船用螺旋桨的功率计算

合集下载

螺旋桨推力计算模型根据船舶原理知通过资料

螺旋桨推力计算模型根据船舶原理知通过资料

螺旋桨推力计算模型根据船舶原理知通过资料螺旋桨是船舶的主要推进器件,它的淌水特性对船舶的推力性能具有重要影响。

螺旋桨推力计算模型可以根据船舶原理和相关资料提供有效的推力计算方法。

本文将从螺旋桨的基本原理、淌水特性以及推力计算模型等方面进行详细介绍。

一、螺旋桨的基本原理螺旋桨是船舶的主要推进器件,它由一系列螺旋线形成。

当螺旋桨旋转时,水流会被螺旋桨叶片推动并产生一定的反作用力,从而推进船舶前进。

螺旋桨的推力主要来自两个方面:剪切推力和反作用推力。

剪切推力是由于螺旋桨叶片在水中剪切水流所产生的,它与螺旋桨叶片弯曲及鼓波等因素有关;反作用推力是由于螺旋桨旋转所产生的反作用力,它与螺旋桨推进转速、直径和旋转方向等因素有关。

二、螺旋桨的淌水特性1.淌水流场螺旋桨在淌水过程中,会形成一定的淌水流场。

这个流场受到螺旋桨叶片形状、转速和船舶运动速度等因素的影响,它对螺旋桨推力的大小和方向有重要影响。

2.淌水损失由于螺旋桨叶片与水之间存在一定的摩擦和阻力,螺旋桨在淌水过程中会产生一定的淌水损失。

淌水损失会降低螺旋桨的效率,因此需要通过推力计算模型来准确估计淌水损失。

3.淌水性能参数为了描述螺旋桨的推力性能,可以引入一些淌水性能参数,如推力系数、功率系数和效率等。

这些参数可以通过实验和理论模型来确定,从而有效评估螺旋桨的推力性能。

三、螺旋桨推力计算模型为了准确计算螺旋桨的推力,研究者们提出了不同的推力计算模型。

这些模型主要基于流体动力学原理和大量实验资料,可以较为准确地估计螺旋桨的淌水特性和推力性能。

推力计算模型可以通过以下几个步骤进行:1.确定船舶参数首先,需要确定船舶的一些参数,如船舶的船体形状、质量、速度和运动状态等。

这些参数将用于计算螺旋桨的推力。

2.建立淌水流场模型根据螺旋桨叶片形状和转速等参数,可以建立螺旋桨的淌水流场模型。

这个模型可以通过数值计算方法或实验测试来确定。

3.计算推力系数和淌水损失根据淌水流场模型,可以计算螺旋桨的推力系数和淌水损失。

螺旋桨的输出扭矩计算公式

螺旋桨的输出扭矩计算公式

螺旋桨的输出扭矩计算公式螺旋桨是飞机、船舶和其他飞行器的重要部件,它通过产生推力来推动飞行器前进。

在设计和制造螺旋桨时,计算其输出扭矩是非常重要的。

输出扭矩是指螺旋桨在旋转时产生的扭矩,它直接影响着飞行器的性能和效率。

因此,了解螺旋桨的输出扭矩计算公式对于飞行器的设计和性能优化至关重要。

螺旋桨的输出扭矩计算公式可以通过以下步骤来推导得出:首先,我们需要了解螺旋桨的叶片受到的气动力。

螺旋桨叶片在旋转时会受到气流的作用,产生气动力。

这个气动力可以通过气动力学的理论来计算,得到叶片受到的气动力大小和方向。

其次,我们需要考虑螺旋桨的旋转速度。

螺旋桨的旋转速度会影响叶片受到的气动力大小和方向,因此需要将旋转速度考虑进来。

然后,我们可以利用叶片受到的气动力和旋转速度来计算螺旋桨的输出扭矩。

输出扭矩可以通过以下公式来计算:T = r × F。

其中,T代表输出扭矩,r代表螺旋桨的旋转半径,F代表叶片受到的气动力。

最后,我们需要考虑螺旋桨的效率和其他因素。

螺旋桨的效率会影响输出扭矩的大小,因此在实际计算中需要考虑螺旋桨的效率和其他因素。

通过以上步骤,我们可以得到螺旋桨的输出扭矩计算公式。

这个公式可以帮助工程师和设计师在设计和制造螺旋桨时更好地了解其性能和优化设计。

除了理论计算,工程师们还可以利用计算机模拟和实验测试来验证螺旋桨的输出扭矩。

通过计算机模拟和实验测试,可以更加准确地了解螺旋桨的输出扭矩,并对其设计进行调整和优化。

在实际应用中,螺旋桨的输出扭矩对飞行器的性能和效率有着重要的影响。

因此,了解螺旋桨的输出扭矩计算公式对于飞行器的设计和性能优化非常重要。

工程师和设计师们可以通过理论计算、计算机模拟和实验测试等方法来了解螺旋桨的输出扭矩,并对其设计进行调整和优化,从而提高飞行器的性能和效率。

总之,螺旋桨的输出扭矩计算公式是飞行器设计和制造中的重要内容。

通过理论计算、计算机模拟和实验测试等方法,工程师和设计师们可以更好地了解螺旋桨的输出扭矩,从而优化飞行器的性能和效率。

