验中,另一个随机变量的实际应用也很广泛,即事件A 首次发生时试验进行的次数Y ,显然1()(1)k P Y k p p -==-,1k =,2,3,…,我们称Y 服从“几何分布”,经计算得1EY p =.据此,若随机变量X 服从二项分布1,6B n ⎛⎫⎪⎝⎭时,且相应的“几何分布”的数学期望EY EX <,则n的最小值为()A.6B.18C.36D.372.已知随机变量X 服从二项分布(,)B n p ,且()9E X =,9()4D X =,则n =()A.3B.6C.9D.123.设随机变量ξ服从二项分布(),B n p ,若() 1.2E ξ=,()0.96D ξ=,则实数n 的值为__________.题型三:二项分布与正态分布综合离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量ξ的分布列ξ1ξ2ξ3ξ…n ξP1p 2p 3p np ①()11,i p i n i N θ*≤≤≤≤∈;②121n p p p ++= .(2)E ξ表示ξ的期望:1122=+n n p p p E ξξξξ++…,反应随机变量的平均水平,若随机变量ξη,满足=a b ηξ+,则E aE b ηξ=+.(3)D ξ表示ξ的方差:()()()2221122=---n n E p E p E p D ξξξξξξξ+++ ,反映随机变量ξ取值的波动性。

高考数学专题 分布列与期望及决策问题(学生版)

高考数学专题 分布列与期望及决策问题(学生版)

高考数学专题 分布列与期望及决策问题【高考真题】1.(2022·全国甲理) 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.2.(2022·北京) 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证【知识总结】离散型随机变量X 的分布列为则,(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )= i =1n[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).【题型突破】1.某校计划举行以“唱支山歌给党听”为主题的红歌合唱比赛活动,现有高一1,2,3,4班准备从《唱支山歌给党听》《没有共产党就没有新中国》《映山红》《十送红军》《歌唱祖国》5首红歌中选取一首作为比赛歌曲,设每班只选择其中一首红歌,且选择任一首红歌是等可能的.(1)求“恰有2个班级选择《唱支山歌给党听》”的概率;(2)记随机变量X 表示这4个班级共选择红歌的个数(相同的红歌记为1个),求X 的分布列与均值.2.有编号为1,2,3的三个小球和编号为1,2,3,4的四个盒子,将三个小球逐个随机地放入四个盒子中,每个小球的放置相互独立.(1)求三个小球恰在同一个盒子中的概率;(2)求三个小球在三个不同盒子且每个小球编号与所在盒子编号不同的概率;(3)记录所有至少有一个小球的盒子,以X 表示这些盒子编号的最小值,求E (X ).3.某公司年会有幸运抽奖环节,一个箱子里有相同的十个乒乓球,球上分别标0,1,2,…,9这十个自然数,每位员工有放回依次取出三个球.规定:每次取出的球所标数字不小于后面取出的球所标数字即中奖.中奖项:三个数字全部相同中一等奖,奖励10 000元现金;三个数字中有两个数字相同中二等奖,奖励5 000元现金;三个数字各不相同中三等奖,奖励2 000元现金.其他不中奖,没有奖金.(1)求员工A 中二等奖的概率;(2)设员工A 中奖奖金为X ,求X 的分布列;(3)员工B 是优秀员工,有两次抽奖机会,求员工B 中奖奖金的期望.4.目前,新能源汽车尚未全面普及,原因在于技术水平有待提高,国内几家大型汽车生产商的科研团队已经独立开展研究工作.吉利研究所、北汽科研中心、长城攻坚站三个团队两年内各自出成果的概率分别为12,m ,14.若三个团队中只有长城攻坚站出成果的概率为112. (1)求吉利研究所、北汽科研中心两个团队两年内至少有一个出成果的概率及m 的值;(2)三个团队有X 个在两年内出成果,求X 的分布列和均值.5.随着社会的发展,一些企业改变了针对应届毕业生的校园招聘方式,将线下招聘改为线上招聘.某世界五百强企业M 的线上招聘方式分资料初审、笔试、面试这三个环节进行,资料初审通过后才能进行笔试,笔试合格后才能参加面试,面试合格后便正式录取,且这几个环节能否通过相互独立.现有甲、乙、丙三名大学生报名参加了企业M 的线上招聘,并均已。

高考专题复习 二项分布(解析版)

高考专题复习   二项分布(解析版)

