正方体的内切、外接、棱切球
高中数学-球的接切问题
球的接切问题1.正方体的外接球、内切球和棱切球【例3】 有三个球和一个正方体,第一个球与正方体各个面内切,第二个球与正方体各条棱相切,第三个球过正方体各顶点,则三个球面积之比为 .【解析】设正方体棱长为a,则有内切球半径12a R =; 棱切球其直径为正方体各面上的对角线长,则有222R a =; 外接球直径为正方体的对角线长,∴有332R a =, 所以面积之比为()()2221:2:31:2:3=.【评注】 正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则内切球半径|OJ |=r =a 2;正方体的棱切球:|GO |=R =22a ;正方体的外接球:则|A 1O |=R ′=32a .用构造法易知:棱长为a 的正四面体的外接球半径为64a . 【变式1】构建正方体求解三棱锥有关问题若正三棱锥P —ABC 的三条侧棱两两垂直,则该正三棱锥的内切球与外接球的半径之比为 .1.()3:13-.【解析】设正三棱锥侧棱长为a ,纳入正方体中易知外接球半径为,23a 体积63a V =,内切球球心将正三棱锥分成四个高为内切球半径的三棱锥,则()3221332,632a a V r a ⎡⎤==⨯+∴⎢⎥⎣⎦33,6r a -=31:3R r -∴=. 【变式2】构建正方体利用等积法求点到面的距离已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若P A ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.2.33【解析】由已知条件可知,以P A ,PB ,PC 为棱可以补充成球的内接正方体,故而P A 2+PB 2+PC 2=()2R 2,由已知P A =PB =PC, 得到P A =PB =PC =2, V P -ABC =V A -PBC ⇒13h ·S △ABC =13P A ·S △PBC, 得到h=233,故而球心到截面ABC 的距离为R -h =33. 【变式3】构建正方体求解正四面体的外接球的体积已知三棱锥BCD A -的所有棱长都为2,则该三棱锥外接球的体积是________.3.32π 【解析】如图构造正方体FBEC ANDM -,则∵三棱锥BCD A -的所有棱长都为2,∴该正方体的棱长为1,∴三棱锥BCD A -的外接球半径:R=23.故所求3433()322V ππ==球. 【变式4】通过等价转化求解正方体的内切球的截面圆面积如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A .π6B .π3C .66πD .33π 4.A 【解析】:根据正方体的几何特征知,平面ACD 1是边长为2的正三角形,且球与以点D 为公共点的三个面的切点恰为三角形ACD 1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,由图得△ACD 1内切圆的半径是22×tan30°=66,故所求的截面圆的面积是π×⎝⎛⎭⎫662=π6. 2.长方体的外接球【例4】 (2013辽宁) 已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为 .【解析】∵AB ⊥AC ,且AA 1⊥底面ABC ,将直三棱柱补成内接于球的长方体,则长方体的对角线l =32+42+122=2R ,R =132.【评注】利用底面为直角三角形的直三棱柱补成长方体求外接球半径,长方体的模型可以使抽象问题具体化.【变式1】利用三棱两两垂直的四面体补成长方体求解在四面体ABCD 中,AB ,AC ,AD 两两垂直,AB=3,AD=2,AC=5,则该四面体外接球的表面积为 .1.π12 【解析】由球的对称性及,,AB AC AD 两两垂直可以补形为长方体ABD C DC A B ''''-,长方体的对称中心即为球心, ∴222235423R AB AC AD =++=++=,∴ ()24312S ππ== .【变式2】如图,在三棱锥O ABC -中,三条棱,,OA OB OC 两两垂直,且OA OB OC >>,分别经过三条棱,,OA OB OC 作一个截面平分三棱锥的体积,截面面积依次为123,,S S S ,则123,,S S S 的大小关系为________________.2.123S S S <<【解析】 由题意OC OB OA ,,两两垂直,可将其放置在以O 为一顶点的长方体中,设三边OC OB OA ,,分别为c b a >>,从而易得22121c b a S +=,22221c a b S +=,22321b a c S +=,∴()()()222222222222221414141b a c c b a b c a b a S S -=+-+=-,又b a >,∴02221>-S S ,即21S S >.同理,用平方后作差法可得32S S >.∴123S S S <<.【变式3】利用特殊的四棱锥补成长方体求解已知点P A B C D ,,,,是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为23正方形.若26PA =,则△OAB 的面积为3.33【解析】∵点P A B C D ,,,,是球O 表面上的点,P A ⊥平面ABCD , ∴点P A B C D ,,,,为球O 内接长方体的顶点,球心O 为长方体对角线的中点.∴△OAB 的面积是该长方体对角面面积的14. ∵23,26AB PA ==,∴6PB =,∴1=236=334OAB S ∆⨯⨯. 【变式4】利用半球的内接正方体补成球的长方体求解半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( ) A.5π∶6B .6π∶2C .π∶2D .5π∶124.B 【解析】 将半球补成整个球,同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体恰好是球的内接长方体,那么这个长方体的体对角线就是它的外接球的直径.设正方体的棱长为a ,球的半径为R ,则(2R )2=a 2+a 2+(2a )2,即R =62a . ∴V 半球=12×43πR 3=23π⎝⎛⎭⎫62a 3=62πa 3,V 正方体=a 3. ∴V 半球∶V 正方体=62πa 3∶a 3=6π∶2.【变式5】利用半球的内接三棱柱运用截面圆性质求解(2015·唐山统考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2 B .1 C. 2 D.225.C.【解析】由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(RABCOC OABDEF为球的半径),∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1,∴11A ABB S 矩形=2×1= 2.3.正四面体的外接球和内切球【例5】 正四面体的内切球、与棱相切的球、外接球的三类球的半径比为 .【解析】设正四面体的棱长为1,外接球和内切球半径依次为,R r , 由正四面体三个球心重合及其特征, 6R r =+,其体积为1633V =,另一面1343V r =⨯,则内切球和外接球的半径比1:3,其和为正四面体的高63, 而与棱相切的球直径为对棱的距离22,则内切球、与各棱都相切的球、外接球的半径之比为 61263)::)3334434=. 【变式1】利用正四面补成正方体求解体积 正四面体ABCD 的外接球的体积为34π,则正四面体ABCD 的体积是_____.1.83.【解析】由于外接球的体积为34434333r r πππ∴=∴=,故其内接正方体的棱长为2,故正方体体积为8,正四面体的体积为1833V=正方体.【变式2】利用正四面体的高与外接球半径的关系求球的表面积正四面体的四个顶点都在同一个球面上,且正四面体的高为4,则这个球的表面积是________. 2.36π【解析】正四面体的外接球半径R 为其高的34,且正四面体的高为4,则R =3 ,S =4πR 2=36π. 【变式2】利用正四面体补成正方体求解的球心角半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点与球心连线的夹角余弦值为 . 2.13-设正四面体棱长a 2,将其纳入正方体中,其正方体棱长a ,所求角为对角面内两条对角线的夹角为APB ∠,AP=BP=a AB a 2,23=,由余弦定理314322432cos 222-=⨯-⨯=∠a a a APB .【变式3】利用正四面体补成正方体求异面直线所成的角如图,正四面体A-BCD 中,E 、F 分别是AD 、BC 的中点,则EF 与CD 所成的角等于 ( ) A .45° B .90° C .60° D .30°3.A 【解析】如图,将正四面体补形为正方体,答案就脱口而出,应该选A. 【变式4】利用长方体的性质确定折叠四面体的外接球球心(2015·山西四校联考)将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A -BCD ,则四面体A -BCD 的外接球的体积为________.4. 【解析】 设AC 与BD 相交于O ,折起来后仍然有OA =OB =OC =OD ,∴外接球的半径r =32+422=52,从而体积V =4π3×⎝⎛⎭⎫523=125π6. 【变式5】(2015·云南一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.5.932【解析】 设等边三角形的边长为2a ,则V 圆锥=13·πa 2·3a =33πa 3; 又R 2=a 2+(3a -R )2,所以R =233a ,故 V 球=4π3·⎝⎛⎭⎫233a 3=323π27a 3,则其体积比为932. 【变式6】利用正六棱柱的对称性求外接球的体积一个六棱柱的底面是正六边形,其侧棱垂直底面。
正方体内切球、外接球、棱切球、图例演示ppt课件
S 4R2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
C1
B1
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
正方体的外接球直径是体对角线
例2.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
球的表面积和体积
D1
A1
d
D
S
A
a
C1
c B1
C
b
B
d2 a2 b2 c2
球的体积
球面:半圆以它的直径为旋转轴,旋转所成的曲面。 球(即球体):球面所围成的几何体。
它包括球面和球面所包围的空间。
半径是R的球的体积:V 4R3
3
2、球的表面积
S 4πR2
练习一:
(1)球的半径伸长为原来的2倍,体积变为原 来的——8 倍.