船舶螺旋桨知识

船舶螺旋桨知识
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋
转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

螺旋桨推力计算

螺旋桨推力计算
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:
50×10×50²×1×0.00025=31.25公斤。如果转速达到6000转/分,那么拉力等于:100×50×10×100²×1×0.00025=125公斤
直径米螺距米浆宽度米转大气压力1标准大气压经验系数025拉力公斤或者直径厘米螺距厘米浆宽度厘米转速大气压力1标准大气压经验系数000025拉力克前提是通用比例的浆精度较好大气压为1标准大气压如果高原地区要考虑大气压力的降低如西藏压力在06071000米以下基本可以取1
螺旋桨推力计算
螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。1000米以下基本可以取1。

船用螺旋桨推力计算公式

船用螺旋桨推力计算公式

螺旋桨的推力公式:推力F=通道面积*空气密度*流
速^2螺旋桨的翼型剖面和展长在很大程度上决定了
螺旋桨的推力,产生推力对应所需的扭转力矩(来自发动机)。

对于螺旋桨背风面被排出的流动结构(下洗气流-直升机,滑流-螺旋桨推进器),可以看作是每一小段螺旋桨翼型前飞所产生下洗气流的综合效果。

螺旋桨叶的拉力随转速的变化过程如下:由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

螺旋桨设计计算表格

螺旋桨设计计算表格

取转速为 231
rpm
221
rpm
76
项目
单位

V
kn
10
VA=0.5144(1-ω)V
m/s
3.302448
J=VA/nD
#NAME?
KT
#NAME?
KQ
#NAME?
N=
231
rpm
PTE=KTρ n2D4(1-
PE/hp 111h01p00000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/75ηSηR
KT
#NAME?
1000
KQ
1000
#NAME?
N=
76
rpm
PTE=KTρ n2D4(1-
11
10-h01p0000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/76ηSη
30-h03p0000
#NAME?
R

50-050000
10
527.8912
70-070000

527.8912
单位 m
mm mm
0.25R #NAME?
634 250 1410 4 #NAME?
#NAME?
82 34 41 380 #NAME?
#NAME? 1.38 #NAME? #NAME?
数值 0.60R #NAME? 207 151 635 34 #NAME?
#NAME?
23 12 65 330 #NAME?
#NAME? m
d0/d=
#NAME?
榖重量Gn=
#NAME? kgf
③螺旋桨总重=

(完整word版)船用螺旋桨的功率计算

(完整word版)船用螺旋桨的功率计算

船用螺旋桨的功率计算功率(W)直径(D)螺距(P)转/分(N)功率(W)=(D/10)的4次方*(P/10)*(N/1000)的3次方*0。

45速度(SP)km/h=(P/10)*(N/1000)*15.24静止推力(Th)g=(D/10)的3次方*(P/10)*(N/1000)的2次方*22船用螺旋桨的工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1〈r2)两处各取极小一段,讨论桨叶上的气流情况.V—轴向速度;n—螺旋桨转速;φ-气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角.显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D-螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D-螺旋桨直径。

