实验二半加器全加器
数字电子技术基础组合逻辑电路(半加器`全加器及逻辑运算)
一、实验目的
1. 掌握组合逻辑电路的功能测试。
2. 验证半加器和全加器的逻辑功能。
3. 学会二进制数的运算规律。
二、实验原理及其实验元件
实验原理:参照指导书对应内容结合自己理解写
实验箱、芯片(74LS00、74LS10、74LS54、74LS86)、导线。
三、实验内容及其步骤
数字电子技术基础
组合逻辑电路(半加器、全加器及逻辑运算)
[班级] [姓名] [学号]
[日期]
2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
用一片(74LS86)和(74LS00)组成半加器。
3.测试用异或门、与或门和非门组成的全加
器的逻辑功能。
S
CO
设计性实验
设计一个“三个一至电路”。
电路有三个输入端,一个输出端。
当三个输入端变量A、B、C状态一致时,输出F为“1”;当三个变量状态不一致时,输出F为“0”。
(要求:用与非门组成电路。
)
步骤:
1)列真值表:
2)写出逻辑表达式:
()()
ABC
C
B
A
F⋅
=
3)画逻辑电路图:
A
B
C
F
4)验证:
所得实验结论与理论值相等,说明实验成功。
5)按下图连接实验电路。
A
B。
实验二半加器全加器
1 3 8 10
VCC
16
4
7
11 13 B1 B0 CI
A3 A2 A1 A0 5 12 V CC GND S3 15 2
B3 B2
74283
S2 S1 6 S0 9 CO 14
LED
图2-2-5 4位二进制加法器功能测试电路
表2-2-5 4位二进制加法器数据表
B 3 B 2 B1 B 0 A 3 A 2 A 1 A 0 S3S 2S1S0
实验内容
1.7486型异或门功能测试 图2-2-1中任一个异或门进行实验,输入端接逻 辑开关,输出端接LED显示。将实验结果填入表 2-2-2中,并判断功能是否正确,写出逻辑表达 式。
表2-2-2 异或门输入、输出电平关系数据表
输 入 端 A 0 0 1 1 B 0 1 0 1
输 出 端 Y
2.用异或门构成半加器 电路如图2-2-4所示,输入端 接逻辑开关,输出端接LED显 示。 将实验结果填入表2-23中,判断结果是否正确,写 出和S及进位CO的逻辑表达 式。
思考题
1. 如何利用7483和门电路实现BCD码 加法运算? 2. 如何用两片7483实现8位二进制数加 法运算? 3. 如何用与非门(7400)接成非门?
注意事项
1.在进行复杂电路实验时,应该先检测 所用到的每个单元电路功能是否正常,确 保单元电路能够正常工作。 2.每个集成电路工作时都必须接电源 (VCC)和地(GND)。
A3 A2 A1 A0 5 12 V CC GND S3 15 2
ห้องสมุดไป่ตู้
B3 B2
7483
S2 S1 6 S0 9 CO 14
预习要求
1.复习组合逻辑电路的分析方法,阅读教 材中有关半加器和全加器的内容,理解半 加器和全加器的工作原理。 2.熟悉7486、7483等集成电路的外形 和引脚定义。拟出检查电路逻辑功能的方 法。 3.熟悉BCD码、余3码和二进制码之间的 转换方法。 4.根据实验内容的要求,完成有关实验电 路的设计,拟好实验步骤。 5.写出预习报告,设计好记录表格。
实验二 组合逻辑电路(半加器、全加器)
《数字电子技术B》实验报告班级:姓名学号:实验二组合逻辑电路(半加器、全加器)一、实验目的1.掌握组合逻辑电路的功能测试。
2.验证半加器和全加器的逻辑功能。
3.学会二进制数的运算规律。
二、实验仪器及材料74LS00 二输入端四与非门 3片74LS86 二输入端四异或门 1 片74LS54 四组输入与或非门 1片三、实验内容(如果有可能,附上仿真图)1.组合逻辑电路功能测试。
(1).用2片74LS00组成图2.1所示逻辑电路。
为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。
(2).图中A、B、C接电平开关,Y1,Y2接发光管电平显示。
(3).接表2.1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式。
(4).将运算结果与实验比较。
表2.1Y1=A+B Y2=(A’*B)+(B’*C)2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可有一个集成异或门和二个与非门组成如图2.2。