O的表面积。
略解:RtB1 D1ຫໍສະໝຸດ D中 :(2R)2 a 2 ( 2a)2 , 得 R 3a
2
S 4R2 3a 2
D A
D A11
D A
C B
O C1
B1
C B
D A11
O C1
B1
正方体的棱切球
正方体的棱切球直径是面对角线长
(2)若球的表面积变为原来的2倍,则半径变
2
为原来的——倍。
(3)若球半径变为原来的2倍,则表面积变
4
为原来的——倍。
(4)若两球表面积之比为1:2,则其体积之
球的接切问题,内切球,棱切球,外接球,正四面体
O
S底面积 r 1 S全面积 h 4
A
C MDຫໍສະໝຸດ Br1h 4h
a2 ( 3 a)2 6 a
3
3
r 6a 12
用一个平面去截球面, 截线是圆。
大圆--截面过球心,半径等于球半径; 小圆--截面不过球心组卷网
性质2:球心和截面圆心的连线 垂直于截面.
性质3: 球心到截面的距离d与球
的半径R及截面的半径r
A
有下面的关系: r R2 d 2
三、补形法
类型一、棱两两垂直
例1:若三棱锥的三条侧棱两两垂直,且 侧棱长均为a,则其外接球的表面积是
球的接切问题
球的概念
•球的定义
半圆以它的直径为旋 转轴,旋转所成的曲面 叫做球面。球面所围成 的几何体叫做球体。
球表面积公式: S 4 R2 球体积公式: V 4 R3
3
球半径的求法
• 方法一:直接法 • 方法二:构造直角三角形 • 方法三:补形
一、直接法
正方体与球
正方体的内切球, 棱切球,外接球
r 3a 2
A C
P
O B
类型二、正四面体与球
1.求棱长为a的正四面体的外接球的半径R.
2.求棱长为a的正四面体的棱切球的半径R.
R= 2 a 4
正四面体的棱切球就是正方体的内切球
3.求棱长为a的正四面体的内切球的半径r.
1
1
P
V 3 S底面积 h 3 S全面积 r
S底面积 h S全面积 r
长方体与球
一、长方体的外接球
长方体的(体)对角线等于球直径
设长方体的长、宽、高分别为a、b、c,则 l a2 b2 c2 2R
?
一般的长方体有内切球吗?
正方体的内切、外接、棱切球
若正方体的边长为2,则内切球的半 径为1。
球心位置
• 球心位置:正方体的内切球的球心位于正 方体的中心。
02
正方体的外接球
定义与性质
定义
正方体的外接球是指能够完全容纳正方体的球。
性质
外接球的直径等于正方体的对角线长度,且球心位于正方体中心。
半径计算
半径公式
外接球的半径R可以通过正方体的边长a 计算得出,公式为 $R = frac{sqrt{3}}{2}a$。
正方体的内切、外接、 棱切球
目录 CONTENT
• 正方体的内切球 • 正方体的外接球 • 正方体的棱切球 • 正方体与球的关系总结
01
正方体的内切球
定义与性质
定义
内切球是与正方体的所有面都相切的球。
性质
内切球的直径等于正方体的边长。
半径计算
半径公式
内切球的半径r = a/2,其中a为正方 体的边长。
VS
举例说明
若正方体的边长为4,则外接球的半径为 4$sqrt{3}$。
球心位置
球心位置
正方体的外接球的球心位于正方体的 中心,即各棱的中点。
证明方法
通过正方体的几何特性,可以证明球 心位于正方体中心是唯一能使球完全 容纳正方体的位置。
03
正方体的棱切球
定义与性质
定义
棱切球是与正方体的各棱都相切的球。
04
正方体与球的关系总结
正方体与内切球的关系总结
内切球
内切球是正方体各面中心到正方体中心的连线段所围成的球,其半径等于正方体边长的 一半。
总结
内切球与正方体的各个面相切,其半径等于正方体边长的一半。
正方体与外接球的关系总结
正方体的内切球外接球棱切球半径之比
正方体的内切球外接球棱切球半径之比正方体的内切球、外接球和棱切球是我们在几何学中经常遇到的概念。
它们之间的半径比是一个非常有趣的问题,也是许多数学家和工程师长期以来一直在研究的问题。
我们来看看正方体的内切球。
正方体是一种特殊的长方体,它的所有边长都相等。
因此,它的内切球也必须具有相同的大小。
内切球的半径等于正方体边长的一半,记作r1。
接下来是正方体的外接球。
外接球是指能够完全包围正方体的球。
由于正方体的对角线长度等于边长的根号3倍,所以外接球的半径等于正方体对角线的一半,记作r2。
最后是正方体的棱切球。
所谓棱切球,就是从正方体的一个顶点出发,沿着相邻两个棱所形成的平面切下去得到的球。
由于这个平面与正方体的底面平行,所以棱切球的直径等于正方体的高,记作r3。
现在我们来计算这三个半径之间的比例关系。
根据三角函数的知识,我们知道sin(C/2) = c/a,其中C表示角度,a表示边长,c表示对角线长度。
因此,对于一个正方体来说,它的内切球半径r1等于边长的一半乘以根号2/2,即r1 = (a/2) * sqrt(2)/2;它的外接球半径r2等于对角线的一半乘以根号3/2,即r2 = (a*sqrt(3))/2 * sqrt(3)/2;它的棱切球半径r3等于高的一半,即r3 = h/2。
将这三个半径代入比例关系式中,我们可以得到:r1/r2 = (a/2) * sqrt(2)/2 / (a*sqrt(3))/2 * sqrt(3)/2 = sqrt(6) / 6r2/r3 = (a*sqrt(3))/2 * sqrt(3)/2 / h/2 = 3 * sqrt(6) / hr1/r3 = (a/2) * sqrt(2)/2 / h/2 = sqrt(3) / h由此可见,正方体的内切球、外接球和棱切球的半径之比分别为sqrt(6) / 6、3 * sqrt(6) / h和sqrt(3) / h。
这些比例关系在实际应用中具有重要的意义,例如在计算机图形学、建筑设计等领域都有广泛的应用。
正方体内切球外接球棱切球图例演示
B1
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
正方体的外接球直径是体对角线
例2.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
O的表面积。
略解: Rt B 1 D 1 D 中 :
(2R )2 a 2 ( 2a)2,得
R
3 a
2
S 4R 2 3a 2
D A
D A11
D A
C B
O C1
B1
C B
D A11
O C1
B1
正方体的棱切球
正方体的棱切球直径是面对角线长
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略解: Rt B 1 D 1 D 中 :
(2R )2 a 2 ( 2a)2,得 R 3a
2
S 4R 2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
1: 2 2
比是———。
练习一
1.球的半径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为_32_3_ cm3.
