神经网络预测控制大全26页PPT

合集下载

神经网络专题ppt课件

神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。

神经网络控制基础人工神经网络课件ppt课件

神经网络控制基础人工神经网络课件ppt课件

其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。

神经网络控制大全69页PPT

神经网络控制大全69页PPT

13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、会是不守纪律的。——雨果
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
神经网络控制大全
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

4-4神经网络控制PPT课件

4-4神经网络控制PPT课件

4.4 几种典型的神经网络
网络输出 u x )的非线性映射,径向基 RBF网络的输入层到隐含层实现 x i( 网络隐含层节点的作用函数一般取下列几种形式

最常用的是高斯激活函数
采用高斯基函数,具备如下优点: (1)表示形式简单,即使对于多变量输入也不增加太多的复改性; (2)径向对称; (3)光滑性好,任意阶导数存在; (4)由于该基函数表示简单且解析性好,因而使于进行理论分析。
其中,f 函数为Sigmoid函数
4.4 几种典型的神经网络
(4)调整权值,按误差反向传播方向,从输出节点开始返回到隐层按下式 修正权值
(5)返回第(2)步重复,直至误差满足要求为止。 使用BP算法应注意的几个问题 (1)学习速率 η的选锋非常重要。 (2)在设置各训练样本的期望输出分量时,不能设置为1或0,以设置为 0.9或0.1较为适宜。 (3)若实际问题给予网络的输入量较大,需做归一化处理,网络的输出也 要进行相应的处理。 (4)各加权系数的初值以设置为随机数为宜。 (5)在学习过程中,应尽量避免落入某些局部最小值点上,引入惯性项有 可能使网络避免落入某一局部最小值。
4.4 几种典型的神经网络
4.4.2 径向基神经网络
1985年,Powell提出了多变量插值的径向基函数(Radial Basis Function,RBF)方法。 径向基函数网络比BP网络需要更多的神经元,但是它能够按时间片 来训练网络。径向基网络是一种局部逼近网络,已证明它能以任意精度 逼近任一连续函数。 构成RBF网络的基本思想:用RBF作为隐单元的“基”构成隐含层 空间,这样就可将输入矢量直接(即不通过权连接)映射到隐空间。当 RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输 出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。此 处的权即为网络可调参数。

第5章神经网络和神经网络控制ppt课件

第5章神经网络和神经网络控制ppt课件
5.1.2 人工神经元模型
激发函数 f (•) 又称为变换函数,它决定神经 元(节点)的输出。该输出取决于其输入之和大 于或小于内部阈值 i 。函数f (•) 一般具有非线性特 性。下图表示了几种常见的激发函数。 1. 阈值型函数(见图(a),(b)) 2. 饱和型函数(见图(c)) 3. 双曲函数(见图(d)) 4. S型函数(见(e)) 5. 高斯函数(见图(f))
25
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
5.2 前向神经网络
5.2.1 感知器网络 感知器是一个具有单层神经元的神经网络,
并由线性阈值元件组成,是最简单的前向网 络。它主要用于模式分类,单层的感知器网 络结构如下图所示。
5.1.1 生物神经元模型
从生物控制论的观点来看,神经元作为控 制和信息处理的基本单元,具有下列一些重要 的功能与特性:
时空整合功能 兴奋与抑制状态 脉冲与电位转换 神经纤维传导速度 突触延时和不应期 学习、遗忘和疲劳
6
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
推荐课后阅读资料
Simon Haykin.神经网络的综合基础(第 2版). 清华大学出版社,2019
Martin T.Hagan.神经网络设计.机械工 业出版社,2019
23
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

第三章神经网络控制及应用基础-36页PPT文档资料

第三章神经网络控制及应用基础-36页PPT文档资料

04.10.2019
28
3.1.3.2 人工神经网络模型
按 神 经 元 连 接 方 式 分 类
全互连型结构
04.10.2019
29
3.1.3.2 人工神经网络模型



○○○




○○

向 分

○○



前馈型网络
04.10.2019
30
3.1.3.2 人工神经网络模型
按 网





息 流
神经网络的学习算法: •有导师学习(有监督学习) •无导师学习(无监督学习)
04.10.2019
33
3.1.3.2 人工神经网络模型
常用学习规则一览表
学习规则 Hebbian Perceptron Delta
权值调整
向量式
元素式
Wj f (WjT X)X
wij f (WjT X)xi
Wj [d j- sgn(WjT X)]X wij [dj- sgn(WjT X)]xi

权重值;
模 f ()——神经元转移函数。

n
oj(t1)f{[ wijxi(t)]Tj}
(3-2)
i1
04.10.2019
20
3.1.3.1 人工神经元模型
n

netj (t) wijxi(t)

i1


net’j=WjTX
数 4)
学 Wj=(w1 w2 … wn)T
模 型
Outstar
Wj (d Wj)
wij (dj-WjT X)xi wij djxi Wm (xi wim) wkj (dk wkj)

现代控制工程-第13章神经网络控制ppt课件

现代控制工程-第13章神经网络控制ppt课件

k-1
k
1
wik1
y1k 1 wik2
i
2
y2k 1
. . .
wk ip k 1
pk-1
y k 1 pk 1
30
uik
pk
1
wikj
y
k j
1
i
pk
1
wikj
y
k 1 j
j 1
j0
yik
(
y
k 0
1
i , wik0
1)
yik
f
(u
k i
)
1
1 e sቤተ መጻሕፍቲ ባይዱk
i 1,2,..., pk
k 1,2,...,m
j 1
k 1
其矩阵形式:V (t) AY (t) BU (t)
A {aij }NN
U u1 uM T
B {bik }NM
1
T
N
V v1
T
vN
Y y1 yN T
12
13.2.2 神经元数学模型
▪ 线性环节的传递函数:Xi (s) H(s)Vi (s)
H(s) :1;1 1;
25
13.2.5 神经网络的发展概况
第二次热潮时期: 20世纪80年代至今
▪ 1982年-1986年,霍普菲尔德(J. J. Hopfield) 陆续提出离散的和连续的全互连神经网络模型,并成 功求解旅行商问题(TSP)。
▪ 1986 年 , 鲁 姆 尔 哈 特 ( Rumelhart ) 和 麦 克 劳 ( McCellan ) 等 在 《Parallel Distributed Processing》中提出反向传播学习算法(B-P算法) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档