图2.2(1).在实验仪上用异或门和与门接成以上电路。
A、B接电平开关K,Y,Z接电平显示。
(2).按表2.2要求改变A、B状态,填表。
表2.23.(1).写出图2.3电路的逻辑表达式。
(2).根据逻辑表达式列真值表。
表2.3(5)按原理图选择与非门并接线进行测试,将测试结果记入表2.4,并与上表进行比较看逻辑功能是否一致。
4. 测试用异或、与或和非门组成的全加器的逻辑功能。
全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门和一个与非门实现。
(1).画出用异或门、与或非门和非门实现全加器的逻辑电路图,写出逻辑表达式。
(2).找出异或门、与或非门和与门器件按自己画出的图接线。
接线时注意与或非门中不用的与门输入端接地。
(3).当输入端A i、B i及C i-1为下列情况时,用万用表测量S i和C i的电位并将其转为逻辑状态填入下表。
组合逻辑电路设计之全加器半加器
班级姓名学号实验二组合电路设计一、实验目的(1)验证组合逻辑电路的功能(2)掌握组合逻辑电路的分析方法(3)掌握用SSI小规模集成器件设计组合逻辑电路的方法(4)了解组合逻辑电路集中竞争冒险的分析和消除方法二、实验设备数字电路实验箱,数字万用表,74LS00, 74LS86三、实验原理1 •组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路的过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单的组合逻辑电路。
组合电路的输入信号和输出信号往往不只一个,其功能描述方法通常有函数表达式、真值表,卡诺图和逻辑图等几种。
实验中用到的74LS00和74LS86的引脚图如图所示。
00 四2输入与非门4B 4A 4Y 3B 3A 3Y1A 1B 1Y 2A 2B 2Y GND2•组合电路的分析方法。
组合逻辑电路分析的任务是:对给定的电路求其逻辑功能,即求出该电路的输出与输入之间的关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析一般分为(1)由逻辑图写出输出端的逻辑表达式,简历输入和输出之间的关系。
(2)列出真值表。
(3)根据对真值表的分析,确定电路功能。
3•组合逻辑电路的设计方法。
组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。
一般设计的逻辑电路的过程如图(1)通过对给定问题的分心,获得真值表。
在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量直接的逻辑关系问题,其输出变量之间是否存在约束关系,从而过得真值表或简化真值表。
(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。
(3)根据最简逻辑表达式得到逻辑电路图。
四•实验内容。
1•分析,测试半加器的逻辑功能。
实现全加器的实验报告
一、实验目的1. 理解全加器的原理和组成。
2. 掌握半加器、与门、或门等基本逻辑门电路的原理和特性。
3. 学习利用基本逻辑门电路构建全加器。
4. 通过实验加深对数字电路设计和实现过程的理解。
二、实验原理全加器是一种基本的数字电路,用于实现两个二进制数的加法运算。
它由两个半加器和两个与门、一个或门组成。
当两个加数位相加时,全加器可以产生一个和以及一个进位输出。
半加器(hadder)是全加器的基础单元,它由一个异或门(XOR)和一个与门(AND)组成。
异或门负责产生和输出,与门负责产生进位输出。
全加器的原理如下:- 当两个加数位相加时,若两者均为0,则输出和为0,进位为0。
- 若一个加数位为0,另一个为1,则输出和为1,进位为0。
- 若两者均为1,则输出和为0,进位为1。
三、实验设备及器材1. 数字电路实验箱2. 集成芯片(74LS00、74LS10、74LS54、74LS86)3. 导线4. 示波器5. 电源四、实验步骤1. 准备实验器材,搭建半加器电路。
(1)将74LS86(异或门)和74LS00(与门)插入实验箱。
(2)按照图1所示连接半加器电路。
(3)将A、B分别接入电平开关,Y、Z接入发光二极管显示。
(4)通电,观察Y、Z的亮灭情况,验证半加器的逻辑功能。
2. 构建全加器电路。