3.有三个球,一球切于正方体的各面,一球切于正 方体的各侧棱,一球过正方体的各顶点,求这三 个球的体积之比_1_:_2__2_:3__3_.
例1.钢球直径是5cm,求它的体积.
V4R34(5)312c5m 3 3 32 6
内切、棱切、外接
正方体的内切球,
棱切球正方体与球
2
a
r 内切球切点:各个面的中心。
球心:正方体的中心。
直径:相对两个面中心连线。
a r 23 外接球正方体的外接球
球直径等于正方体的体对角线
球与正方体的棱相切
球的直径等于正方体一个面上的对角线长
切点:各棱的中点。
球心:正方体的中心。
直径:“对棱”中点连线a r 22 棱切球
1.求棱长为a 的正四面体的内切球的半径r .
r
S h S V ⋅=⋅=全面积底面积31
31
a
r 126
=S h S r
⋅=⋅底面积全面积1
4
S r S h ==底面积全面积1
4r h =63h a =§3正四面体与球
2.求棱长为a 的正四面体的外接球的半径R
.2
26
.
4R a 将正四面体放到正方体中,
得正方体的棱长为a,
且正四面体的外接球
即正方体的外接球,
所以=
3.求棱长为a 的正四面体的棱切球的半径R
.
24
R a =正四面体的外接球和棱切球的球心重合。
正四面体的外接球和内切球的球心一定重合R:r=3:1
a r 126 内切球64R a 外接球=24
r a 棱切球=
正四面体的内切球, 棱切球,外接球
三个球心合一
3
:1:3
半径之比为:
3
1:2:3
小结:常见的补形
正四面体常常补成正方体求外接球的半径三条侧棱两两垂直的三棱锥常补成长方体。
经典三类球:外接球、内切球、棱切球(解析版)
经典三类球:外接球、内切球、棱切球1【考点预测】考点一:正方体、长方体外接球1.正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.2.长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.3.补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示.(2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示.(3)正四面体P -ABC 可以补形为正方体且正方体的棱长a =PA2,如图3所示.(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1图2图3图4考点二:正四面体外接球如图,设正四面体ABCD 的的棱长为a ,将其放入正方体中,则正方体的棱长为22a ,显然正四面体和正方体有相同的外接球.正方体外接球半径为R =22a ⋅32=64a ,即正四面体外接球半径为R =64a .考点三:对棱相等的三棱锥外接球四面体ABCD 中,AB =CD =m ,AC =BD =n ,AD =BC =t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为a ,b ,c ,则b 2+c 2=m 2a 2+c 2=n 2a 2+b 2=t2,三式相加可得a 2+b 2+c 2=m 2+n 2+t 22,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则a 2+b 2+c 2=4R 2,所以R =m 2+n 2+t 28.直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)图1图2图3第一步:确定球心O 的位置,O 1是ΔABC 的外心,则OO 1⊥平面ABC ;第二步:算出小圆O 1的半径AO 1=r ,OO 1=12AA 1=12h (AA 1=h 也是圆柱的高);第三步:勾股定理:OA 2=O 1A 2+O 1O 2⇒R 2=h 22+r 2⇒R =r 2+h 2 2,解出R考点五:直棱锥外接球如图,PA ⊥平面ABC ,求外接球半径.解题步骤:第一步:将ΔABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:O 1为ΔABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r (三角形的外接圆直径算法:利用正弦定理,得a sin A=b sin B =c sin C =2r ),OO 1=12PA ;第三步:利用勾股定理求三棱锥的外接球半径:①(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;②R 2=r 2+OO 12⇔R =r 2+OO 12.考点六:正棱锥外接球正棱锥外接球半径:R=r2+h22h.垂面模型如图1所示为四面体P-ABC,已知平面PAB⊥平面ABC,其外接球问题的步骤如下:(1)找出△PAB和△ABC的外接圆圆心,分别记为O1和O2.(2)分别过O1和O2作平面PAB和平面ABC的垂线,其交点为球心,记为O.(3)过O1作AB的垂线,垂足记为D,连接O2D,则O2D⊥AB.(4)在四棱锥A-DO1OO2中,AD垂直于平面DO1OO2,如图2所示,底面四边形DO1OO2的四个顶点共圆且OD为该圆的直径.图1图2考点八:锥体内切球方法:等体积法,即R=3V体积S表面积考点九:棱切球方法:找切点,找球心,构造直角三角形1【典型例题】1(2023春·天津宁河·高一校考期末)在三棱锥P-ABC中,AP=2,AB=3,PA⊥面ABC,且在△ABC中,C=60°,则该三棱锥外接球的表面积为()B.8πC.10πD.12πA.20π3【答案】B【解析】根据题意得出图形如右图:O为球心,N为底面△ABC截面圆的圆心,ON⊥面ABC,∵在三棱锥P-ABC中,AP=2,AB=3,PA⊥面ABC,且在△ABC中,C=60°=2r,解得r=1,∴根据正弦定理得出:3sin60°∵PA⊥面ABC,∴PA⎳ON,∵PA=2,AN=1,ON=d,∴OA=OP=R,∴根据等腰三角形得出:12+d2=(2-d)2+12,解得d=1,∴R=1+1=2∴三棱锥的外接球的表面积为4πR2=8π.故选:B.2(2023·辽宁沈阳·高一东北育才学校校考阶段练习)在正三棱锥S-ABC中,外接球的表面积为36π,M,N分别是SC,BC的中点,且MN⊥AM,则此三棱锥侧棱SA=()A.1B.2C.3D.23【答案】D【解析】取AC的中点E,连结BE、SE,∵三棱锥S-ABC正棱锥,∴SA=SC,BA=BC.