高二数学知识点总结大全(必修二)

合集下载

高二数学必修二知识点

高二数学必修二知识点

高二数学必修二知识点高二数学必修二包含了许多重要的数学知识点,本文将对这些知识点进行详细讲解。

一、函数与导数1.1 函数基本概念函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数的定义域、值域和一一对应性是我们需要了解的重要概念。

1.2 导数与函数的变化率导数是函数在某一点处的变化率,它能够描述函数的陡峭程度。

导数的定义、性质以及在函数图像上的几何意义是高二数学中的重要内容。

二、指数与对数函数2.1 指数函数的性质指数函数是以常数为底数、自变量为指数的函数,它在数学和科学中都有广泛的应用。

指数函数的图像特点、指数函数方程的解法以及指数函数的运算性质是我们需要掌握的知识点。

2.2 对数函数的性质对数函数是指数函数的逆运算,它能够描述指数运算中未知数的指数。

对数函数的定义、性质以及对数方程的解法都是我们需要学习的内容。

三、三角函数与向量3.1 三角函数的基本概念正弦函数、余弦函数和正切函数是我们常见的三角函数,它们能够描述角度与边长之间的关系。

三角函数的定义、图像特点、周期性以及三角函数的运算法则是我们需要了解的知识点。

3.2 向量的基本概念向量是有大小和方向的量,它在数学和物理中有着广泛的应用。

向量的表示方法、运算法则以及向量和平面几何的关系是我们需要了解和掌握的内容。

四、平面解析几何4.1 平面直角坐标系平面直角坐标系是描述平面上任意点的坐标系,它由坐标轴、坐标原点和单位长度确定。

平面直角坐标系中点、向量的坐标表示以及平面上的距离公式是我们需要学习的知识。

4.2 直线和圆的方程直线和圆是平面解析几何中重要的图形,它们的方程可以通过点、向量或者距离来表示。

直线和圆的方程、性质以及直线与圆的交点求解都是我们需要掌握的内容。

以上就是高二数学必修二的知识点概述,希望能够帮助到你。

通过深入学习这些知识点,相信你能够更好地理解和应用数学。

祝你学习顺利!。

必修二数学知识点整理

必修二数学知识点整理

必修二数学知识点整理一、立体几何初步。

(一)空间几何体。

1. 结构特征。

- 棱柱。

- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

- 棱柱的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。

- 棱锥。

- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。

- 棱锥的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。

- 棱台。

- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。

- 圆柱。

- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

- 圆柱的轴、底面、侧面、母线等概念。

- 圆锥。

- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。

- 圆锥的轴、底面、侧面、母线等概念。

- 圆台。

- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

- 圆台的上底面、下底面、侧面、母线等概念。

- 球。

- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。

- 球心、半径、直径等概念。

2. 三视图和直观图。

- 三视图。

- 正视图(主视图)、侧视图(左视图)、俯视图的概念。

- 画三视图的规则:长对正、高平齐、宽相等。

- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。

- 直观图。

- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。

画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。

- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。

- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。

高二数学第二册知识点总结

高二数学第二册知识点总结

高二数学第二册知识点总结第一章函数与导数1.1 函数的概念与性质1.2 初等函数的性质和图像1.3 函数的运算1.4 导数的概念1.5 导数的运算法则1.6 导数与函数的关系1.7 函数的应用第二章数列与级数2.1 数列的概念2.2 等差数列2.3 等比数列2.4 数列的和与级数2.5 数列、级数在实际问题中的应用第三章平面解析几何3.1 向量的基本概念3.2 向量的线性运算3.3 平面向量与平面直角坐标系3.4 点、直线、圆的方程3.5 空间直角坐标系中的曲线3.6 平面向量的应用第四章立体几何4.1 空间向量4.2 向量数量积4.3 向量与平面4.4 点、直线、面及其方程4.5 空间几何问题的解法第五章概率与数理统计5.1 基本概念5.2 古典概型的概率5.3 条件概率及其性质5.4 事件的独立性5.5 随机变量的概念5.6 随机变量的分布及其性质5.7 数理统计的基本方法高二数学第二册知识点总结一、函数与导数1.1 函数的概念与性质函数的概念:函数是一种对应关系,将定义域的每个元素都对应到值域的一个元素上。