螺旋桨计算公式

螺旋桨计算公式

刚度计算公式
1、螺旋桨轴刚度计算(经验计算公式)
K=(9.497*(d^4/L")*10³)
N.m/rad
d 轴的基本直径 mm
67
kg.m²
0.638640554
795.9987916
L"螺旋浆轴总长度(到锥体小端面)mm
2890
K=
17594800.47m
5.6835E-08
d 4 轴段的直径 m
J3 897905.0781 K3 24
J4
32555.52 K4
K总
d 6 轴段的直径 m J6
d 7 轴段的直径 m J7
d 8 轴段的直径 m J8
艉轴转动惯量计算 I=770.28125(L*D^4) ρ 为圆筒密度 7.85x10³ kg/m³ L 艉轴总长度 m
L1 m D1 m I1= L2 m D2 m I2=
2、轴段刚度计算公式
K=(E1*J1)/L
N.cm/rad
E1 钢的弹性模量 N/cm^2
8149000
J1 轴段截面级惯性矩 cm^4
L 轴段长度
cm
13.5
J=(π*d^4)/32
d 1 轴段的直径 m
40
d 2 轴段的直径 m
J1
251200 k1
132.5
d 3 轴段的直径 m
J2 30244275.32 K2 55
0.0335
m=πhρ(R²-r²)
π 为圆周率
3.14
h 为圆筒高度 m
0.17
ρ 为圆筒密度 7.85x10³ kg/m³
7850
m=
10.38259016
I=

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1 和r2(r1 <r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD 和升力ΔL ,见图1—1—19 ,合成后总空气动力为ΔR。

ΔR 沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P) 和效率(η)可用下列公式计算:T=Ct ρn2D4P=Cp ρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct 和Cp 取决于螺旋桨的几何参数,对每个螺旋桨其值随J 变化。

图1—1—21 称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

集装箱船螺旋桨设计计算说明书

集装箱船螺旋桨设计计算说明书

集装箱船螺旋桨设计计算说明书班级:船舶11-3学号:1102120324姓名:孙凯凯指导老师:刘大路1.已知船体的主要参数设计水线长 Lwl=91.6 垂线间长 Lpp=90.0m 型宽 B = 16.7m 设计吃水 T = 5.3m 排水体积 ▽ =6253.2m ³ 排水量 △ = 6409.6t 方型系数 C B = 0.785 桨轴中心距基线高度 Zp = 1.90m 棱形系数 Cp = 0.790由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 10 11 12 13 14 有效马力PE (hp ) 763 1066 1535 2254 19222.主机参数主机功率 Ps=2900kw 主机转速 N = 755r/min 转向 右旋减速比 i=3.355:1传递效率 ηs=0.97(已将减速箱考虑在内)3.相关推进因子伴流分数 w = 0.3425 推力减额分数 t = 0.275 相对旋转效率 ηR = 1.0 船身效率 1027.111=--=wt H η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。

取功率储备10%,轴系效率ηs = 0.97 螺旋桨敞水收到马力:P D = R s S P ηη9.0=0.9×2900×1.36×0.97×1.0=2531.7hp231355.3775==N r/min根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项 目 单位 数 值 假定航速V kn 11 12 13 14 V A =(1-w)V kn 7.2325 7.89 8.5475 9.205 Bp=NP D 0.5/V A 2.596.3526 77.516 63.458 52.726 Bp9.816 8.239 7.966 7.261 MAU 4-40δ106.5 97.5 89.8 83 P/D 0.562 0.575 0.592 0.612 ηO 0.4510.47750.505 0.525 P TE =P D ·ηH ·ηOhp 1712.261 1812.870 1917.277 1993.208 MAU 4-55δ106 96.5 88.5 81.8 P/D 0.598 0.615 0.635 0.655 ηO 0.4332 0.46 0.487 0.51 P TE =P D ·ηH ·ηOhp 1644.682 1746.4301848.938 1936.260 MAU 4-70δ104.5 95.5 87.5 80.67 P/D 0.60.6180.638 0.661 ηO0.42 1.4475 0.47250.495 P TE =P D ·ηH ·ηOhp1594.567 1698.9731793.8871879.311据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

螺旋桨推力计算模型根据船舶原理知(为螺旋桨的淌水特性)通过资料

螺旋桨推力计算模型根据船舶原理知(为螺旋桨的淌水特性)通过资料

螺旋桨推力计算模型根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性)通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时tK K T T -=10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nDW U nD V J P A p )1(-==) 估算推力减额分数的近似公式:1. 汉克歇尔公式:对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式对于单桨船 t=KW 式中:K 为系数K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式对于单螺旋桨标准型商船(C B =0.6~0.85) P B WPBC C C C t ⎪⎪⎭⎫ ⎝⎛+-=5.13.257.1对于双螺旋桨标准型商船(C B =0.6~0.85) B WPBC C C t 5.13.267.1+-= 4. 霍尔特洛泼公式对于单螺旋桨船sternP C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10=当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-=估算伴流分数的近似公式1. 泰洛公式(适用于海上运输船舶)对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。