又∵E为AC的中点,∴SE⊥AC且BE⊥AC∵SE、BE是平面SBE内的相交直线,∴AC⊥平面SBE,又SB在平面SBE内可得SB⊥AC又∵MN是△SBC的中位线,∴MN∥SB,可得MN⊥AC又∵MN ⊥AM ,又AM ,AC 是平面SAC 内的相交直线,∴MN ⊥平面SAC ,结合MN ∥SB ,可得SB ⊥平面SAC 又∵三棱锥S -ABC 是正三棱锥,∴∠ASB =∠BSC =∠ASC =90°,因此将此三棱锥补成正方体,则它们有相同的外接球,设球的半径为R ,可得4πR 2=36π,解得R =3,∴SA 2+SA 2+SA 2=2R =6,解之得SA =23故选:D3(2023春·河南南阳·高一校联考期末)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ∥平面ABCD ,四边形ABFE ,CDEF为两个全等的等腰梯形,EF =12AB =2,AE =23则该刍甍的外接球的体积为()A.642π3B.3πC.643π3D.642π【答案】A【解析】取AD ,BC 中点N ,M ,正方形ABCD 中心O ,EF 中点O 2,连接EN ,MN ,FM ,OO 2,如图,依题意,OO2⊥平面ABCD,EF⎳AB⎳MN,点O是MN的中点,MN=AB=4,等腰△AED中,AD⊥EN,EN=AE2-AN2=22,同理FM=22,因此,等腰梯形EFMN的高OO2=EN2-MN-EF22=7,由几何体的结构特征知,刍甍的外接球球心O1在直线OO2上,连O1E,O1A,OA,正方形ABCD外接圆半径OA= 22,则有O1A2=OA2+OO21O1E2=O2E2+O2O21,而O1A=O1E,O2E=12EF=1,当点O1在线段O2O的延长线(含点O)时,视OO1为非负数,若点O1在线段O2O(不含点O)上,视OO1为负数,即有O2O1=O2O+OO1=7+OO1,即(22)2+OO21=1+(7+OO1)2,解得OO1=0,因此刍甍的外接球球心为O,半径为OA=22,所以刍甍的外接球的体积为4π3×223=642π3.故选:A.4(2023·高一课时练习)已知圆台的上下底面半径分别为1和2,侧面积为35π,则该圆台的外接球半径为()A.1055B.654C.1854D.1054【答案】B【解析】设圆台的高和母线分别为h,l,球心到圆台上底面的距离为x,根据圆台的侧面积公式可得π1+2l=35π⇒l=5,因此圆台的高h=l2-2-12=2,当球心在圆台内部时,则12+x2=22+h-x2,解得x=74,故此时外接球半径为1+x2=65 16=65 4,当球心在圆台外部时,则12+x2=22+x-h2,x>h,解得x=74不符合要求,舍去,故球半径为65 4故选:B5(2023·高一课时练习)已知圆锥的底面半径为2,高为42,则该圆锥的内切球表面积为()A.4πB.42πC.82πD.8π【答案】D【解析】如图,圆锥与内切球的轴截面图,点O为球心,内切球的半径为r,D,E为切点,设OD=OE=r,即BE=BD=2由条件可知,AB=422+22=6,△ADO中,AO2=AD2+DO2,即42-r2=6-22+r2,解得:r=2,所以圆锥内切球的表面积S=4πr2=8π.故选:D6(2023·高一课时练习)一个正四棱柱的每个顶点都在球O的球面上,且该四棱柱的底面面积为3,高为10,则球O的体积为()A.16πB.32π3C.10π D.28π3【答案】B【解析】设该正四棱柱的底面边长为a,高为h,则a2=3,h=10,解得a=3,所以该正四棱柱的体对角线为球O的直径,设球O的半径为R,所以,2R=a2+a2+h2=3+3+10=4,即R=2,所以,球O的体积为4π3×23=32π3.故选:B7(2023·高一课时练习)正八面体是每个面都是正三角形的八面体.如图所示,若此正八面体的棱长为2,则它的内切球的表面积为()A.423π B.8327π C.83π D.163π【答案】C【解析】以内切球的球心为顶点、正八面体的八个面为底面,可将正八面体分为8个全等的正三棱锥,设内切球的半径为r ,则8V 三棱锥=V 正八面体=2V 正四棱锥,且正四棱锥的高为图中CO ,易得CO =2,即:8×13×12×2×2×32 ⋅r =2×13×2×2 ×2解得:r =63,所以,内切球的表面积为8π3.故选:C .8(2023·高一课时练习)已知A ,B ,C 三点均在球O 的表面上,AB =BC =CA =2,且球心O 到平面ABC 的距离等于球半径的13,则下列结论正确的为()A.球O 的外切正方体的棱长为6B.球O 的表面积为8πC.球O 的内接正方体的棱长为3D.球O 的半径为32【答案】A【解析】设球O 的半径为R ,△ABC 的外接圆半径为r ,则r =233,因为球心O 到平面ABC 的距离等于球O 半径的13,所以R 2-19R 2=43,得R 2=32,即R =62,故D 错误;球O 的外切正方体的棱长b 满足b =2R =6,故A 正确;所以球O 的表面积S =4πR 2=4π×32=6π,故B 错误;球O 的内接正方体的棱长a 满足3a =2R =6,即a =2,故C 错误.故选:A .9(2023·河南开封·开封高中校考模拟预测)已知某棱长为22的正四面体的各条棱都与同一球面相切,则该球与此正四面体的体积之比为()A.π2B.π3C.3π3D.2π2【答案】A【解析】如图,正方体ABCD -A 1B 1C 1D 1中,棱长为2,所以,四面体A 1BDC 1是棱长为22的正四面体,当正四面体的各条棱都与同一球面相切时,该球为正方体的内切球,半径为1,所以,该球的体积为4π3,因为正四面体的体积为8-4×13×12×2×2×2=8-163=83,所以,该球与此正四面体的体积之比为4π383=π2.故选:A10(2023·高一课时练习)正四面体ABCD 的棱长为a ,O 是棱AB 的中点,以O 为球心的球面与平面BCD 的交线和CD 相切,则球O 的体积是()A.16πa 3B.26πa 3 C.36πa 3 D.23πa 3【答案】D【解析】设点A 在平面BCD 内的射影为点E ,则E 为△BCD 的中心,取CD 的中点M ,连接BM ,则E ∈BM ,取线段BE 的中点F ,连接OF ,因为O 、F 分别为AB 、BE 的中点,则OF ⎳AE 且OF =12AE ,因为AE ⊥平面BCD ,则OF ⊥平面BCD ,因为BE ⊂平面BCD ,则AE ⊥BE ,正△BCD的外接圆半径为BE=a2sinπ3=33a,∴AE=AB2-BE2=63a,所以,OF=12AE=66a,易知球O被平面BCD所截的截面圆圆心为点F,且BF=EF=EM,故FM=BE=33a,因为△BCD为等边三角形,M为CD的中点,则BM⊥CD,因为以O为球心的球面与平面BCD的交线和CD相切,则切点为点M,则球O的半径为OM=OF2+FM2=22a,因此,球O的体积是V=43π×22a3=23πa3.故选:D.11(2023·高一课时练习)已知直三棱柱ABC-A1B1C1的底面为直角三角形,如图所示,∠BAC= 90°,AB=1,AC=2,AA1=3,则四面体A-A1BC的体积为,四棱锥A1-BCC1B1的外接球的表面积为.