如果对于定义域的每个元素x,有唯一的值域元素y与之对应,则称y是x的函数值,记作y=f(x)。

其中x是自变量,y是因变量。

函数的性质:函数的定义域和值域是函数的重要性质。

函数的值域是所有可能的函数值的集合,而定义域是所有可能的自变量的集合。

函数的奇偶性、周期性以及单调性也是其重要的性质。

1.2 初等函数的性质和图像初等函数是常见的数学函数,包括幂函数、指数函数、对数函数、三角函数和反三角函数等。

它们在定义域内具有特定的性质和特征,比如指数函数y=a^x的图像在x>0时是递增的,在x<0时是递减的。

1.3 函数的运算函数的加减乘除、复合函数和反函数是常见的函数运算。

复合函数是指将一个函数的输出作为另一个函数的输入,可以表示为f(g(x))。

反函数是指将一个函数的自变量和因变量对调得到的函数,通常表示为y=f(x)的反函数为x=f^(-1)(y)。

高二年级数学必修二知识点归纳

高二年级数学必修二知识点归纳

高二年级数学必修二知识点归纳1.高二年级数学必修二知识点归纳直线和平面垂直直线和平面垂直的定义: 如果一条直线a和一个平面内的任意一条直线都垂直, 我们就说直线a和平面互相垂直.直线a叫做平面的垂线, 平面叫做直线a的垂面。

直线与平面垂直的判定定理: 如果一条直线和一个平面内的两条相交直线都垂直, 那么这条直线垂直于这个平面。

直线与平面垂直的性质定理: 如果两条直线同垂直于一个平面, 那么这两条直线平行。

③直线和平面平行——没有公共点直线和平面平行的定义: 如果一条直线和一个平面没有公共点, 那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行, 经过这条直线的平面和这个平面相交, 那么这条直线和交线平行。

2.高二年级数学必修二知识点归纳1.柱、锥、台、球的结构特征(1)棱柱:几何特征: 两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征: 侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征: 上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱: 定义: 以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征: 底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.(5)圆锥: 定义: 以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征: 底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.(6)圆台: 定义: 以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征: 上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.(7)球体: 定义: 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征: 球的截面是圆;球面上任意一点到球心的距离等于半径.2.空间几何体的三视图定义三视图: 正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注: 正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3.空间几何体的直观图——斜二测画法斜二测画法特点: 原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半.4.柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式3.高二年级数学必修二知识点归纳公式一:设α为任意角, 终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角, π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)4.高二年级数学必修二知识点归纳(1)总体和样本:①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质, 一般从总体中随机抽取一部分: x1, x2, ...., _研究, 我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样, 也叫纯随机抽样。

高二数学必修二知识点归纳与总结

高二数学必修二知识点归纳与总结

高二数学必修二知识点归纳与总结一、代数部分1. 一元二次方程与根的关系在高二数学中,我们学习了一元二次方程及其根的性质。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为实数且a≠0。

根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的情况。

- 当Δ>0时,方程有两个不相等的实根。

- 当Δ=0时,方程有两个相等的实根。

- 当Δ<0时,方程无实根。

另外,我们还学习了一元二次方程的因式分解方法、配方法和求解方法。

2. 等差数列与等差数列的求和等差数列是指一个数列中,从第二项起,每一项与它的前一项之差都相等的数列。

我们求等差数列的通项公式时,可以利用首项和公差来表示。

例如,对于等差数列an = a1 + (n-1)d,其中a1表示首项,d表示公差,n表示项数,我们可以利用公式an = a1 + (n-1)d来求得等差数列的任意一项。

在数列的求和部分,我们学习了等差数列求和的公式Sn = (n/2)(a1 + an),其中n表示项数,a1表示首项,an表示末项,Sn表示前n项的和。

3. 等比数列与等比数列的求和等比数列是指一个数列中,从第二项起,每一项与它的前一项之比都相等的数列。

求等比数列的通项公式时,我们可以利用首项和公比来表示。

例如,对于等比数列an = a1 * r^(n-1),其中a1表示首项,r 表示公比,n表示项数,我们可以利用公式an = a1 * r^(n-1)来求得等比数列的任意一项。