(3)由题意,得 ~
,从而

; 所以 的分布列为
X
0
1
P
: .
2
3


.
考向三 超几何分布与二项分布区分
【例 3】某地区为调查新生婴儿健康状况,随机抽取 6 名 8 个月龄婴儿称量体重(单位:千克),称量结果 分别为 6,8,9,9,9.5,10.已知 8 个月龄婴儿体重超过 7.2 千克,不超过 9.8 千克为“标准体重”,否 则为“不标准体重”.
(1)根据样本估计总体思想,将频率视为概率,若从该地区全部 8 个月龄婴儿中任取 3 名进行称重,则至少 有 2 名婴儿为“标准体重”的概率是多少?
(2)从抽取的 6 名婴儿中,随机选取 4 名,设 X 表示抽到的“标准体重”人数,求 X 的分布列和数学期望.
【答案】(1) P( A) 20 (2)见解析 27
(Ⅰ)用该实验来估测小球落入 4 号容器的概率,若估测结果的误差小于 ,则称该实验是成功的.试问:
该兴趣小组进行的实验是否成功?(误差

(Ⅱ)再取 3 个小球进行试验,设其中落入 4 号容器的小球个数为 ,求 的分布列与数学期望.(计算时采 用概率的理论值)
【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.
(1)在被调查的驾驶员中,从平均车速不超过 100 km/h 的人中随机抽取 2 人,求这 2 人恰好有 1 名男性驾 驶员和 1 名女性驾驶员的概率;
(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取 3 辆,记这 3 辆车平均车速超过 100
km/h 且为男性驾驶员的车辆为 X,求 X 的概率分布.
a
考向二 二项分布
【例 2】为研究家用轿车在高速公路上的车速情况,交通部门随机选取 100 名家用轿车驾驶员进行调查,得 到其在高速公路上行驶时的平均车速情况为:在 55 名男性驾驶员中,平均车速超过 100 km/h 的有 40 人, 不超过 100 km/h 的有 15 人;在 45 名女性驾驶员中,平均车速超过 100 km/h 的有 20 人,不超过 100 km/h 的有 25 人.

高考数学真题专题(理数)离散型随机变量的分布列、期望与方差

高考数学真题专题(理数)离散型随机变量的分布列、期望与方差

专题十一 概率与统计第三十五讲离散型随机变量的分布列、期望与方差2019年1.(2019天津理16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.2.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.3.(2019北京理17)改革开放以来,人们的支付方式发生了巨大转变。