【答案】 1 14π【解析】由题意可得S△ABC=12×AB⋅AC=12×2×1=1,且h=AA1,则V A-A1BC=13S△ABC⋅h=13×1×3=1因为△ABC 外接圆的圆心即为BC 中点,设为O ,△A 1B 1C 1外接圆的圆心即为B 1C 1中点,设为O 1,则OO 1的中点到六个顶点的距离相等,则OO 1的中点M 为外接球的球心,即CM 为半径,OC =12BC =12AC 2+AB 2=52,OM =12AA 1 =32所以CM =OC 2+OM 2=54+94=142,即外接球的表面积为4πR 2=4π×144=14π故答案为:1,14π2【过关测试】一、单选题1(2023·高一课时练习)若正四面体的表面积为83,则其外接球的体积为()A.43πB.12πC.86πD.323π【答案】A【解析】设正四面体的棱长为a ,由题意可知:4×34a 2=83,解得:a =22,所以正四面体的棱长为22,将正四面体补成一个正方体,则正方体的棱长为2,正方体的体对角线长为23,因为正四面体的外接球的直径为正方体的体对角线长,所以外接球半径R =3,则外接球的体积为V =43πR 3=43π,故选:A .2(2023·陕西渭南·高一统考期末)在直三棱柱ABC -A 1B 1C 1中,AB =BC =2,AA 1=22,∠ABC =π2,则此三棱柱外接球的表面积为()A.4πB.8πC.16πD.24π【答案】C 【解析】因为AB=BC=2,∠ABC=π2,所以△ABC为等腰直角三角形,将直三棱柱ABC-A1B1C1补全为如图长方体ABCD-A1B1C1D1,则长方体的外接球即直三棱柱的外接球,因为AB=BC=2,AA1=22,所以外接球直径2R=AC1=22+22+222=4,所以外接球半径R=2,表面积S=4πR2=16π.故选:C.3(2023春·河北衡水·高一校考阶段练习)在正四棱锥P-ABCD中,AB=4,PA=26,则平面PAB截四棱锥P-ABCD外接球的截面面积是()A.65π5B.36π5C.12πD.36π【答案】B【解析】如图,作PO ⊥平面ABCD,垂足为O ,则O 是正方形ABCD外接圆的圆心,从而正四棱锥P-ABCD外接球的球心O在PO 上,取棱AB的中点E,连接O D,O E,OD,PE,作OH⊥PE,垂足为H.由题中数据可得O D=22,O E=2,PE=25,O P=4,设四棱锥P-ABCD外接球的半径为R,则R2=O D2+O O2=OP2=O P-O O2,即R2=8+O O2=4-O O2,解得R=3.由题意易证△OPH∽△EPO ,则PHO P=OPPE,故PH=65 5.故所求截面圆的面积是π⋅PH2=36π5.故选:B4(2023春·山西太原·高一校考阶段练习)在三棱锥P -ABC 中,PA =PB =PC =3,侧棱PA与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A.πB.π3C.4πD.4π3【答案】D【解析】设点P 在平面ABC 内的射影点为E ,如下图所示:由线面角的定义可知,直线PA 与底面ABC 所成的角为∠PAE =60°,所以,PE =3sin60°=32,AE =3cos60°=32,因为PE ⊥平面ABC ,BE 、CE ⊂平面ABC ,∴PE ⊥BE ,PE ⊥CE ,∴BE =PB 2-PE 2=32=PC 2-PE 2=CE ,所以,△ABC 的外接圆圆心为点E ,且其外接圆半径为32,所以,三棱锥P -ABC 的外接球球心O 在直线PE 上,设球O 的半径为r ,由几何关系可得OE 2+AE 2=OA 2,即32-r 2+322=r 2,解得r =1,因此,三棱锥P -ABC 外接球的体积为V =43πr 3=43π.故选:D .5(2023春·河南鹤壁·高一河南省浚县第一中学校考阶段练习)已知三棱锥P -ABC 的四个顶点均在同一个球面上,底面ABC 满足BA =BC =6,∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为()A.323π B.32π C.16π D.823π【答案】A【解析】在△ABC中,BA=BC=6,∠ABC=π2,因此三棱锥P-ABC的外接球被平面ABC截得的截面小圆圆心是AC的中点O1,令三棱锥P-ABC的外接球球心为O,则OO1⊥平面ABC,而S△ABC=12AB⋅BC=3,O1A=3,因三棱锥P-ABC体积的最大值为3,则三棱锥P-ABC底面ABC上的高最大,设此最大高为h,由13×3h=3得h=3,要三棱锥P-ABC的体积最大,当且仅当球O上的点P到平面ABC的距离最大,则点P在线段O1O的延长线上,设球O半径为R,则有(h-R)2+O1A2=R2,即(3-R)2+(3)2=R2,解得R=2,所以三棱锥P-ABC的外接球体积为V=43πR3=323π.故选:A6(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【解析】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA2+AB2+AD22=32+42+522=522,则外接球的表面积为:S=4πR2=4π⋅504=50π.故选:B7(2023·吉林·高一吉林一中校考阶段练习)如图,在△ABC中,AB=25,BC=210,AC=213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π【答案】C【解析】由题意可知,PE =DF =10,PF =DE =13,PD =EF =5,即三棱锥P -DEF 的对棱相等,先将该三棱锥补充成长方体,如图所示:设FH =x ,HD =y ,HP =z ,则x 2+y 2=10,y 2+z 2=5,x 2+z 2=13,所以x 2+y 2+z 2=14,于是三棱锥P -DEF 的外接球直径为14,半径为142,所以该三棱锥外接球的表面积为:4π⋅142 2=14π.故选:C .8(2023·高一课时练习)如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 中点.将ΔADE 与ΔBEC 分别沿ED 、EC 折起,使A 、B 重合于点P ,则三棱锥P -DCE 的外接球的体积为()A.43π27B.6π2C.6π8D.6π24【答案】C【解析】易证所得三棱锥为正四面体,它的棱长为1,故其外接球与棱长为22的正方体的外接球一直,又正方体外接球半径为R=12+12+122=64故外接球的体积为43π633=68π故选C.9(2023·高一课时练习)边长为1的正四面体内切球的体积为()A.6π8B.212C.π6D.6π216【答案】D【解析】将棱长为1的正四面体ABCD补成正方体AECF-GBHD,则该正方体的棱长为22,V A-BCD=223-4V B-ACE=24-4×13×12×22 3=212,设正四面体ABCD的内切球半径为r,正四面体ABCD每个面的面积均为34×12=34,由等体积法可得V A-BCD=212=13r S△ABC+S△ACD+S△ABD+S△BCD=33r,解得r=612,因此,该正四面体的内切球的体积为V=43π×6123=6216π.故选:D.10(2023·高一课时练习)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SAC⊥平面SBC,SA=AC,SB=BC,球O的体积为36π,则三棱锥S-ABC的体积为()A.9B.18C.27D.36【答案】A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径O为SC中点,SA=AC,SB=BC∴AO⊥SC,BO⊥SC,∵平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,BO⊂平面SBC,∴BO⊥平面SCA,设BO=r,由球O的体积为36π,可得43πr3=36π,∴r=3,则V S-ABC=V B-SCA=13S△SCA⋅BO=13×12×2r×r×r=13r3=9,∴三棱锥S-ABC的体积为9,故选∶A.11(2023·高一课时练习)如下图是一个正八面体,其每一个面都是正三角形,六个顶点都在球O 的球面上,则球O与正八面体的体积之比是()A.