螺旋桨扭矩计算公式

螺旋桨扭矩计算公式

螺旋桨扭矩计算公式螺旋桨扭矩计算公式是船舶设计和航海领域中经常遇到的一个重要问题。

扭矩是指施加在螺旋桨上的力矩,它是螺旋桨推进力的来源。

通过计算螺旋桨的扭矩,可以评估船舶的推进性能和动力系统的工作状态。

螺旋桨扭矩计算公式主要包括以下几个因素:螺旋桨的直径、螺旋桨的螺距、螺旋桨的转速、水流的密度以及船舶的速度。

这些因素共同影响着螺旋桨的扭矩大小。

螺旋桨的直径是计算扭矩的重要因素之一。

螺旋桨的直径越大,其扭矩也就越大。

这是因为较大直径的螺旋桨可以更高效地转换动能为推进力。

螺旋桨的螺距也对扭矩产生影响。

螺距是指螺旋桨在一圈中所推进的距离。

螺距越大,螺旋桨的推进力也就越大,扭矩也相应增大。

螺旋桨的转速也是计算扭矩的重要因素之一。

转速是指螺旋桨每分钟旋转的圈数。

转速越高,螺旋桨的扭矩也就越大。

水流的密度是影响螺旋桨扭矩的另一个因素。

水流的密度越大,螺旋桨所受到的阻力也就越大,扭矩也相应增大。

船舶的速度也对螺旋桨的扭矩产生影响。

船舶的速度越快,螺旋桨所需的扭矩也就越大。

根据上述因素,螺旋桨扭矩的计算公式可以表示为:扭矩= 0.5 * π * (螺旋桨直径/2)^2 * 螺旋桨螺距 * 水流密度* (转速/60)^2 * 船舶速度其中,π为圆周率,螺旋桨直径为螺旋桨的直径,螺旋桨螺距为螺旋桨的螺距,水流密度为水流的密度,转速为螺旋桨的转速,船舶速度为船舶的速度。

通过使用螺旋桨扭矩计算公式,可以方便地评估船舶的推进性能。

在实际应用中,设计师和船舶操作人员可以根据船舶的工作条件和要求,选择适当的螺旋桨参数,以达到最佳的推进效果。

需要注意的是,螺旋桨扭矩计算公式只是一个理论模型,实际应用中还需要考虑其他因素的影响,比如船舶的阻力、船舶的形状等。

因此,在具体的船舶设计和运营中,还需要结合实际情况进行综合考虑和调整。

螺旋桨扭矩计算公式是船舶设计和航海领域中的重要工具,通过计算螺旋桨的扭矩,可以评估船舶的推进性能和动力系统的工作状态。

螺旋桨计算公式

螺旋桨计算公式

J3 897905.08 K3 5.32148E+11 N.cm/rad
d 4 轴段的直径 m
24Байду номын сангаас
J4 32555.52 K4 44215822080 N.cm/rad
K总 2.9515E-11
2.95x10-11
d 6 轴段的直径 m
J6
d 7 轴段的直径 m
J7
d 8 轴段的直径 m
艉轴转动惯量计算
D=17PD0.2/n0.6 PD= n=
n=c(PD/D5)1/3 PD D
螺旋桨直径估算公式
82 KW 1031 r/min
主机功率
螺旋桨转 速
1255 kw 1.2 M
主机功率 螺旋桨直 径
转动惯量计算公式
1、对于圆筒的计算 I=m/2(R²+r²) m 为圆筒的质量 R 为圆筒体外半径 r 为圆筒体内半径 m=πhρ(R²-r²) π 为圆周率 h 为圆筒高度 m ρ 为圆筒密度 7.85x10³ kg/m³
0.0440152
kg. m²
0.0110038
kg. m²
2
J1 轴段截面级惯性矩 cm^4
L 轴段长度
cm
13.5
J=(π*d^4)/32
d 1 轴段的直径 m
40
J1 251200 k1 2.04703E+11 N.cm/rad
d 2 轴段的直径 m
132.5
J2 30244275 K2 7.44032E+12 N.cm/rad
d 3 轴段的直径 m
55
m=
I=
2、对于实心圆轴的计算 I=(m/2)*R²
m、R的量同上