(1)按照图2所示连接全加器电路。
(2)将A、B、C分别接入电平开关,Y、Z接入发光二极管显示。
(3)通电,观察Y、Z的亮灭情况,验证全加器的逻辑功能。
3. 使用示波器观察全加器的输出波形。
(1)将示波器的探头分别连接到全加器的和输出端和进位输出端。
(2)改变A、B、C的输入值,观察示波器上的波形,分析全加器的逻辑功能。
五、实验结果与分析1. 半加器实验结果:当A、B的输入分别为0、1或1、0时,Y为1,Z为0;当A、B的输入均为0或均为1时,Y为0,Z为0。
验证了半加器的逻辑功能。
2. 全加器实验结果:当A、B、C的输入分别为0、0、0时,Y为0,Z为0;当A、B、C的输入分别为0、0、1时,Y为1,Z为0;当A、B、C的输入分别为0、1、0时,Y为1,Z为0;当A、B、C的输入分别为0、1、1时,Y为0,Z为1;当A、B、C的输入分别为1、0、0时,Y为1,Z为0;当A、B、C的输入分别为1、0、1时,Y为0,Z为1;当A、B、C的输入分别为1、1、0时,Y为0,Z为1;当A、B、C的输入分别为1、1、1时,Y为1,Z为1。
半加器&全加器
EDA实验报告电气0801 0701080126 陆松一.实验名称:半加器&全加器二.原理:半加器:实现两个一位二进制数加法运算的电路称为半加器。
若将A、B分别作为一位二进制数,S表示A、B相加的“和”,C是相加产生的“进位”,半加器的真值表如表所示半加器逻辑图及其逻辑符号:全加器:对两个一位二进制数及来自低位的“进位”进行相加,产生本位“和”及向高位“进位”的逻辑电路称为全加器。
由此可知,全加器有三个输入端,二个输出端,其真值表如表8-15所示。
其中Ai、Bi分别是被加数、加数,Ci–1是低位进位,Si为本位全加和,Ci为本位向高位的进位。
三.原理图/程序:MAX+plus II中半加器原理图VHDL程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY HALF_ADDER ISPORT(A,B:IN STD_LOGIC;S,CO:OUT STD_LOGIC);END HALF_ADDER;ARCHITECTURE HALF_ADDER OF HALF_ADDER IS COMPONENT HALF_ADDERPORT(A,B:IN STD_LOGIC;S,CO:OUT STD_LOGIC);END COMPONENT;BEGINS<='0' WHEN A='0' AND B='0' ELSE'1'WHEN A='0' AND B='1' ELSE'1' WHEN A='1' AND B='0' ELSE'0' WHEN A='1' AND B='1';CO<='0' WHEN A='0' AND B='0' ELSE'0' WHEN A='0' AND B='1' ELSE'0' WHEN A='1' AND B='0' ELSE'1' WHEN A='1' AND B='1';END HALF_ADDER;MAX+plus II中全加器原理图VHDL程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY FULL_SUBER ISPORT(A,B,CIN:IN STD_LOGIC;CO,S:OUT STD_LOGIC);END FULL_SUBER;ARCHITECTURE FULL OF FULL_SUBER IS COMPONENT HALF_SUBERPORT(A,B:IN STD_LOGIC;S,CO:OUT STD_LOGIC);END COMPONENT;SIGNAL S1,S2,S3:STD_LOGIC;BEGINU0:HALF_SUBER PORT MAP(A,B,S2,S1);U1:HALF_SUBER PORT MAP(S2,CIN,S,S3);CO<=S1 OR S3;END FULL;四.实验步骤:步骤1:为本项工程设计建立文件夹,文件夹不能为中文名。
《数字电路》组合逻辑电路(半加器全加器及逻辑运算)实验报告
《数字电路》组合逻辑电路(半加器全加器及逻辑运算)实验一、实验目的1、掌握组合逻辑电路的功能测试。
2、验证半加器和全加器的逻辑功能。
3、学会二进制数的运算规律。
二、实验原理数字电路分为组合逻辑电路和时序逻辑电路两类。
任意时刻电路的输出信号仅取决于该时刻的输入信号,而与信号输入前电路所处的状态无关,这种电路叫做组合逻辑电路。