πB.4π3C.3π2D.2π【答案】A【解析】由题意得正方形ABCD的中心O即为外接球球心,设AB=a,则R=OA=22a,球O的体积为V1=43π×22a3=2π3a3,而h=OE=22a,故正八面体的体积V2=2×13×a2×22a=23a3,得V1V2=π,故选:A12(2023·高一课时练习)已知三棱柱ABC-A1B1C1所有的顶点都在球O的球面上,球O的体积是500π3,∠ABC =60°,AC =43,则AA 1=()A.3B.6C.4D.8【答案】B【解析】设球O 的半径为R ,△ABC 外接圆的半径为r ,则43πR 3=500π3,解得R =5,因为∠ABC =60°,AC =43,由正弦定理得,△ABC 外接圆的半径r =432sin60°=4,则AA 1=2R 2-r 2=2×3=6.故选:B二、多选题13(2023春·湖北襄阳·高一襄阳四中校考阶段练习)如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,EF ⎳AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且AB =2,EF =AD =1,则下列说法正确的是()A.OF ⎳平面BCEB.BF ⊥平面ADFC.三棱锥C -BEF 外接球的体积为5πD.三棱锥C -BEF 外接球的表面积为5π【答案】ABD【解析】选项A :由EF ⎳AB ,AB =2,EF =1,可得EF // OB 则四边形OBEF 为平行四边形,则OF ⎳BE又OF ⊄平面BCE ,BE ⊂平面BCE ,则OF ⎳平面BCE .判断正确;选项B :连接BF ,线段AB 为圆O 的直径,则BF ⊥AF 由平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB AD ⊂平面ABCD ,AD ⊥AB ,则AD ⊥平面ABEF则AD ⊥BF ,又AF ∩AD =A ,AF ⊂平面ADF ,AD ⊂平面ADF 则BF ⊥平面ADF .判断正确;选项C :取CD 中点H ,连接OH由平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =ABOH ⊥AB ,OH ⊂平面ABEF ,可得OH ⊥平面ABEF又点E ,F ,B 在圆O 上,则三棱锥C -BEF 外接球球心在直线OH 上,由OH ⎳BC ,OH ⊄平面BCE ,BC ⊂平面BCE可得OH ⎳平面BCE ,则三棱锥C -BEF 外接球球心到平面BCE 的距离为点O 到平面BCE 的距离由BC ⊥平面ABEF ,BC ⊂平面BCE ,可得平面BCE ⊥平面ABEF ,则点O 到平面BCE 的距离即点O 到直线BE 的距离,又点O 到直线BE 的距离为32,则三棱锥C -BEF 外接球球心到平面BCE 的距离为32在△BCE 中,BC ⊥BE ,BC =BE =1,则CE =2,则△BCE 外接圆半径为22则三棱锥C -BEF 外接球的半径R =22 2+32 2=52则三棱锥C -BEF 外接球的体积为43π⋅52 3=556π.判断错误;选项D :由三棱锥C -BEF 外接球的半径R =52则三棱锥C -BEF 外接球的表面积为4πR 2=4π⋅522=5π.判断正确.故选:ABD14(2023春·江苏无锡·高一江苏省江阴市第一中学校考阶段练习)我们把所有棱长都相等的正棱柱(锥)叫“等长正棱柱(锥)”,而与其所有棱都相切的称为棱切球,设下列“等长正棱柱(锥)”的棱长都为1,则下列说法中正确的有()A.正方体的棱切球的半径为2B.正四面体的棱切球的表面积为π2C.等长正六棱柱的棱切球的体积为4π3D.等长正四棱锥的棱切球被棱锥5个面(侧面和底面)截得的截面面积之和为7π12【答案】BCD 【解析】正方体的棱切球的直径为正方体的面对角线,正方体的棱切球的半径为面对角线的一半,即为22,选项A 错误;如图,四面体ABCD 为棱长为1的正四面体,把正四面体ABCD 放到正方体中,则正方体的棱长即为正四面体的棱切球的直径,所以正四面体的棱切球的半径为24,即正四面体的棱切球的表面积为π2,选项B 正确;如图,等长正六棱柱的棱切球的直径为AB ,即直径为2,半径为1,所以等长正六棱柱的棱切球的体积为4π3,选项C 正确;由棱切球的定义可知,棱切球被每一个面所截,截面为该面的内切圆,则等长正四棱锥的底面内切圆的面积为π×12 2=π4,每个侧面正三角形的内切圆的半径为正三角形高的13,即36,所以四个侧面正三角形的内切圆的面积为4×π×36 2=π3,所以等长正四棱锥的棱切球被棱锥5个面截得的截面面积之和为π4+π3=7π12,选项D 正确.故选:BCD .15(2023春·湖南邵阳·高一湖南省邵东市第三中学校考期中)已知正方体ABCD -A 1B 1C 1D 1的各棱长均为2,下列结论正确的是()A.该正方体外接球的直径为23B.该正方体内切球的表面积为4πC.若球O 与正方体的各棱相切,则该球的半径为2D.该正方体外接球的体积为43【答案】ABC【解析】若正方体的棱长为2,则:①若球为正方体的外接球,则外接球直径等于正方体体对角线,即2R =22+22+22=23,故A 正确,外接球体积为43πR 3=43π,故D 错误;②若球为正方体的内切球,则内切球半径为棱长的一半,故R =1,球的表面积为4πR 2=4π,故B 正确;③若球与正方体的各棱相切,则球的直径等于正方形对角线长,即R =22+22=22,球的半径为R =2,故C 正确.故本题选:ABC .三、填空题16(2023春·陕西汉中·高一校考期中)已知球O 是四棱锥P -ABCD 的外接球,四边形ABCD 是边长为1的正方形,点P 在球面上运动且PA =2,则当四棱锥P -ABCD 的体积最大时,球O 的表面积是.【答案】6π【解析】设PA 与平面ABCD 夹角为θ,则四棱锥P -ABCD 的体积为V =13S ABCD ⋅h =13×1×h =13×PA ×sin θ=23sin θ,当sin θ=1时,四棱锥P -ABCD 的体积最大,即θ=90°,此时PA ⊥平面ABCD ,将四棱锥P -ABCD 补成一个正四棱柱,如图所示,此时四棱锥P -ABCD 和该正四棱柱有相同的外接球O ,设球O 的半径为R ,则2R =PC =12+12+22=6,可得R =62,所以球O 的表面积为S =4πR 2=4π×622=6π.故答案为:6π17(2023·高一课时练习)、已知正方体外接球的体积是323π,那么正方体的棱长等于【答案】433【解析】设正方体的棱长为a ,则外接球的半径为3a 2,外接球的体积V =4π3R 3=4π3×3a 2 3=3πa 32=32π3,解得a =433,即正方体的棱长等于433.18(2023春·浙江宁波·高一余姚中学校考阶段练习)已知某圆锥的内切球的体积为32π3,则该圆锥的表面积的最小值为.