在数列的求和部分,我们学习了等比数列求和的公式Sn = (a1 * (1 - r^n))/(1 - r),其中a1表示首项,r表示公比,n表示项数,Sn表示前n 项的和。

二、解析几何部分1. 平面直角坐标系与点、线的表示解析几何中的平面直角坐标系是由两条互相垂直的坐标轴组成的。

我们可以用点的坐标表示平面上的点,其中x坐标表示点在x轴上的投影,y坐标表示点在y轴上的投影。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

高二数学知识点总结大全(必修二)

高二数学知识点总结大全(必修二)

高二数学知识点总结大全(必修二)第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内222r rl S ππ+=D C B A α符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

高二年级数学必修二知识点整理

高二年级数学必修二知识点整理

高二年级数学必修二知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修二知识点整理本店铺高二频道为你整理了《高二年级数学必修二知识点整理》,助你金榜题名!1.高二年级数学必修二知识点整理锐角三角函数定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

高二数学必修二知识点总结整理

高二数学必修二知识点总结整理

高二数学必修二知识点总结整理一、数列与多项式1. 等比数列:其公比均相等的数列被称为等比数列。

等比数列是一类特殊的等差数列,其公差为0,即该数列中任意相邻的两项的比值都是个常数,这个常数叫做公比,称该数列为等比数列。

2. 等差数列:若一组数对相邻的两项之差均相等,则这组数叫做一等差数列,记作Sn = a1, a2, a3, … an,其中a1为数列的第一项;an项为数列的最后一项,d为数列的公差。

3. 多项式:多项式指由常数或变数的乘积、相加构成的形式而又不是等号的拮抗式,其系数最大的变数的指数称为这个多项式的阶数,多项式的问题记作P(x) = a0 + a1x + a2x2 + … + anxn,其中a0,a1,… ,an都是常数,x是变数,n是阶数。

二、函数与图象1. 函数:函数定义为一种从一个或多个输入变量到一个或多个输出变量之间的一种关系,函数是一种事物存在的方式。

若把一个变量(或数)作为函数的参数时,得到的另一变量(或数)称作函数的值。

用f(x)表示函数的通用符号,表示x的函数值是f(x)。

2. 运算: 函数的值的运算就是x的代换,其运算结果取决于x的取值,因此要区分x 的取值范围。

3. 图象:图象是一类函数图像,把函数表达式转化为图像,让人们更容易看懂函数的信息,可以把函数中的变量作为水平轴,把函数函数值作为垂直轴,将形成一条曲线,这条曲线就是函数f(x)的图象。

三、二次函数1. 二次函数定义:若一个函数中只含自变量的平方项,就称函数为二次函数。

一般的,形如y = ax2 + b的函数都可以被称为二次函数。

2. 二次函数的概念:二次函数是以一元二次方程式为概念的函数,常常用来模拟一些物理变化过程,例如重力和磁场的影响,物理变化的运动曲线,和财务计算等概念。

3. 二次函数的图象:二次函数一般会描绘出一个一抛物线,当抛物线的 a 值小于 0 时,抛物线上方为凹,a 值大于 0 时,抛物线上方为凸若抛物线两个焦点在 x 轴上,则它表示为 y=ax2,若两个焦点不在 x 轴上,则可以表示为 y = ax2 + b。

高二数学必修二知识点总结

高二数学必修二知识点总结

高二数学必修二知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学必修二知识点总结本店铺高二频道为你整理了《高二数学必修二知识点总结》希望对你的学习有所帮助!1.高二数学必修二知识点总结空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

高二数学必修二知识点梳理

高二数学必修二知识点梳理

高二数学必修二知识点梳理【导语】在学习,要认真,仔细地计划每一分钟。

认真投入到学习中。

态度决定一切,要以良好的态度去面对学习。

挑战自己,相信自己。

下面是作者大家整理的《高二数学必修二知识点梳理》,期望大家爱好。

1.高二数学必修二知识点梳理篇一三角函数公式:1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina.cosb=[sin(a+b)+sin(a-b)]/2cosa.sinb=[sin(a+b)-sin(a-b)]/2cosa.cosb=[cos(a+b)+cos(a-b)]/2sina.sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]2.高二数学必修二知识点梳理篇二随机抽样简介(抽签法、随机样数表法)常用于整体个数较少时,它的主要特点是从整体中逐个抽取;优点:操作简便易行缺点:整体过大不易实行方法(1)抽签法一样地,抽签法就是把整体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌平均后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