分析一个组合电路,一般从输出开始,逐级写出逻辑表达式,然后利用公式或卡诺图等方法进行化简,得到仅含有输入信号的最简输出逻辑函数表达式,由此得到该电路的逻辑功能。
两个一位二进制数相加,叫做半加,实现半加操作的电路称为半加器。
两个一位二进制数相加的真值表见表5-1,表中Si表示半加和,Ci表示向高位的进位,Ai、Bi表示两个加数。
表5-1 半加器真值表从二进制数加法的角度看,表中只考虑了两个加数本身,没有考虑低位来的进位,这也就是半加一词的由来。
由表5-1可直接写出半加器的逻辑表达式:+、Ci=AiBi由逻辑表达式可知,半加器的半加和Si是Ai、Bi的异或,Si=AiBi AiBi而进位Ci是Ai、Bi相与,故半加器可用一个集成异或门和一个与门组成。
两个同位的加数和来自低位的进位三者相加,这种加法运算就是全加,实现全加运算的电路叫做全加器。
如果用Ai、Bi分别表示A、B两个多位二进制数的C-表示低位(第i-1位)来的进位,则根据全加运算的规则可列出真第i位,1i值表如表5-2。
表5-2 全加器的真值表利用卡诺图可求出Si 、Ci 的简化函数表达式:i i i i-1i i i i i i S =A B C C =(A B )C +A B ⊕⊕⊕可见,全加器可用两个异或门和一个与或门组成。
如果将数据表达式进行一些变换,半加器还可以用异或门、与非门等元器件组成多种形式的电路(见图5-2,图5-3)。
三、实验仪器及材料 器件:(1) 74LS00 二输入端四与非门 3片 (2) 74LA86 二输入端四异或门 1片 (3) 74LS54 四组输入与或非门 1片四、实验内容及步骤1、组合逻辑电路功能测试。
实验二 vhdl半加器与全加器的设计与验证实验
北京邮电大学世纪学院<通信工程系数字电路实验>实验报告实验名称:VHDL半加器与全加器的设计与验证实验班级:姓名:专业:学号:实验室:实验组别:实验时间:审阅教师:评定成绩:实验题目基于 VHDL 的半加器与全加器的设计与验证实验一、实验目的1、学习 Quartus II 软件的使用;2、VHDL 半加器的设计与验证实验;3、VHDL 全加器的设计与验证实验;4、掌握模块的 VHDL 调用;5、学习基于 VHDL 的数字电路的设计。
二、预习内容1、VHDL 语言的基本结构;2、VHDL 语言的数据类型和运算操作符;3、VHDL 语言的主要描述语句;三、实验内容本实验主要运用 Quartus II 软件进行 VHDL 电路设计;内容一、VHDL 半加器的设计,包括电路设计并进行时序仿真验证,然后将电路设计进行实际电路的验证;内容二、VHDL 全加器的设计,在VHDL 程序中调用生成的半加器图形符号完成全加器设计,时序仿真验证后,将全加器电路进行实际电路的验证;本实验的重点和难点是 VHDL 语言的使用1、VHDL 半加器电路的设计2、VHDL 半加器电路的时序验证3、VHDL 全加器电路的设计4、全加器电路的时序验证四、实验结果分析对所设计的半加器电路、全加器电路进行实际电路的验证。
分析:五、思考题1、在采用 Quartus II 软件进行 VHDL 电路设计中,工程名、实体名、结构体名如何选取,实体名、结构体名是否可以任意选取,为什么?2、一个完整的 VHDL 语言程序通常包含那几部分?3、VHDL 结构体有那三种描述方式?六、总结。
实验二--组合逻辑电路实验(半加器、全加器)
实验步骤
1、检查芯片完好
每个小组在数字电路试验箱上找到本次实验所需要的芯片 ,并查看芯片形状是否完好,芯片管脚有没有插牢。
2、查看数字电路实验箱
74LS86
74LS00
3、了解芯片
芯片管脚示意图
4、实验内容与结果(一)
1.组合逻辑电路功能测试 (选用芯片74LS00)
输入
A
B
C
0
0
0
0
0
1
0
1
实验二组合逻辑电路实验半加实验二组合逻辑电路实验半加器全加器器全加器实验目的实验目的掌握掌握组合逻辑电路的功能测试验证验证数字电路实验箱及示波器的使用方学会学会二进制数的运算规律数字电路实验箱及示波器的使用方半加器和全加器的逻辑功能序号名称型号与规格数量数字电路实验箱thd1二输入四与非门74ls00二输入四异或门74ls86二输入端四或非门74ls022
输入
Ai
Bi
Ci-1
0
0
0
输出
Si
Ci
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
认真复习,加强练习, 巩固成果,学以致用!