【答案】32π【解析】设圆锥的内切球半径为r ,则43πr 3=32π3,解得r =2,设圆锥顶点为A ,底面圆周上一点为B ,底面圆心为C ,内切球球心为D ,内切球切母线AB 于E ,底面半径BC =R >2,∠BDC =θ,则tan θ=R 2,又∠ADE =π-2θ,由已知△BDE ,△BDC 为直角三角形,又DC =DE ,BD =BD ,所以△BDE ≅△BDC ,所以BE =BC =R ,∠BDE =∠BDC =θ,所以∠ADE =π-2θ,故AB=BE +AE =R +2tan π-2θ =R -2tan2θ,又tan2θ=2tan θ1-tan 2θ=R 1-R 24=4R 4-R 2,故AB =R -8R 4-R 2=R R 2+4 R 2-4,故该圆锥的表面积为S =πR 2R 2+4 R 2-4+πR 2=2πR 4R 2-4,令t =R 2-4>0,则S =2π(t +4)2t =2πt +16t +8 ≥2π2t ×16t +8 =32π,当且仅当t =16t,即t =4,R =22时取等号.故答案为:32π.19(2023·高一课时练习)如果圆柱、圆锥的底面直径和高都等于一个球的直径,则圆柱、球、圆锥的体积的比是.【答案】3:2:1【解析】设球的半径为r ,则球的体积为V 球=43πr 3,圆柱的体积为V 圆柱=πr 2⋅2r =2πr 3,圆锥的体积为V 圆锥=13πr 2⋅2r =2πr 33,因此,V 圆柱:V 球:V 圆锥=2:43:23=3:2:1.故答案为:3:2:1.20(2023·高一课时练习)已知A 、B 、C 是球面上三点,且AB =AC =4,∠BAC =90°,若球心O 到平面ABC 的距离为22,则该球表面积为.【答案】64π【解析】因为AB =AC =4,∠BAC =90°,所以BC 为平面ABC 截球所得小圆的直径,如图,设小圆的半径为r ,得2r =AB 2+AC 2=42,解得r =22,又球心O 到平面ABC 的距离d =22,根据球的截面圆性质,得球的半径R =r 2+d 2=4,所以球的表面积为S =4πR 2=64π.故答案为:64π.21(2023春·河南商丘·高一商丘市第一高级中学校考期中)已知正三棱锥S -ABC ,SA =SB =SC =23,AB =3,球O 与三棱锥S -ABC 的所有棱相切,则球O 的表面积为.【答案】(19-83)π【解析】取等边△ABC 的中心E ,连接SE ,则SE ⊥平面ABC ,连接AE 并延长,交BC 于点D ,则D 为BC 中点,且AD ⊥BC ,在SE 上找到棱切球的球心O ,连接OD ,则OD 即为棱切球的半径,过点O 作OF ⊥SA 于点F ,则OF 也是棱切球的半径,设OD =OF =R ,因为SA =SB =SC =23,AB =3,所以求得AD =332,AE =3,DE =32,由勾股定理得:SE =12-3=3,且∠ASE =30°,设OE =h ,OD =OE 2+ED 2=h 2+34,SO =3-h ,OF =123-h ,由题意得:h 2+34=123-h ,解得:h =3-1或-1-3,当h=3-1时,R2=h2+34=194-23,此时球O的表面积为(19-83)π;当棱切球的半径最大时,切点为A,B,C,由于∠ASE=30°,SA=SB=SC=23,可求得最大半径R=23tan30°=2,而当h=-3-1时,R2=h2+34=194+23>4,显然不成立,故h=-3-1舍去,综上:球O的表面积为(19-83)π故答案为:(19-83)π22(2023春·山东德州·高一德州市第一中学校考阶段练习)边长为2的正四面体内有一个球,当球与正四面体的棱均相切时,球的体积为.【答案】2 3π【解析】结合正四面体的性质:球心在正四面体的体高上,且为外接球的球心,如下图:取球心O,若OD⊥PA,则OD即为球的半径,而O 为底面中心,∴PO ⊥面ABC,若E为BC中点,则AE=PE=3,∴PO =263,PO=62,AO=233,由Rt△PDO∼Rt△PO A,则POPA=ODAO,故OD=22,∴球的体积为43π⋅OD3=23π.故答案为:23π23(2023春·广东江门·高一江门市培英高级中学校考期中)已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是.【答案】8π【解析】过正方体的对角面作截面如图,故球的半径r=2,∴其表面积S=4π×(2)2=8π.故答案为:8π.24(2023春·江苏苏州·高一江苏省苏州实验中学校考阶段练习)一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R-h)h2,其中R为球的半径,h为球缺的高.若一球与一棱长为2的正方体的各棱均相切,则该球与正方体的公共部分的体积为.【答案】10-162 3π【解析】由题可得该球与正方体的公共部分球去掉6个球缺,则球的半径为R=22+222=2,球缺高h=2-1,则一个球缺的体积为π332-2-12-12=π342-5,则该球与正方体的公共部分的体积为4π3×23-6×π342-5=10-1623π.故答案为:10-162 3π.四、解答题25(2023·全国·高一专题练习)已知球与正四面体的六条棱都相切,求球与正四面体的体积之比.【解析】如图,设正四面体棱长为a,球半径为R,取AB的中点为E,CD中点F,连接AF,BF,EF,则AF=BF=32a,∴EF⊥AB,同理EF⊥CD,∴EF是AB,CD的公垂线,则EF的长是AB,CD的距离,EF=AF2-AE2=34a2-14a2=22a,又由球与正四面体的六棱都相切,得EF是该球的直径,即2R=22a,∴R3=232a3,V 球=43πR3=43π⋅232a3=224πa3,又V正四面体=13×S×h=13×12×a×a×sin60°×63a=212a3,故V球V正四面体=π226(2023·高一课时练习)有三个球,已知球O1内切于正方体,球O2与这个正方体各棱都相切,球O3过这个正方体的各个顶点,求球O1、球O2、球O3的表面积之比.【解析】设正方体的棱长为a.①球O1为正方体的内切球,球心O1是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,如图1所示,设球O1的半径为r1,表面积为S1,则2r1=a,r1=a2,所以S1=4πr21=πa2.②球O2与正方体各棱的切点为各棱的中点,过正方体的两个相对面的面对角线作截面,如图2所示,设球O2的半径为r2,表面积为S2,则2r2=2a,r2=22a,所以S2=4πr22=2πa2.③球O3过正方体的各个顶点,即正方体的各个顶点都在球面上,过正方体的体对角线作截面,如图3所示,设球O3的半径为r3,表面积为S3,则2r3=3a,r3=32a,所以S3=4πr23=3πa2.故这三个球的表面积之比S1:S2:S3=πa2:2πa2:3πa2=1:2:3.图1 图2 图3。
正方体内切球、外接球、棱切球、图例演示(1)
面积。
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得
R 3a 2
S 4R2 3a 2
D A
D1 A1
D A
C B
O C1
B1
C B
D1 A1
O C1
B1
练习一
1.球的半径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为___cm3.