高考数学专题复习:离散型随机变量及其分布列

高考数学专题复习:离散型随机变量及其分布列

高考数学专题复习:离散型随机变量及其分布列一、单选题1.已知离散型随机变量X 的概率分布列如下:则实数a 等于( ) A .0.6B .0.7C .0.1D .0.42.已知随机变量X 的分布列是则P(X>1)=( ) A .23B .32C .1D .343.随机变量X 的分布列为()15kP X k ==,1k =,2,3,4,5,则(3)P X <=( ) A .15B .13C .12D .234.随机变量X 的分布列如下表所示:则()2P X ≤=( ) A .0.1B .0.2C .0.3D .0.45.若随机变量η的分布列如表:则()1P η≤=( ) A .0.5B .0.2C .0.4D .0.36.从装有2个白球、3个黑球的袋中任取2个小球,下列可以作为随机变量的是( ) A .至多取到1个黑球 B .至少取到1个白球 C .取到白球的个数D .取到的球的个数7.已知离散型随机变量X 的分布列如表:则实数c 等于( ) A .0.2B .0.3C .0.6D .0.78.若随机变量X 的分布列如下表所示,则a 的值为( )A .0.1B .0.2C .0.3D .0.49.设随机变量x 的分布列为()(),2,3,4,51===-kP X m m m m ,其中k 为常数,则()2log 3log P X 3<<80的值为( )A .23B .34C .45D .5610.随机变量X 所有可能取值的集合是{}2,0,3,5-,且()()()1112,3,54212P X P X P X =-=====,则()14P X -<<的值为( )A .13B .12C .23D .3411.若随机变量X 的分布列如下表,则(3)P X ≥=( )A .14B .13C .34D .11212.口袋中有5个球,编号为1,2,3,4,5,从中任意取出3个球,用X 表示取出球的最小号码,则X 的取值为( ) A .1B .1,2C .1,2,3D .1,2,3,4二、填空题13.若随机变量ξ的分布列为则a =__________.14.设随机变量ξ的分布列为()(1)C P k k k ξ==+,1,2,3k =,其中C 为常数,则1522P ξ⎛⎫<<=⎪⎝⎭__________.15.设随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,C 为常数,则()3P X <=____.16.一串5把外形相似的钥匙,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为__________. 三、解答题17.在10件产品中,有8件合格品,2件次品,从这10件产品中任意抽取2件,试求: (1)取到的次品数的分布列; (2)至少取到1件次品的概率.18.某闯关游戏分为初赛和复赛两个阶段,甲、乙两人参加该闯关游戏.初赛分为三关,每关都必须参与,甲通过每关的概率均为23,乙通过每关的概率依次为311,,.423初赛三关至少通过两关才能够参加复赛,否则直接淘汰;在复赛中,甲、乙过关的概率分别为1,314.若初赛和复赛都通过,则闯关成功.甲、乙两人各关通过与否互不影响. (1)求乙在初赛阶段被淘汰的概率;(2)记甲本次闯关游戏通过的关数为X ,求X 的分布列; (3)试通过概率计算,判断甲、乙两人谁更有可能闯关成功.19.在一个不透明的盒中,装有大小,质地相同的两个小球,其中一个是黑色,一个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多2分或取满6次时游戏结束,并且只有当一人比另一人多2分时,得分高者才能获得游戏奖品.(1)求甲获得游戏奖品的概率;(2)设X表示游戏结束时所进行的取球次数,求X的分布列及数学期望.20.某校高二年级举行班小组投篮比赛,小组是以班级为单位,每小组均由1名男生和2名女生组成,比赛中每人投篮1次、每个人之间投篮都是相互独立的.已知女生投篮命中的概率均为13,男生投篮命中的概率均为23.(1)求小组共投中2次的概率;(2)若三人都投中小组获得30分,投中2次小组获得20分,投中1次小组获得10分,三人都不中,小组减去60分,随机变量X表示小组总分,求随机变量X的分布列及数学期望.21.一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白球与黄球各3个,红球与绿球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:(1)只能一个人摸球;(2)摸出的球不放回;(3)摸球的人先从袋中摸出1球:①若摸出的是绿球,则再从袋子里摸出2个球;②若摸出的不是绿球,则再从袋子里摸出3个球.他的得分为两次摸出的球的记分之和;(4)剩下的球归对方,得分为剩下的球的记分之和.(Ⅰ)若甲第一次摸出了绿球,求甲的得分不低于乙的得分的概率;(Ⅱ)如果乙先摸出了红球,求乙得分X的分布列.22.袋中有4个红球,()14,n n n N ≤≤∈个黑球,若从袋中任取3个球,恰好取出3个红球的概率为435. (1)求n 的值.(2)若从袋中任取3个球,取出一个红球得1分,取出一个黑球得3分,记取出的3个球的总得分为随机变量X ,求随机变量X 的分布列.参考答案1.D 【分析】利用分布列的性质,求a 的值. 