高二数学必修二知识点整理

高二数学必修二知识点整理

高二数学必修二知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学必修二知识点整理本店铺高二频道为你整理了《高二数学必修二知识点整理》希望对你的学习有所帮助!1.高二数学必修二知识点整理一、基础知识(1)空间几何体:典型多面体(棱柱、棱锥、棱台)与典型旋转体(圆柱、圆锥、圆台、球)的结构特征以及表面积体积公式、球面距离、点面距离、中心投影与平行投影、三视图、直观图;(2)点、线、面的位置关系:平面的三个公理、平行的传递性、等角定理、异面直线的概念、直线与平面的位置关系、平面与平面的位置关系、线面平行的概念、判定定理、性质定理;面面平行的概念、判定定理、性质定理;线面垂直的概念、判定定理、性质定理;面面垂直的概念、判定定理与性质定理;异面垂直、异面直线所成角、线面角与二面角的概念(不同版本出现时间略有不同).(3)直线与圆:直线的倾斜角与斜率、斜率公式、直线的方程(点斜式、斜截式、一般式、两点式、截距式)、直线与直线的位置关系(平行、垂直)、平面直角坐标系中的一些公式(两点间距离公式、中点坐标公式、点到直线的距离公式、平行线间的距离公式);圆的标准方程与一般方程、直线与圆的位置关系、圆与圆的位置关系.常用的拓展知识与结论有:截距坐标公式、面积坐标公式、圆上一点的切线方程;圆外一点的切点弦方程;直线系与圆系的相关知识等.想不起来,或者不太清楚这些概念与定理的,赶快翻翻教材和笔记吧.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)多面体的体积转化及点面距离的求法;(2)较复杂的三视图;(3)球与其它几何体的组合;(4)平行与垂直的证明;(5)立体几何中的动态问题.(6)直线方程的选择与求解,特别要注意斜率不存在的直线;(7)直线与圆的位置关系问题;(8)直线系相关的问题.2.高二数学必修二知识点整理一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的垂径定理、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.3.高二数学必修二知识点整理(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式会从实际情境中抽象出一元二次不等式模型.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题会从实际情境中抽象出二元一次不等式组.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:了解基本不等式的证明过程.会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点4.高二数学必修二知识点整理一、求动点的轨迹方程的基本步骤建立适当的坐标系,设出动点M的坐标;写出点M的集合;列出方程=0;化简方程为最简形式;检验。

高二数学知识点整理必修二

高二数学知识点整理必修二

高二数学知识点整理必修二1.高二数学知识点整理必修二篇一函数的奇偶性①函数的定义域关于原点对称是函数具有奇偶性的必要条件;②是奇函数;③是偶函数;④奇函数在原点有定义,则;⑤在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;⑥若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;4、一般地,对于函数y=f(x),定义域内每一个自变量x 都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

2.高二数学知识点整理必修二篇二数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.3.高二数学知识点整理必修二篇三两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式:Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中sint=B/(A2+B2)^(1/2)cost=A/(A2+B2)^(1/2)tant=B/AAsinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)tan(2α)=2tanα/[1-tan2(α)]三倍角公式:sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)tan(3α)=tana·tan(π/3+a)·tan(π/3-a)4.高二数学知识点整理必修二篇四二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角5.高二数学知识点整理必修二篇五空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)。