Goodbye!
以上有不当之处,请大家给与批评指正, 谢谢大家!
5、记录实验结果(二)
2.用异或门(74LS86)和与非门(74LS00)组成的半加器电路
输入
A
B
0
0
0
1
1
0
1
1
输出
Y
Z
(1)在数字电路实验箱上插入异或门和与非门芯片。输入端A、B接逻辑开 关,Y,Z接电平显示发光管。 (2)按表格要求,拨动开关,改变A、B输入的状态,填表写出y、z的输出 状态,并根据真值表写出y、z逻辑表达式。
实验二组合逻辑电路(半加器、全加器)
实验⼆组合逻辑电路(半加器、全加器)
实验⼆组合逻辑电路(半加器、全加器)
⼀、实验⽬的:
1.加深理解组合逻辑电路的特点和⼀般分析⽅法;
2.熟悉组合逻辑电路的设计⽅法;
3.验证半加器、全加器的功能。
⼆、实验仪器、设备、元器件:
1.数字逻辑电路实验仪 1台
2.四2输⼊与⾮门74LS00芯⽚ 1⽚
3.四2输⼊异或门74LS86芯⽚ 1⽚
4.六反向器74LS04芯⽚ 1⽚
5.⽰波器或万⽤表
三、预习要求:
1.复习组合逻辑电路的分析和设计⽅法;
2.复习半加器、全加器的⼯作原理;
3.根据设计任务要求,设计组合逻辑电路,画出逻辑图。
四、实验内容和步骤:
1.测试半加器的逻辑功能
根据图2.1所⽰连接好电路。
输⼊A、B端分别接两个逻辑电平开关,输出端S、C接颜⾊不同的发光⼆极管。
观察当输⼊端A、B电平变化时,输出端S、C电平指⽰器的状态。
验证逻辑状态并填表。
图2.1由与⾮门组成的半加器电路表 2.1 逻辑真值表
写出逻辑表达式:Ci= C = 2.测试全加器的逻辑功能
1
- -
1
C1
2
3
A
74LS00 4
5
6
B
74LS00 1
2
3
A
74LS86 4
5
6
B
74LS86 8
9
10
C
74LS00 B
A
Ci-1
Si
Ci。
半加器全加器实验总结
半加器全加器实验总结这是一个很简单的实验,但却又不简单。
它需要学生有着灵敏度高、反应快和精确度高的特点。
我认为教师做得很成功。
对于整个实验的理解,学生只是机械地去完成实验过程,而并没有真正地理解到内容的深层次含义。
下面谈几点体会:1.观察仪器的结构形状与使用方法以及每种仪器所能承受的压力范围;2.研究对象选取要适当,即半加器或者全加器;3.实验步骤要严谨,操作规范,细心负责,遵守实验室安全规则。
因此,本节课的重难点是要求学生掌握“半加器全加器”的使用技巧。
如果学生已经知道了半加器的使用方法,就可以让他们自己动手进行试验,这样既培养了学生的创新思维能力,也增强了学习物理的兴趣。
根据学校实际情况,半加器改为一半半加器,也就是在原来的基础上添加了另外一个半加器,从而提高了演示效果。
首先将全加器装好,用拇指紧按第一格,食指放在第二格,中指放在第三格,其余各手指伸直平放在桌子上。
左手手掌托住盖玻片,右手持镊子夹起盖玻片,使之与载玻片相距约2-4毫米。
注意事项:a.镊子尖端应放在载玻片的边缘处,避免损伤盖玻片。
b.观察时眼睛不要盯着盖玻片看,防止产生错觉。
c.读数时视线与液面保持垂直,以免产生错误。
d.盖玻片必须清洁,如有污染,务必擦净再行观察。
e.切勿在盖玻片上涂抹任何东西,否则影响透明度。
f.调节光源,照亮被观察物体,转动粗准焦螺旋,使镜筒缓慢下降,至清晰。
g.放大倍数应依据透明度而定,应尽量减小。
h.对某些不易看清楚的显微镜或观察,还可通过转动细准焦螺旋或移动装片位置等方法加以补充观察。
然后用两个相同的半加器,分别套入两个全加器内,盖上盖玻片,用胶布固定后观察。
最后把两个半加器合在一起,加上载玻片,盖上盖玻片,移动镜筒使它恰好落在第一格,向观察孔缓缓推进,直到从孔口能看到被观察物体为止。