【详解】据题意得0.20.30.11a +++=,所以0.4a =. 故选:D 2.A 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案. 【详解】根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=,所以()()()21=233P X P X P X a b >=+==+=,故选:A. 3.A 【分析】根据互斥事件的概率公式计算. 【详解】()()1231(3)121515155P X P X P X <==+==+==, 故选:A . 4.C 【分析】利用分布列的性质求出m 的值,然后由概率的分布列求解概率即可. 【详解】解:由分布列的性质可得,0.10.321m m +++=,可得0.2m =,所以(2)(1)(2)0.10.20.3P X P X P X ==+==+=. 故选:C . 5.C 【分析】利用分布列可求得()1P η≤的值. 【详解】由分布列可得()()()()11010.10.10.20.4P P P P ηηηη≤==-+=+==++=. 故选:C. 6.C 【分析】根据随机变量的定义,判断选项. 【详解】根据随机变量的定义可知,随机变量的结果都可以数量化,不确定的,由实验结果决定,满足条件的只有C ,取到白球的个数,可以是0,1,2. 故选:C 7.B 【分析】根据概率之和等于1,得0.10.240.361c +++=,解方程即可求出结果. 【详解】据题意,得0.10.240.361c +++=,解得0.3c =. 故选:B. 8.B 【分析】由概率和为1可得a 值. 【详解】由题意0.231a a ++=,解得0.2a =. 故选:B . 9.D 【分析】首先利用分布列中概率之和等于1求得k 的值,再计算()()23P X P X =+=即可求解. 【详解】由分布列的性质可知:()()()()23451P X P X P X P X =+=+=+==, 即12324354k k k k+++=⨯⨯⨯,解得:54k =,所以()5228k P X ===,()53624k P X ===, ()541248k P X ===,()152016k P X ===, 所以()()()2555log 3log 238246P X P X P X 3<<80==+==+=, 故选:D. 10.C 【分析】 先求得1(0)6P X ==,再由(14)(0)(3)P X P X P X -<<==+=可得结果. 【详解】依题意可得1111(0)1(2)(3)(5)142126P X P X P X P X ==-=--=-==---=,所以112(14)(0)(3)623P X P X P X -<<==+==+=. 故选:C. 11.A 【分析】分布列中概率之和等于1可得x 的值,再计算(3)(3)(4)3P X P X P X x ≥==+==即可. 【详解】由分布列中概率的性质可知:3621x x x x +++=,可得:112x =, 所以1(3)(3)(4)34P X P X P X x ≥==+=== 故选:A. 12.C 【分析】根据题意写出随机变量的可能取值. 【详解】根据条件可知任意取出3个球,最小号码可能是1,2,3. 故选:C 13.0.25 【分析】根据概率之和等于1,即可求得答案. 【详解】解因为0.20.31,a a +++= 所以0.25a =. 故答案为:0.25. 14.89【分析】根据分布列的性质求出C ,即可解出. 【详解】因为111311223344C C ⎛⎫=⋅++= ⎪⨯⨯⨯⎝⎭.故43C =,所以15228(1)(2)22399P P P ξ⎛⎫<<=+=+= ⎪⎝⎭.故答案为:89.15.89【分析】首先根据概率和为1可得c 的值,再由()()()312P X P X P X <==+=即可得结果. 【详解】随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,∴ 16122c c c ++=,即62 112c c c ++=,解得43c =, ∴()()()41183123269P X P X P X ⎛⎫<==+==+= ⎪⎝⎭,故答案为:89.16.4 【分析】结合题意找出试验次数X 最大的情况即可. 【详解】由题意可知,前4次都打不开锁,最后一把钥匙一定能打开锁, 故试验次数X 的最大可能取值为4. 故答案为:4.17.(1)分布列见解析;(2)1745【分析】(1)记取到的次品数为X ,则X 的可能值为0,1,2,分别计算概率,可得X 的分布列; (2)由(1)根据互斥事件的概率公式可得(1)(2)P P X P X ==+=; 【详解】解:(1)从这10件产品中任意抽取2件,共21045C =种情况;记取到的次品数为X ,取到的次品数X 值可能为0,1,2,其中282102(0845)C P X C ===;121821016(1)45C C P X C ===;222101)5(24C P X C ===;∴取到的次品数X 的分布列为:(2)由(1)得:至少取到1件次品的概率17(1)(2)45P P X P X ==+==. 18.(1)1124;(2)答案见解析;(3)甲更有可能闯关成功. 【分析】(1)乙初赛被淘汰的事件是乙初赛三关都没过的事件与恰过一关的事件和,再利用概率加法公式计算而得;(2)写出X 的可能值,计算出对应的概率即可得解; (3)分别计算出甲、乙闯关成功的概率即可作答. 