船舶动力相关公式

船舶动力相关公式

船舶动力相关公式船舶动力是指船舶在水中航行和操纵时所需的动力。

船舶动力涉及到船舶的推进力、抗阻力和操纵力等方面。

以下是一些船舶动力相关的公式。

1.推进力公式:推进力是指船舶在水中前进所受到的力。

推进力的大小取决于船舶的推进装置和船舶周围水流的影响。

常见的推进力公式如下:F=ρ*A*V^2*C其中,F表示推进力,ρ表示水的密度,A表示推进装置产生的有效推力面积,V表示船舶的速度,C表示推力系数。

2.抗阻力公式:抗阻力是指船舶在水中航行时所受到的水阻力。

抗阻力的大小取决于船舶的速度、船体形状、湍流阻力等因素。

常见的抗阻力公式如下:F=0.5*ρ*A*V^2*Cd其中,F表示抗阻力,ρ表示水的密度,A表示船舶的参考面积,V表示船舶的速度,Cd表示阻力系数。

3.功率公式:船舶的推进力需要通过动力系统提供。

推进功率是指为产生船舶推进力所需的功率。

常见的功率公式如下:P=F*V=0.5*ρ*A*V^3*C其中,P表示推进功率,F表示推进力,V表示船舶速度。

4.推力系数公式:推力系数是表示推进装置产生的实际推力与理论推力之间的比值。

推力系数的大小取决于推进装置的效率以及船舶的运行状态。

常见的推力系数公式如下:Ct=T/(ρ*A*V^2)其中,Ct表示推力系数,T表示推进装置产生的推力。

5.螺旋桨效率公式:螺旋桨是最常用的船舶推进装置之一、螺旋桨效率是指螺旋桨转动时所产生的推力与所消耗的功率之比。

常见的螺旋桨效率公式如下:η=F*V/(P*n)其中,η表示螺旋桨效率,F表示推进力,V表示船舶速度,P表示推进功率,n表示螺旋桨的转速。

除了以上提及的公式,还有许多其他与船舶动力相关的公式,如舵角与操纵力的关系公式、船舶运动的动力学方程等,这里只列举了一部分常见的公式。

船舶动力的计算涉及到许多复杂的因素,需要综合考虑船舶的运行条件、船体特性以及推进装置的性能等因素,以获得准确的结果。

螺旋桨推力计算公式

螺旋桨推力计算公式

螺旋桨推力计算公式
螺旋桨推力计算公式即为计算航空飞机螺旋桨推力的数学公式,也是航空工程中的基本理论之一。

其公式如下:
推力 = [(2 x PI x 螺旋桨半径) x (螺旋桨转速²)] ÷ 推进效率
其中, PI为圆周率,螺旋桨半径表示螺旋桨转动时其叶片边缘到转动轴的距离,螺旋桨转速表示螺旋桨每分钟旋转的圈数,推进效率是指螺旋桨输出动力的效率,通常在0.6~0.8之间变化。

该公式能够通过螺旋桨的基本参数,如半径、转速等,以及推进效率来计算螺旋桨所产生的推力。

而推力的大小直接影响着飞机的速度、飞行高度等因素。

因此,在航空工程领域中,推力计算是非常重要的一个计算环节。

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

船舶螺旋桨的设计与计算过程.解析

船舶螺旋桨的设计与计算过程.解析

某沿海单桨散货船螺旋桨设计计算说明书刘磊磊20081013202011年7月某沿海单桨散货船螺旋桨设计计算说明书1.已知船体的主要参数船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 40452.主机参数型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.983.相关推进因子伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0船身效率 0777.111=--=wtH η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。

取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项 目 单位 数 值 假定航速V kn 1314 1516V A =(1-w)V kn 9.373 10.09410.81511.536Bp=NP D 0.5/V A 2.569.013042 69.01304 69.0130422569.01304225Bp268.96548323.7116 384.6505072451.9996707MAU 4-40δ75.6 72.10878 64.87977369 60.744 P/D 0.64 0.667321 0.685420561 0.720498 ηO 0.5583333 0.582781 0.6057068060.62606P TE =P D ·ηH ·ηOhp 2863.9907 2989.395 3106.994626 3211.4377 MAU 4-55δ74.629121 68.63576 63.56589147 59.341025 P/D 0.6860064 0.713099 0.740958466 0.7702236 ηO 0.5414217 0.567138 0.590941438 0.6111996 P TE =P D ·ηH ·ηOhp 2777.2419 2909.156 3031.255144 3135.1705 MAU 4-70δ73.772563 67.77185 63.0305555658.68503P/D 0.69254 0.723162 0.754280639 0.7861101 ηO 0.5210725 0.54571 0.565792779 0.5828644 P TE =P D ·ηH ·ηOhp2672.86012799.2382902.2542 2989.8239据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