由于本次实验的内容比较多,故我只讲述了半加器部分的操作流程。
希望老师们能够积极探索,找出更加科学合理的教学方法,培养出更优秀的人才!。
实验二:半加、半减器,全加、全减器
S
C
0
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
表2
从二进制数减法的角度看,真值表中只考虑了两个减数本身,没有考虑低位来的借位,这就是半减器的由来。
3.全加器原理
全加器能加数、被加数和低位来的进位信号相加,并根据求和结果给出该位的进位信号。表3为全加器的真值表,图3为全加器的符号。 表示被加数 表示加数 表示相邻低位来的进位数, 表示本为和值(全加和), 表示向相邻高位的进位数
0
0
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1
1
1
1
表4
四、实验内容
1、用一个74LS00、一个74LS86器件实现半加器、半减器。要求当M值为0时为半加器M值为1时为半减器。
⑴真值表
M
A
B
S
C
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
0
0
0
0
1
0
1
1
1
1
1
0
1
0
1
1
1
0
0
S=A⊕B
当A= 0 B= 1 时S亮C亮
组合逻辑电路(半加器全加器及逻辑运算)ppt课件
①写出用异或门、与或非门、非门组成全加器的逻辑表达式;
②连接电路,注意与或非门不用的输入端接地;
③根据不同的输入状态,记录输出结果。
74LS86
A
B 注意:74LS54 3或4或5接地, 9或10或11接地
C
1 =1 3
2
4 =1
5
6
S
74LS54
74LS00
。 。 1
2
& ≥1
61&
3
12 &
2
CO
最新版整理ppt
13
实验二 组合逻辑电路(半加器全加器及逻辑运算)
四、实验内容 操作说明
逻辑电平
LED显示
最新版整理ppt
14
实验二 组合逻辑电路(半加器全加器及逻辑运算)
四、实验内容
2、测试用异或门和与非门组成的半加器逻辑功能
在实验箱上用异或门和与非门组成如下电路,输入接电 平开关,输出端Y、Z接电平显示发光二极管;改变输 入状态,记录输出结果。
011 100
01 10
101 110 111
01 01 11
ABC有奇数个1时S为1; ABC有偶数个1和全为0时 S为0。 -----用全加器组成三位二进制代码 奇偶校验器
最新版整理ppt
12
实验二 组合逻辑电路(半加器全加器及逻辑运算)
四、实验内容 1、组合逻辑电路功能测试
选择7400两片连接如下电路;A、B、C接电平开关,Y1、Y2接 电平显示发光管,改变A、B、C的状态填表,并写出Y1、Y2的 逻辑表达式;将运算结果与实验结果比较。
最新版整理ppt
4
实验二 组合逻辑电路(半加器全加器及逻辑运算)
实验二半加器全加器
进位输出。
全加器的实现方式
01
全加器可以通过逻辑门电路实现,如与门、或门和 非门等。
02
具体实现方式可以根据实际需求选择不同的逻辑门 组合,以实现全加器的功能。
03
全加器在计算机中广泛应用于二进制数的加法运算 和进位处理。
04
实验步骤
设计半加器和全加器
确定输入和输出
半加器有2个输入和3个输出,全加器有3个输入和2个输 出。
结果分析
半加器分析
半加器的原理是通过异或门和与门实现两个 一位二进制数的加法运算,不考虑进位的情 况。通过实验结果可以看出,半加器能够正 确地实现两个一位二进制数的加法运算,并 输出正确的和以及进位。
全加器分析