【详解】(1)若乙初赛三关一关都没有通过或只通过一个,则被淘汰,于是得乙在初赛阶段被淘汰的概率:1121113121121142342342342324P =⋅⋅+⋅⋅+⋅⋅+⋅⋅=; (2)X 的可能取值为0,1,2,3,4,()3110()327P X ===,()1232121()339P X C ==⋅⋅=,()22321282()33327P X C ==⋅⋅⋅=,()322322211283()()3333381P X C ==⋅+⋅⋅⋅=,()32184()3381P X ==⋅=则X 的分布列为:(3)甲闯关成功的概率32232121120()()33333811P C =⋅+⋅⋅⋅=, 乙闯关成功的事件是初赛不被淘汰和复赛过关的事件积,而这两个事件相互独立,其概率22411113(1)496P =-⋅=, 显然有12P P >,所以甲更有可能闯关成功. 19.(1)716;(2)分布列见解析;期望为72.【分析】(1)甲获得游戏奖品有3种情况:①共取球2次,即第1次和第2次甲都取到白球,从而甲获奖的概为1122⨯;②共取球4次,即第4次取到白球,第3次取到白球,第1次和第2次有一次取到白球,从而甲获奖的概为4122⎛⎫⨯ ⎪⎝⎭;③共取球6次,即第6次为白球,第5次取白球,若第4次取白球,则第3次取黑球,第1,2次中有1次取白球;若第4次取黑球,则第3次白球,第1,2次有一次取白球,从而甲获奖的概为6142⎛⎫⨯ ⎪⎝⎭,再由互斥事件的概率公式可得答案;(2)由(1)的求解中可知,X 可能取2,4,6,用(1)的方法先分别求出X 等于2,4的概率,从而可得X 为6的概率,然后列出分布列即可,然后根据期望的概念求出结果即可.【详解】解:(1)设甲获得游戏奖品为事件A ,()641111724212226P A ⎛⎫=⨯+⨯+⨯= ⎪⎛⎫⎪⎝⎭⎝⎭.所以甲获得游戏奖品的概率为716(2)X 的可能取值为2,4,6, ()11122222P X ==⨯⨯=()41142224P X ⎛⎫==⨯⨯= ⎪⎝⎭,()()()161244P X P X P X ==-=-==. X 的分布列为11172462442EX =⨯+⨯+⨯=20.(1)13;(2)分布列见解析;期望为409.【分析】(1)小组投中两次分为两种情况,两次都是女生投中,和一次男生一次女生投中,从而求得概率;(2)根据题意,X 的可能取值为-60,10,20,30,分别求得各取值对应的概率,列出分布列,求得期望. 【详解】解:(1)一个小组共投中2次的概率 2122211212911133333273P C C ⎛⎫⎛⎫⎛⎫=⋅-⋅+⋅-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)X 的可能取值为-60,10,20,30, 2214(60)113327P X ⎛⎫⎛⎫=-=--= ⎪⎪⎝⎭⎝⎭, ()212212111241011133333279P X C ⎛⎫⎛⎫⎛⎫==-+--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2122112191(20)1133333273P X C ⎛⎫⎛⎫⎛⎫==-+-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2212(30)3327P X ⎛⎫===⎪⎝⎭, X 的分布列为所以441212040()(60)102030279327279E X =-⨯+⨯+⨯+⨯==. 21.(Ⅰ)37,(Ⅱ)分布列见解析.【分析】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,由此可求得概率.(Ⅱ)如果乙先摸出了红球,得3分,则还可以从袋子中摸3个球,那么得分情况有:6分,7分,8分,9分,10分,11分.分别计算概率后可得分布列. 【详解】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,所以112163273()7C C C P A C +==; (Ⅱ)如果乙先摸出了红球,则还可以从袋子中摸3个球,得分情况有:6分,7分,8分,9分,10分,11分.33371(6)35C P C ξ===,2133379(7)35C C P C ξ===;1233379(8)35C C P C ξ===;213313374(9)35C C C P C ξ+===;111331379(10)35C C C P C ξ===; 2131373(11)35C C P C ξ===.ξ的分布列如下:22.(1)3;(2)详见解析. 【分析】(1)依题意得3434C 4C 35n +=,解方程可得结果;(2)X 的可能取值为3,5,7,9,求出相应的概率可得结果. 【详解】(1)依题意得3434C 4C 35n +=,又14n ≤≤,所以3n =;(2)X 的可能取值为3,5,7,9,3X =即取出的3个球都是红球,则()3437C 43C 35P X ===; 5X =即取出的3个球中2个红球1个黑球,则()214337C C 185C 35P X ===; 7X =即取出的3个球中1个红球2个黑球,则()124337C C 127C 35P X ===;9X =即取出的3个球都是黑球,则()3337C 19C 35P X ===. 所以,随机变量X 的分布列为。