旋螺桨作用力计算公式

旋螺桨作用力计算公式

旋螺桨作用力计算公式旋螺桨是一种常见的推进器,它通过旋转产生推进力,用于推动船只或飞机等交通工具。

在工程设计和运行过程中,了解旋螺桨的作用力计算公式是非常重要的。

本文将介绍旋螺桨作用力的计算公式及其相关知识。

旋螺桨作用力的计算公式可以通过流体力学的理论推导得到。

在流体力学中,旋螺桨的推进力可以通过螺旋桨的推进效率和流体动力学的基本原理来计算。

一般而言,旋螺桨的推进力可以通过以下公式来计算:F = ρ n^2 D^4 P。

其中,F表示旋螺桨的推进力,ρ表示流体的密度,n表示旋螺桨的转速,D表示旋螺桨的直径,P表示旋螺桨的推进效率。

从上述公式可以看出,旋螺桨的推进力与流体的密度、旋螺桨的转速、直径以及推进效率有关。

下面将分别介绍这些参数对旋螺桨推进力的影响。

首先是流体的密度。

流体的密度是旋螺桨推进力计算中的重要参数,它决定了流体对旋螺桨的阻力大小。

一般而言,流体的密度越大,旋螺桨所受到的阻力也越大,从而推进力也会增加。

其次是旋螺桨的转速。

旋螺桨的转速直接影响着推进力的大小。

一般而言,旋螺桨的转速越大,推进力也会越大。

因此,在设计旋螺桨时,需要根据具体的使用需求来确定旋螺桨的转速。

再次是旋螺桨的直径。

旋螺桨的直径也是影响推进力的重要参数。

一般而言,旋螺桨的直径越大,推进力也会越大。

因此,在设计旋螺桨时,需要根据船只或飞机的尺寸和使用需求来确定旋螺桨的直径。

最后是旋螺桨的推进效率。

旋螺桨的推进效率是指旋螺桨在推进过程中所产生的推进力与输入功率之比。

一般而言,推进效率越高,旋螺桨的推进力也会越大。

因此,在设计旋螺桨时,需要考虑如何提高旋螺桨的推进效率,以获得更大的推进力。

除了上述参数外,旋螺桨的推进力还受到流体的粘性、旋螺桨的形状和旋螺桨与船体或飞机的配合等因素的影响。

因此,在实际工程设计中,需要综合考虑这些因素,以确定旋螺桨的最佳设计参数。

在实际应用中,旋螺桨的推进力计算公式可以帮助工程师和设计师更好地设计和选择旋螺桨,以满足不同交通工具的推进需求。

水平螺旋推进功率计算公式

水平螺旋推进功率计算公式

水平螺旋推进功率计算公式水平螺旋推进器是船舶的主要推进装置之一,它通过旋转螺旋桨产生推力,推动船舶前进。

在设计和运行水平螺旋推进器时,计算功率是非常重要的。

功率的准确计算可以帮助船舶设计师选择合适的动力系统,同时也有助于船舶操作员合理控制船舶的运行。

本文将介绍水平螺旋推进功率的计算公式及其相关内容。

水平螺旋推进器功率计算公式如下:P = T × n。

其中,P表示功率,单位为千瓦(kW);T表示推力,单位为牛顿(N);n 表示螺旋桨的转速,单位为每分钟转数(rpm)。

推力的计算公式为:T = ρ× A × V^2。

其中,ρ表示水的密度,单位为千克/立方米(kg/m³);A表示螺旋桨的叶片面积,单位为平方米(m²);V表示船舶的航速,单位为米/秒(m/s)。

螺旋桨的转速n可以根据具体的设计要求和实际运行情况进行选择。

在实际应用中,水平螺旋推进器功率的计算还需要考虑一些修正系数,如螺旋桨效率、流体速度分布等。

这些修正系数可以通过实验或者经验公式进行估算,以提高功率计算的准确性。

水平螺旋推进器功率的计算还需要考虑船舶的航行工况,如船舶的载重、航行深度、航行状态等因素。

这些因素都会对功率的计算产生影响,因此在实际计算中需要综合考虑。