全加器的原理是通过异或门、与门和一位全 加器实现两个一位二进制数的加法运算,同 时考虑进位的情况。通过实验结果可以看出, 全加器能够正确地实现两个一位二进制数的 加法运算,并输出正确的和、进位以及溢出。
将进位传递给下一位。
如果被加数的某一位与加数 的对应位相加结果为1,且低 位进位输入也为1,则相应的 低位进位输出端会输出1,表 示需要将进位传递给下一位。
全加器的实现方式
全加器可以通过逻辑门电路 实现,如AND门、OR门和 NOT门。
OR门用于处理被加数和加数 的对应位相加结果为1的情况。
AND门用于处理被加数和加 数的对应位相加结果为0的情 况。
检查电路功能
通过输入不同的二进制数,检查电路是否能够正确实现半加器和全加器的功能。
进行二进制数的加法运算
选择要加的二进制数
选择两个一位或两位的二进制 数进行加法运算。
输入二进制数
将选择的二进制数输入到半加 器或全加器中。
观察输出结果
全加器的设计实验报告
一、实验目的1. 掌握全加器的基本原理和设计方法。
2. 熟悉Quartus II软件的使用,包括原理图输入、编译、仿真和编程下载等操作。
3. 培养动手实践能力和团队合作精神。
二、实验原理全加器是一种能够处理两个二进制数相加,并考虑来自低位进位信号的组合逻辑电路。
一个n位全加器可以由n个1位全加器级联而成。
本实验设计一个1位全加器,其原理如下:1. 半加器:半加器是全加器的基础,它只考虑两个一位二进制数的相加,不考虑来自低位进位数的运算电路。
半加器的输出包括一个和位S和一个进位位C。
2. 全加器:全加器由两个半加器和一个或门组成。
当输入两个一位二进制数A和B以及一个来自低位的进位信号Cin时,全加器的输出包括一个和位S和一个进位位Cout。
全加器的逻辑表达式如下:S = A ⊕ B ⊕ CinCout = (A ∧ B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)三、实验内容和步骤1. 创建工程:在Quartus II中创建一个新工程,命名为“全加器设计”。
2. 设计原理图:在原理图编辑窗口中,从元件库中分别选取两个半加器(HAdder)和一个或门(Or),并按照全加器的逻辑表达式连接起来。
3. 编译工程:完成原理图设计后,进行编译操作。
Quartus II将对原理图进行综合、实现和编程下载等步骤。
4. 仿真:在仿真环境中,通过输入不同的A、B和Cin值,观察全加器的输出S和Cout是否符合预期。
5. 下载编程:将编译好的程序下载到FPGA开发板上,通过硬件测试验证全加器的功能。
四、实验结果与分析1. 仿真结果:在仿真环境中,我们分别输入以下值进行测试:A B Cin0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1仿真结果显示,全加器的输出S和Cout与预期逻辑表达式相符。
2. 硬件测试结果:将编译好的程序下载到FPGA开发板上,通过硬件测试验证全加器的功能。
测试结果与仿真结果一致,说明全加器设计正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告要求
1. 写出一位半加器和一位全加器的逻辑表 达式,画出门电路实现的电路符号图。 2. 画出用7483实现余3码加法运算的电路 图,并说明电路的原理。 3. 整理实验数据、图表,并对实验结果进 行分析讨论。 4. 总结组合电路的分析与测试方法。
思考题
1. 如何利用7483和门电路实现BCD码 加法运算? 2. 如何用两片7483实现8位二进制数加 法运算? 3. 如何用与非门(7400)接成非门?