分布列76题(带答案)

分布列76题(带答案)

1.甲,乙,丙三个同学同时报名参加某重点高校2012年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核材料过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.(1)求甲,乙,丙三人中只有一人通过审核材料的概率;(2)求甲,乙,丙三人中至少有两人获得自主招生入选资格的概率.2.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.3.某汽车驾驶学校在学员结业前对其驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需要参加下次考核.若小李参加每次考核合格的概率依次组成一个公差为18的等差数列,他参加第一次考核合格的概率超过12,且他直到参加第二次考核才合格的概率为9 32.(1)求小李第一次参加考核就合格的概率P1;(2)求小李参加考核的次数X的分布列和数学期望E(X).1.解(1)分别记甲,乙,丙通过审核材料为事件A1,A2,A3记甲,乙,丙三人中只有一人通过审核为事件B,则P(B)=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2)分别记甲,乙,丙三人中获得自主招生入选资格为事件C,D,E,记甲,乙,丙三人中至少有两人获得自主招生入选资格为事件F,则P(C)=P(D)=P(E)=0.3,∴P(F)=C23×0.32×0.7+C33×0.33=0.189+0.027=0.216.2.解记A i表示事件:第1次和第2次这2次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球时,甲、乙的比分为1比2.(1)B=A0·A+A1·A,P(A)=0.4,P(A0)=0.42=0.16,P(A1)=2×0.6×0.4=0.48,P(B)=P(A0·A+A1·A)=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2)P(A2)=0.62=0.36.ξ的可能取值为0,1,2,3.P(ξ=0)=P(A2·A)=P(A2)P(A)=0.36×0.4=0.144,P(ξ=2)=P(B)=0.352,P(ξ=3)=P(A0·A)=P(A0)P(A)=0.16×0.6=0.096,P(ξ=1)=1-P(ξ=0)-P(ξ=2)-P(ξ=3)=1-0.144-0.352-0.096=0.408.E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3) =0.408+2×0.352+3×0.096 =1.400.3.解 (1)由题意得(1-P 1)·()P 1+18=932,∴P 1=14或58.∵P 1>12,∴P 1=58.(2)由(1)知小李4次考核每次合格的概率依次为58,34,78,1,所以P (X =1)=58,P (X =2)=932,P (X =3)=()1-58()1-34×78=21256, P (X =4)=()1-58()1-34()1-78×1=3256,所以X 的分布列为∴E (X )=1×58+2×932+3×21256+4×3256=379256.5.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E (ξ). (1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950,解得p =15.(4分)(2)由题意,P (ξ=0)=C 03⎝⎛⎭⎫1103=11 000, P (ξ=1)=C 13⎝⎛⎭⎫1102·⎝⎛⎭⎫1-110=271 000, P (ξ=2)=C 23110·⎝⎛⎭⎫1-1102=2431 000, P (ξ=3)=C 33⎝⎛⎭⎫1-1103=7291 000.(8分) 所以,随机变量ξ的概率分布列为故随机变量ξ的数学期望:E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710.6.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (1)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望.(2)求这名同学总得分不为负分(即ξ≥0)的概率.解(1)ξ的可能取值为-300,-100,100,300.P(ξ=-300)=0.23=0.008,P(ξ=-100)=3×0.22×0.8=0.096,P(ξ=100)=3×0.2×0.82=0.384,P(ξ=300)=0.83=0.512.所以ξ的概率分布为根据ξ的概率分布,可得ξEξ=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180.(2)这名同学总得分不为负分的概率为P(ξ≥0)=0.384+0.512=0.896.7.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.解设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:(1)A需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)法一X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为E(X)=0×0.5+1×0.49+2×0.01=0.51.法二X的所有可能取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49;所以X的分布列为E(X)=0×0.5+1×0.49+2×0.01=0.51.2.(2011·浙江高考,理15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的分布列及数学期望E(X)解析由P(X=0)=112,所以13×(1-p)×(1-p)=112,得p=12,所以X的分布列如下:所以E(X)=0×112+1×13+2×512+3×16=53.2、袋子A、B中均装有若干个大小相同的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止。

高考数学试题分布及答案

高考数学试题分布及答案

高考数学试题分布及答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是正确的。

1. 若函数f(x) = x^2 - 4x + 3,则f(1)的值为:A. 0B. 1C. 2D. 3答案:B2. 已知向量a = (3, -1),向量b = (2, 2),则向量a与向量b的数量积为:A. 4B. 5C. 6D. 7答案:A3. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B为:A. {1, 2}B. {2, 3}C. {1, 3}D. {2}答案:D4. 若函数f(x) = sin(x) + cos(x),则f(π/4)的值为:A. √2B. 1C. 2D. 0答案:A5. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若双曲线的渐近线方程为y = ±2x,则a与b的关系为:A. a = 2bB. b = 2aC. a = bD. a = 4b答案:B6. 已知等差数列{an}的首项a1 = 1,公差d = 2,则该数列的前10项和S10为:A. 55B. 60C. 65D. 70答案:A7. 已知抛物线方程为y = ax^2 + bx + c,且抛物线过点(1, 2)和(2,5),则a的值为:A. 1B. 2C. 3答案:B8. 若函数f(x) = x^3 - 3x^2 + 2x,则f'(x)的值为:A. 3x^2 - 6x + 2B. x^2 - 3x + 2C. 3x^2 - 6x + 1D. x^3 - 3x^2 + 2答案:A9. 已知正方体的边长为a,则该正方体的体积V为:A. a^3B. 2a^3C. a^2D. 3a^3答案:A10. 若复数z = 1 + i,则|z|的值为:B. 2C. 1D. √3答案:A11. 已知直线方程为y = mx + b,且该直线过点(2, 3)和(4, 7),则m的值为:A. 1B. 2C. 3D. 4答案:B12. 已知等比数列{bn}的首项b1 = 2,公比q = 3,则该数列的前5项和S5为:A. 145B. 121D. 95答案:B二、填空题:本题共4小题,每小题5分,共20分。