水平螺旋推进器功率的计算对于船舶的设计和运行都具有重要意义。

合理的功率计算可以帮助船舶设计师选择合适的动力系统,提高船舶的经济性和环保性;同时也可以帮助船舶操作员合理控制船舶的运行,保证船舶的安全性和航行效率。

在实际应用中,水平螺旋推进器功率的计算需要综合考虑多个因素,包括船舶的设计要求、航行工况、螺旋桨的性能特点等。

因此,船舶设计师和操作员需要具备一定的专业知识和经验,才能准确地进行功率计算和合理地选择动力系统。

总之,水平螺旋推进器功率的计算是船舶设计和运行中非常重要的一部分。

通过合理的功率计算,可以提高船舶的经济性和环保性,同时也可以保证船舶的安全性和航行效率。

游艇转速推力计算公式

游艇转速推力计算公式

游艇转速推力计算公式游艇是一种受到推力驱动的船只,其转速和推力的关系对于游艇的设计和性能具有重要意义。

在实际应用中,我们需要根据游艇的转速来计算其推力,以便更好地控制游艇的运动。

本文将介绍游艇转速推力计算公式,并探讨其在游艇设计和运动控制中的应用。

游艇转速推力计算公式的基本原理是根据游艇的推进装置(如螺旋桨)的性能参数和运动学原理来确定游艇在特定转速下的推力大小。

一般来说,游艇的推力与转速之间存在着一定的函数关系,可以通过实验和理论分析得到。

在实际应用中,我们通常使用以下的游艇转速推力计算公式来确定游艇在给定转速下的推力大小:推力 = 螺旋桨效率螺旋桨直径^4 螺旋桨旋转速度^2。

其中,推力表示游艇在特定转速下的推力大小;螺旋桨效率表示螺旋桨的推进效率,是一个与螺旋桨设计和制造相关的参数;螺旋桨直径表示螺旋桨的直径大小;螺旋桨旋转速度表示螺旋桨在转速下的旋转速度。

这个公式的推导基于流体力学和运动学原理,可以帮助我们更好地理解游艇在运动中的推力来源和转速对推力的影响。

通过这个公式,我们可以根据游艇的设计参数和运动状态来计算游艇在不同转速下的推力大小,从而为游艇的设计和运动控制提供重要的参考依据。

在游艇设计中,转速和推力的计算是非常重要的一步。

通过合理地确定游艇在不同转速下的推力大小,可以有效地优化游艇的推进系统,提高游艇的性能和燃油利用率。

同时,对于高速游艇和赛艇等需要精密控制的游艇来说,准确地计算转速和推力也是保证游艇安全和稳定运行的关键。

除了游艇设计,游艇转速推力计算公式也在游艇运动控制中发挥着重要作用。

通过实时地测量游艇的转速和推力,可以帮助船员更好地控制游艇的运动,包括加速、减速、转向等操作。

同时,游艇转速推力计算公式也可以帮助船员预测游艇在不同运动状态下的性能表现,为游艇的操纵和驾驶提供重要的参考信息。

总的来说,游艇转速推力计算公式是游艇设计和运动控制中的重要工具,它可以帮助我们更好地理解游艇的推进原理和性能特点,为游艇的设计、制造和运动提供重要的参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船用螺旋桨的功率计算功率(W)直径(D)螺距(P)转/分(N)功率(W)=(D/10)的4次方*(P/10)*(N/1000)的3次方*0.45速度(SP)km/h=(P/10)*(N/1000)*15.24静止推力(Th)g=(D/10)的3次方*(P/10)*(N/1000)的2次方*22船用螺旋桨的工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