正方体的内切球
正方体的内切球的直径是棱长
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
正方体的外接球直径是体对角线
正方体的棱切球
正方体的棱切球直径是面对角线长
例2.如图,正方体ABCD-A1B1C1D1的棱长为a, 它的各个顶点都在球O的球面上,问球O的表
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得 R 3a
2
S 4R2 3a 2
D A
D1 A1
D A
D1 A1
C B O
C1
B1
C B O
C1
B1
3.有三个球,一球切于正方体的各面,一球切于正 方体的各侧棱,一球过正方体的各顶点,求这三 个球的体积之比_________.
例2.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各 个顶点都在球O的球面上,问球O的表面积。
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
小学教育语文人教版一年级上 正方体内切球-外接球-棱切球微课
若正方体的棱长为a,则
⑴正方体的内切球直径= a
⑵正方体的外接球直径= ⑶与正方体所有棱相切的球直径=
例1.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
O的表面积。
分析:正方体内接于球,则由球和正方
D
C
体都是中心对称图形可知,它们中心重 A
B
合,则正方体对角线与球的直径相等。
D A
D A11
C B
O C1
B1
D A
D A11
C B
O C1
B1Biblioteka 10关于正方体的内切球、外 切球、棱切球的半径问题
D1
A1
d
D
S
Aa
C1
c B1
C
b
B
d2 a2 b2 c2
正方体的内切球的直径是棱长
正方体的棱切球
A
B
正方体的棱切球直径是面对角线长
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
gO
C1
正方体的外接球直径是体对角线
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得
D A11
O C1
B1
R 3a 2
S 4R2 3a 2
D A
D A11
C B
O C1
B1
练习:有三个球,一球切于正方体的各面,一球切于正 方体的各侧棱,一球过正方体的各顶点,求这三个球的 体积之比 1 : 2 2 : 3 3 .
立几球的切接问题
A
C M
D
B
r 1 h h a2 ( 3 a)2 6 a r 6 a
4
3
3
12
正方体模型
墙角
DD' '
AA''
C' A'
BB' '
DD
AAA
D
CCC A
BB
阳马
直观感知、转换构造
C B
鳖臑 正四面体
直击高考
例 3.(2019 课标卷 1 理科 12)
已知三棱锥 P ABC 的四个顶点在球 O 的球面上,PA PB PC ,ABC 是边 长为 2 的正三角形, E, F 分别是 PA, AB 的中点, CEF 90 ,则球 O 的体积
M
C
例2.已知正三棱柱 ABC A1B1C1 的各棱长都是2,则它的外接
球的半径为
.
内切球呢?
在三角形ABC中,AM 2 3
M1
3 R2 OM 2 AM 2 12 ( 2 3)2 7
3
3
M
R 21
3
为( )
A. 8 6
B. 4 6
C. 2 6
D. 6
思考一:三棱锥的形状特征? 思考二:正三棱锥的性质?
垂面模型(线垂直面)
特点:线面垂直
例1.在四面体 ABCD中, BA 平面 BCD, BA 4,BC 4, BD 3 ,
CBD
60,则该四面体的外接球的表面积为
100 3
.
A M1
O
D
60 B
必修二、立体几何 球的切接问题
正方体与球
正方体的内切球, 棱切球,外接球
一、正方体的内切球
正方体、三棱锥的内切球和外接球和棱切球的问题 PPT
球的概念
球的截面的形状 圆面
球面被经过球心的平面截得的圆叫做大圆 不过球心的截面截得的圆叫做球的小圆
正方体的内切球
中截面
内切球的直径等于正方体的棱长。
D A
D1
C 正方体的棱切球
B
中截面
O
.
C1
A1
B1
棱切球的直径等于正方体的面对角线。
正方体的外接球
D A
D1 A1
正四面体的三个球
一个正四面体有一个外接球, 一个内切球和一个与各棱都 相切的球。那么这三个球的 球心及半径与正四面体有何 关系呢?为了研究这些关系, 我们利用正四面体的外接正 方体较为方便。
正四面体的外接球即为正 方体的外接球,与正四面 体各棱都相切的球即是正 方体的内切球,此两球的 球心都在正方体的中心, 在正四面体的高的一个靠 近面的四等分点上,
6
S表
3 2
a2
球的内切、外接问题
1、内切球球心到多面体各面的距离均相等, 外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
C
B O
C1 B1
对角面 A
A1
C
O
C1
外接球的直径等于正方体的体对角线。
例2、正三棱锥的高为 1,底面边长为 。求棱锥的
全面积和它的内切球的表面积。
A 解法1: 过侧棱AB与球心O作截面( 如图 )
在正三棱锥中,BE 是正△BCD的高,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设正方体的棱长为 a,则正方体的体对角线 长为 3a
D A B
C
正方体的棱切球
中截面
O D1 C1
ቤተ መጻሕፍቲ ባይዱ
.
A1
B1
与正方体的棱都相切的球的球心是体对角线的交点.
棱切球的直径等于正方体的面对角线。
正四面体的三个球
一个正四面体有一 个外接球,一个内 切球和一个与各棱 都相切的球。那么 这三个球的球心及 半径与正四面体有 何关系呢?为了研 究这些关系,我们 利用正四面体的外 接正方体较为方便 。
长方体的外接球的球心是体对角 线的交点,直径是体对角线。
• 设长方体的长、宽、高分别为a、b、 c 则对角线长为
2 2 2 √a +b +c
正方体
的内切、外接、棱切球
r
.
a
正方体的内切球
D A B
C
中截面 O D1 C1
正方体的内切球的球心是体对角线的交点.
内切球的直径等于正方体的棱长。
A1
B1
正方体的外接球
D A O D1 A1
C
对角面 A
B
C
O
A1
C1
C1
B1
正方体的外接球的球心是体对角线的交点.
外接球的直径等于正方体的体对角线。