浙江近五年高考数学概率 二项分布等问题真题和答案

浙江近五年高考数学概率 二项分布等问题真题和答案

2017年浙江8. (2017年浙江)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1–p i,i=1,2.若0<p1<p2<12,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)8. A 【解析】∵E(ξ1)=p1,E(ξ2)=p2,∴E(ξ1)<E(ξ2),∵D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2),∴D(ξ1)- D(ξ2)=(p1-p2)(1-p1-p2)<0.故选A.13. (2017年浙江)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,,则a 4=________,a5=________.13. 16 4 【解析】由二项式展开式可得通项公式为Cr 3x r Cm 2·22-m= Cr 3·Cm2·22-m·x r+m,分别取r=0,m=1和r=1,m=0可得a4=4+12=16,取r=m,可得a5=1×22=416. (2017年浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答16. 660 【解析】由题意可得,“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队”中的选择方法为C4 8×C1 4×C1 3(种)方法,其中“服务队中没有女生”的选法有C4 6×C1 4×C1 3(种)方法,则满足题意的选法有C4 8×C1 4×C1 3- C4 6×C1 4×C1 3=660(种).2018年浙江7.设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小【解答】解:设0<p <1,随机变量ξ的分布列是 E (ξ)=0×+1×+2×=p+;方差是D (ξ)=×+×+×=﹣p 2+p+ =﹣+,∴p ∈(0,)时,D (ξ)单调递增; p ∈(,1)时,D (ξ)单调递减; ∴D (ξ)先增大后减小. 故选:D .【点评】本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题. 14.二项式的展开式的常数项是___________. 解:由=.令=0,得r=2.∴二项式(+)8的展开式的常数项是.故答案为:7.【点评】本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是 16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 解:从1,3,5,7,9中任取2个数字有种方法, 从2,4,6,0中任取2个数字不含0时,有种方法,81)2x可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数. 故答案为:1260.【点评】本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.2019年浙江7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C.()D X 先增大后减小 D.()D X 先减小后增大【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______【详解】9)x 的通项为919(0,1,29)rr r r T C x r -+==可得常数项为0919T C ==因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.2020年浙江16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则P (ξ=0)=;E (ξ)= 1 .【分析】由题意知随机变量ξ的可能取值为0,1,2;分别计算P (ξ=0)、P (ξ=1)和P (ξ=2),再求E (ξ)的值.解:由题意知,随机变量ξ的可能取值为0,1,2; 计算P (ξ=0)=+=;P (ξ=1)=+=;P (ξ=2)=+=;所以E (ξ)=0×+1×+2×=1. 故答案为:,1.2017年浙江8. (2017年浙江)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2)D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)13. (2017年浙江)已知多项式(x+1)3(x+2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x+a 5,,则a 4=________,a 5=________.16. (2017年浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答2018年浙江7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小14.二项式的展开式的常数项是___________. 16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)81)2x2019年浙江7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大B. ()D X 减小B. C. ()D X 先增大后减小 D. ()D X 先减小后增大13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______2020年浙江16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则P (ξ=0)= ;E (ξ)= .。

专题15分布列、期望与方差-高考数学复习资料.docx

专题15分布列、期望与方差-高考数学复习资料.docx

一、选择题1.【浙江省杭州市第二中学2018届高三6月热身考】若随机变量§满足£(1-§) = 4, 2^(1-0=4,则下列说法止确的是A. Ef=-4,Df = 4B. Ef=-3,Df = 3C. Eg =- 4,Df =- 4D.Eg =- 3,DC = 4【答案】D【解析】随机变量F満足-厂=4,巩1 —门=4,则:1_砖=4丄_1円疋=4,据此可得:必=-3,巧=4.本题选择。