高二必修二数学知识点总结

高二必修二数学知识点总结

高二必修二数学知识点总结高二必修二数学主要包括以下几个知识点:一、平面向量和解析几何1. 平面向量的定义和性质,平面向量的加减法和数量积。

2. 平面向量的数量积的性质和运算定律。

3. 平面向量的夹角和垂直关系,等腰三角形和平行四边形等几何应用。

4. 平面向量的叉积及其几何应用。

5. 直线方程的一般式、斜截式和点斜式。

6. 圆的一般方程、标准方程、参数方程和切线方程。

二、三角函数1. 弧度制和角度制的互相转化。

2. 各三角函数的定义和性质。

3. 三角函数的图像及其变换。

4. 三角函数的和、差、积与商的公式及其应用。

5. 三角函数的反函数与反三角函数。

三、数列与数学归纳法1. 数列基本概念,通项公式和递推公式。

2. 常数列和特殊数列,等差数列和等比数列。

3. 数列极限的概念和性质。

4. 数列极限的运算法则和计算方法。

5. 数学归纳法及其应用。

四、函数与方程1. 一次函数和二次函数的基本性质和图像。

2. 一次函数和二次函数的最值和增减性。

3. 二次函数的判别式和根的性质。

4. 一次函数和二次函数的应用问题。

5. 指数函数、对数函数和幂函数的性质和图像。

6. 指数函数、对数函数和幂函数的运算法则。

7. 指数函数、对数函数和幂函数的应用问题。

8. 解一元二次方程和一元二次不等式的方法。

五、立体几何1. 空间向量及其运算定律。

2. 空间中两点间的距离和线段的中点坐标。

3. 空间中点到直线的距离和直线的方向向量。

4. 空间中两直线的位置关系和两平面的位置关系。

5. 空间直线与平面的位置关系和平面与平面的位置关系。

6. 空间图形的投影和旋转。

六、概率与统计1. 概率的基本概念和性质。

2. 随机事件和样本空间的概念。

3. 概率计算中的加法规则和乘法规则。

4. 条件概率和贝叶斯定理。

5. 排列和组合的基本概念和计算方法。

6. 随机变量的基本概念和性质。

7. 离散型随机变量的分布律和分布函数。

8. 连续型随机变量的密度函数和分布函数。

数学书高二必修二知识点

数学书高二必修二知识点

数学书高二必修二知识点高中数学是学生必修的科目之一,高二的数学内容相对较为复杂和抽象,需要对之前所学的数学知识进行扎实巩固,并学习新的知识点。

下面将介绍高二必修二数学的主要知识点。

一、函数与导数1. 函数与函数的关系:a) 函数的定义和性质;b) 函数的运算与复合函数;c) 奇偶函数与周期函数。

2. 导数与函数的变化率:a) 导数的定义与几何意义;b) 导数的运算法则;c) 导数与函数的单调性、极值及凹凸性。

3. 常用函数的导数:a) 幂函数、指数函数与对数函数的导数;b) 三角函数与反三角函数的导数;c) 反函数的导数。

二、三角函数与解三角形1. 三角函数与单位圆:a) 弧度与角度的换算;b) 三角函数的定义与性质;c) 三角函数图像的性质与变化规律。

2. 三角函数的图像与函数的性质:a) 正弦函数、余弦函数、正切函数等的图像特点;b) 函数图像的平移、伸缩与翻折;c) 三角函数与方程、不等式的应用。

3. 解三角形:a) 余弦定理与正弦定理的应用;b) 解直角三角形及一般三角形的相关问题。

三、数列与数学归纳法1. 数列与数列的性质:a) 等差数列与等比数列的定义和求和公式;b) 通项公式与递推关系的建立与应用;c) 等差数列、等比数列与函数的关系。

2. 数列的应用:a) 等差数列的数列求和问题;b) 等差数列的应用于实际问题;c) 递推数列的应用于实际问题。

3. 数学归纳法:a) 数学归纳法的基本思想和步骤;b) 数学归纳法解题方法与实例。

四、平面向量与解几何问题1. 平面向量的定义与运算:a) 平面向量的基本定义和性质;b) 平面向量的加减法与数量积;c) 平面向量的向量积及其性质。

2. 平面向量的应用:a) 向量的共线与垂直关系;b) 向量解几何问题的应用;c) 空间几何向量的基本概念。

五、概率与统计1. 事件与概率:a) 随机事件的基本概念和性质;b) 事件的运算和事件间的关系;c) 概率的基本定义和性质。

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。

以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。

旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。

2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。

平行投影:在一束平行光线照射下形成的投影,叫做平行投影。

5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。

画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。

已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。

已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。

6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。

高二必修二数学知识点(汇总7篇)

高二必修二数学知识点(汇总7篇)