是设计选择螺旋桨和计算飞机性能的主要依据之一。

从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。

对飞行速度较低而发动机转速较高的轻型飞机极为不利。

例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。

因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

船用螺旋桨几何参数直径(D)影响螺旋桨性能重要参数之一。

一般情况下,直径增大拉力随之增大,效率随之提高。

所以在结构允许的情况下尽量选直径较大的螺旋桨。

此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。

桨叶数目(B)可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。

超轻型飞机一般采用结构简单的双叶桨。

只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。

实度(σ)桨叶面积与螺旋桨旋转面积(πR2)的比值。

它的影响与桨叶数目的影响相似。

随实度增加拉力系数和功率系数增大。

桨叶角(β)桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。

习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

螺距:它是桨叶角的另一种表示方法。

图1—1—22是各种意义的螺矩与桨叶角的关系。

几何螺距(H)桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。

它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。

桨叶各剖面的几何螺矩可能是不相等的。

习惯上以70%直径处的几何螺矩做名称值。

国外可按照直径和螺距订购螺旋桨。

如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。

实际螺距(Hg)桨叶旋转一周飞机所前进的距离。

可用Hg=v/n计算螺旋桨的实际螺矩值。

可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。

理论螺矩(HT)设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。

因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。

螺旋桨效率解说一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上还可以看出。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

是设计选择螺旋桨和计算飞机性能的主要依据之一。

从计算公式可以看到,当前进比较小时,螺旋桨效率很低。

对飞行速度较低而发动机转速较高的轻型飞机极为不利。

例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。

因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

二、几何参数直径(D):影响螺旋桨性能重要参数之一。

一般情况下,直径增大拉力随之增大,效率随之提高。

所以在结构允许的情况下尽量选直径较大的螺旋桨。

此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。

桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。

超轻型飞机一般采用结构简单的双叶桨。

只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。

实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。

它的影响与桨叶数目的影响相似。

随实度增加拉力系数和功率系数增大。

桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。

习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

螺距:它是桨叶角的另一种表示方法。

各种意义的螺矩与桨叶角的关系。

几何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。

它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。

桨叶各剖面的几何螺矩可能是不相等的。

习惯上以70%直径处的几何螺矩做名称值。

国外可按照直径和螺距订购螺旋桨。

如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。

实际螺距(Hg):桨叶旋转一周飞机所前进的距离。

可用Hg=v/n计算螺旋桨的实际螺矩值。

可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。

理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。

因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。

三、螺旋桨拉力在飞行中的变化1.桨叶迎角随转速的变化在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大。

又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。

2.桨叶迎角随飞行速度的变化:在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。

拉力随之降低。

当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。

飞机在地面试车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动性能变坏,因而螺旋桨产生的拉力不一定最大。

3.螺旋桨拉力曲线:根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。

4.螺旋桨拉力随转速、飞行速度变化的综合情况:在飞行中,加大油门后固定。

螺旋桨的拉力随转速和飞行速度的变化过程如下:由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。

飞行速度增加,由于飞行速度增大,致使桨叶迎角又开始逐渐减小,拉力也随之逐渐降低,飞机阻力逐渐增大,从而速度的增加趋势也逐渐减慢。

当拉力降低到一定程度(即拉力等于阻力)后,飞机的速度则不再增加。

此时,飞行速度、转速、桨叶迎角及螺旋桨拉力都不变,飞机即保持在一个新的速度上飞行。

四、螺旋桨的自转:当发动机空中停车后,螺旋桨会象风车一样继续沿着原来的方向旋转,这种现象,叫螺旋桨自转。

螺旋桨自转,不是发动机带动的,而是被桨叶的迎面气流“推着”转的。

它不但不能产生拉力,反而增加了飞机的阻力。

螺旋桨发生自转时,由于形成了较大的负迎角。

桨叶的总空气动力方向及作用发生了质的变化。

它的一个分力(Q)与切向速度(U)的方向相同,成为推动桨叶自动旋转的动力,迫使桨叶沿原来方向续继旋转:另一个分力(-P)与速度方向相反,对飞行起着阻力作用。

一些超轻型飞机的发动机空中停车后由于飞行速度较小,产生自旋力矩不能克服螺旋桨的阻旋力矩时螺旋桨不会出现自转。

此时,桨叶阻力较大,飞机的升阻比(或称滑翔比)将大大降低。

五、螺旋桨的有效功率:1.定义:螺旋桨产生拉力,拉着飞机前进,对飞机作功。

螺旋桨单位时间所作功,即为螺旋桨的有效功率。

公式:N桨=PV 式中:N桨—螺旋桨的有效功率;P—螺旋桨的拉力;V—飞行速度2.螺旋桨有效功率随飞行速度的变化:(1)地面试车时,飞机没有前进速度(V=0),拉力没有对飞机作功,故螺旋桨的有效功率为“零”。

相关文档
最新文档