选项.2.【浙江省杭州市第二中学2018届高三仿真考】已知甲盒子中有尬个红球,“个蓝球,乙盒子中有加-1个红球,八+ 1个蓝球(m>3,n>3),同时从甲乙两个盒子屮取出迫=1,2)个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为戸(心").⑴)交换后,乙盒子中含有红球的个数记为乞(心1忆)则()A. P] > P2'E(§1)V E(§2)B. P I V 卩2疋(§1)> E(§2)C. Pl > 卩2上(§1)> E(§2)D. Pl V 卩2力(§1)V E(§2)【答案】A【解析】根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现mm - l,m + 1三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是尬- l,m,m + l,m + 2五种情况,所以分析可以求得內 > 卩2力(§1)< W,故选A.3.【浙江省金华十校2018年4月高考模拟】随机变量f的分布列如下:其屮Q, X c成等差数列,贝的最大值为()2 5 2 3A. 3 乩© C. ® D. 4【答案】A【解析】因为b, c成等差数列,・・・2b = e + G・・・ti + b + t? = 1.A b = =扌一亿□ □E^ = ~a+c = ~2a + i则Df的最犬值为扌・本题选择卫选项.4.【浙江省上虞市2018届高三第二次(5月)调测】若随机变量f满足巩1-§) = 4, D(l-()=4,则下列说法正确的是A. Ef=-4,D£ = 4B. Ef=-3,Df = 3C.図=-4,D£ =- 4D. Ef =- 3,Df = 4【答案】D【解析】随机变量§满足-0 = 4, D(l-0 =4f则:1-Ff = 4,(-l)2Df = 4,据此可得:昭=-3必=4.本题选择〃选项.10 V a V —5.【浙江省杭州市2018届高三第二次高考科目检测】己知4,随机变量g的分布列如下: g-101P 314—a4a当a增大时,()A. E代)增大,D(2)增大B. E(g)减小,DU)增大C. E(g)增大,D(§)减小D. E(§)减小,D(§)减小【答案】A【解析】由随机变量§的分布列,得应(V =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




1.(本小题满分14分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3
5

(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由; (3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望. 下面的临界值表供参考:
(参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)
2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)
的数据如下表所示:
(Ⅰ)该同学为了求出
y 关于x 的线性回归方程ˆˆˆy
bx a =+,根据表中数据已经正确计算出ˆ0.6b =,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数;
(Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望. 3.(本题满分14分)
某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。

(1)试求选出的3种商品中至少有一种日用商品的概率;
(2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件
促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。

4.(本题满分12分)
在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.
(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;
(Ⅱ)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望. .(本小题满分14分)
分布列参考答案
1.(本小题满分14分)
解:(1) 列联表补充如下:----------------------------------------3分
(2)∵2
2
50(2015105)8.3337.87930202525
K ⨯⨯-⨯=
≈>⨯⨯⨯------------------------6分 ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------7分 (3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.-------------------------9分
其概率分别为021*******(0)20C C P C ξ===,1110152251(1)2C C P C ξ===,2010152
253
(2)20
C C P C ξ=
== --------------------------12分
故ξ的分布列为:
--------------------------13分
ξ的期望值为:7134012202205
E ξ=⨯
+⨯+⨯= 2.(本小题满分14分)
解:(Ⅰ)11
(12345)3,(44566)555
x y =++++==++++=,
因线性回归方程ˆ=+y
bx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,
∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y
=⨯+=
…………….6分
(Ⅱ)0,1,2,3,ξ=
2134543
39930541
(2)
,(3).84148421
C C C P P C C ξξ======== …………………….10分
510514
0123 422114213
E ξ∴=
⨯+⨯+⨯+⨯=
…………………….14分
3.解:(1)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共有
39
C 种不同的选法,选出的3种商品中,没有日用商品的选法有3
5C 种,……2分 所以选出的3种商品中至少有一种日用商品的概率为 3
539537
114242
C P C =-=-=
……4分 (2)顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为0,100,200,300。

(单元:元) ……6分
0ξ=表示顾客在三次抽奖中都没有获奖,所以311
(0)()28
P ξ===,……7分
同理可得 122233113113(100)()(),(200)()()228228P C P C ξ
ξ==⋅===⋅=,
311
(300)()28P ξ===
……9分
于是顾客在三次抽奖中所获得的奖金总额的期望值是
1331
()01002003001501808888
E ξ=⨯+⨯+⨯+⨯=< …………11分
故促销方案对商场有利。

…………12分
4.(本题满分12分)
解:(Ⅰ)设“从第一小组选出的2人选《数学解题思想与方法》”为事件 A ,“从第二小组选出的2人选《数学解题思想与方法》”为事件B .由于事 件A 、B 相互独立,
且25262
()3C p A C ==, 242
62()5
C P B C ==.… ………………………………4分
所以选出的4人均考《数学解题思想与方法》的概率为
224
()()()3515
P A B P A P B ⋅=⋅=⨯= …………………………… 6分
(Ⅱ)设ξ可能的取值为0,1,2,3.得
4(0)15P ξ==,21112
552442222
666622
(1)45
C C C C C P C C C C ξ===+=, 2
(2)1(0)(1)(3)9
p p p p ξξξξ==-=-=-== …………… 9分
ξ的分布列为

ξ的数学期望 012311545945
E ξ=⨯
+⨯+⨯+⨯= …………12分。

相关文档
最新文档