高二必修二数学知识点(汇总7篇)高二必修二数学知识点第1篇一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α高二必修二数学知识点第2篇;(2)当a>0时,与a的方向相同;当a0;当点P在线段或的延长线上时,高二必修二数学知识点第3篇平面向量基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);实数与向量的积:实数与向量的积是一个向量。

(1)高二必修二数学知识点第4篇圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.高二必修二数学知识点第5篇基本概念公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1:经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

高二年级数学必修二知识点梳理

高二年级数学必修二知识点梳理

高二年级数学必修二知识点梳理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修二知识点梳理本店铺为各位同学整理了《高二年级数学必修二知识点梳理》,希望对你的学习有所帮助!1.高二年级数学必修二知识点梳理篇一圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果翻译成几何结论.2.高二年级数学必修二知识点梳理篇二一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.二、两个变量的线性相关从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.当rXX0时,表明两个变量正相关;当r r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.3.高二年级数学必修二知识点梳理篇三直线方程:1.点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。

高二数学知识点总结大全(必修二)--新版

高二数学知识点总结大全(必修二)--新版

高中二年级数学知识点归纳集合总结大全(必修二)第1章空间几何体1 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=(二)空间几何体的体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,222rrlSππ+=D CBAα如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

高二数学必修二知识点总结

高二数学必修二知识点总结

高二数学必修二知识点总结一. 数列与数列问题数列是数学中常见的一种数学对象,数列由一系列有规律的数按照一定次序排列而成。

在高二数学必修二中,数列的学习主要包括等差数列、等比数列、等差数列与等比数列的应用等几个方面。

1. 等差数列等差数列是指数列中相邻两项的差都相等的数列。

在研究等差数列时,常用的关键是等差数列的通项公式和数列的前n项和公式。

- 等差数列的通项公式:设等差数列的首项为a1,公差为d,则第n项的通项公式为an = a1 + (n-1) * d。

- 等差数列的前n项和公式:设等差数列的首项为a1,公差为d,则前n项和的公式为Sn = (n/2)(a1 + an)。

等差数列的应用非常广泛,可以用于解决各种实际问题,如跳高问题、购物问题等。

2. 等比数列等比数列是指数列中相邻两项的比都相等的数列。

在研究等比数列时,常用的关键是等比数列的通项公式和数列的前n项和公式。

- 等比数列的通项公式:设等比数列的首项为a1,公比为r,则第n项的通项公式为an = a1 * r^(n-1)。

- 等比数列的前n项和公式:设等比数列的首项为a1,公比为r,则前n项和的公式为Sn = a1 * (1 - r^n) / (1 - r)。

等比数列常常出现在不断增长或衰减的过程中,如人口增长、元素衰变等都可以用等比数列进行建模和分析。

二. 三角函数及其应用三角函数是高中数学的一个重要内容,也是数学与实际生活和其他学科联系紧密的部分。

在高二数学必修二中,主要学习正弦函数、余弦函数和正切函数以及它们的图像变换、性质和应用等。

1. 正弦函数、余弦函数和正切函数- 正弦函数:y = sinx,其定义域为全体实数,值域为[-1, 1]。

- 余弦函数:y = cosx,其定义域为全体实数,值域为[-1, 1]。

- 正切函数:y = tanx,其定义域为{x|x≠(2k+1)π/2, k∈Z},值域为全体实数。

2. 基本性质及图像变换- 基本性质:周期性、奇偶性和单调性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点总结大全(必修二)第1章空间几何体11 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=(二)空间几何体的体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面222rrlSππ+=D CBAαAC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a ∩α=A a ∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定L A· α C ·B·A · α P · α Lβ 共面直线=>a ∥c 21、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa ∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。

2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:α∥βα∩γ= a a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

Lpα2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x 轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系直线与直线的位置关系直线与平面的位置关系3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k)(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0L1:2x+y +2=0解:解方程组 34202220x y x y +-=⎧⎨++=⎩得 x=-2,y=2所以L1与L2的交点坐标为M (-2,2)3.3.2 两点间距离 两点间的距离公式()()22122221PP x x y y =-+-3.3.3 点到直线的距离公式 1.点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=2、两平行线间的距离公式:已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=第四章圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离; (2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 内切; (5)当||21r r l -<时,圆1C 与圆2C 内含; 4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. 4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。

相关文档
最新文档