逻辑开关
V CC
1 3 8 10 16 4 7 11 13
A3 A2 A1 A0 B3 B2 B1 B0 CI
5 V CC
12 GND
74283
S3 S2 S1 S0 CO
15 2 6 9 14
LED
图2-2-5 4位二进制加法器功能测试电路
表2-2-5 4位二进制加法器数据表
B3B2B1B0 A3A2A1A0 S3S2S1S0
15 2 6 9 14
图2-2-2 7483管脚图
实验原理
1.1位半加器 半加器实现两个一位二进制数相加,并且不考虑 来自低位的进位。输入是A和B,输出是和S和进 位CO。半加器的电路图如图2-2-3所示。其逻 辑表达式是:
SA B A B A B
COAB
图2-2-3 半加器电路图
2.全加器
全加器实现1位二进制数的加法,考虑来自低位 的进位,输入是两个一位二进制数A、B和来自低 位的进位次CI,输出是S和向高位的进位CO。逻 辑表达式是:
7486管脚图如图2-2-1所示
VCC
14 13 12 11 10 9
8
12
3 45
图2-2-1 7486管脚图
67 GND
7483管脚图如图2-2-2所示
1 3 8 10 16 4 7 11 13
A3 A2 A1 A0 B3 B2 B1 B0 CI
5 V CC
12 GND
7483
S3 S2 S1 S0 CO
CO
0110 0110 0110 0110
1100 0101 0011 1011
*5.二进制加/减运算
用7483二进制加法器可以实现加/减运算。 运算电路如图2-2-6所示,它是由7483 及四个异或门构成。
M为加/减控制端,当M=0时,执行加法 运算 ;当M=1时,执行减法运算。减法 运算结果由FC决定,当FC=1时表示结果 为正,反之结果为负,输出是(A—B)的补 码。
SABCI
C O A B BC AICI
3.4位加法器
7483是集成4位二进制加法器,其逻辑功能是实现
两个4位二进制数相加。输入是 A3A2A1A0、B3B2B1B0 和来自低位的进位CI,输出是 S3S2S1S0和向高位的 进位CO。
1 3 8 10 16 4 7 11 13
A3 A2 A1 A0 B3 B2
自拟实验表格和数据,验证电路是否正确。
B3 B2 B1 B0 A3 A2 A1 A0
1 3 8 10 16 4 7 11
A3 A2 A1 A0 B3 B2 B1 B0
7483 S3 S2 S1 S0
CI 13 M
CO
15 2 6 9 14
F3 F2 F1 F0 FC
图2-2-6 二进制加/减运算电路
4.根据实验内容的要求,完成有关实验电 路的设计,拟好实验步骤。
5.写出预习报6型异或门功能测试
图2-2-1中任一个异或门进行实验,输入端接逻 辑开关,输出端接LED显示。将实验结果填入表 2-2-2中,并判断功能是否正确,写出逻辑表达 式。
表2-2-2 异或门输入、输出电平关系数据表
输入端
输出端
A B CI
S CO
000 001 010 011 100 101 110 111
4. 4位二进制加法器7483功能测试 电路如图2-2-5所示,和分别为2个4位二进制数,
令B3B2B1B0=0110,A3A2A1A0接逻辑开关,输 出端接LED显示,验证7483的逻辑功能,将实验
结果填入表2-2-5中。
注意事项
1.在进行复杂电路实验时,应该先检测 所用到的每个单元电路功能是否正常,确 保单元电路能够正常工作。 2.每个集成电路工作时都必须接电源 (VCC)和地(GND)。
5 V CC
12 GND
7483
S3 S2 S1 S0
B1 B0 CI CO
15 2 6 9 14
预习要求
1.复习组合逻辑电路的分析方法,阅读教 材中有关半加器和全加器的内容,理解半 加器和全加器的工作原理。
2.熟悉7486、7483等集成电路的外形 和引脚定义。拟出检查电路逻辑功能的方 法。
3.熟悉BCD码、余3码和二进制码之间的 转换方法。
输入端
输出端
AB
Y
00 01 10 11
2.用异或门构成半加器
电路如图2-2-4所示,输入端
接逻辑开关,输出端接LED显
示。 将实验结果填入表2-2-
3中,判断结果是否正确,写
出和S及进位CO的逻辑表达
式。
A1
3S
B2
1
1 2 CO
2
3
图2-2-4 半加器
表2-2-3 半加器输入、输出电 平关系数据表
实验目的
1.学习用异或门组成二进制半加器和全加器, 并测试其功能。
2.测试集成4位二进制全加器7483的逻辑 功能。
3.学习用7483构成余3码加法电路。
实验设备与器件
1.7400型2输入端四与非门1块 2.7404型六反相器1块 3.7486型2输入端四异或门1块 4.7483型4位二进制加法器2块
输入端 输出端
A B S CO 00 01 10 11
3.一位二进制全加器
(1) 将1位二进制全加 器的真值表填入表22-4中。
(2) 写出和S及进位CO 的逻辑表达式。
(3) 将逻辑表达式化简 成合适的形式,画出 用7486和7400实现 的电路图。
(4) 搭建电路,验证结 论的正确性。
表2-2-4 1位二进制全加器真值表