三年级奥数有趣的数阵图解析
三年级奥数数阵图与幻方
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
奥数知识点 简单数阵图
简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和。
先求重叠数。
数总和+中心数×重复次数=公共的和×线数重叠部分=线总和-数总和/线总和=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字(重叠数)重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1-5这五个数分别填在左下图中的方格中,使得横行三数与竖列三数之和都等于9。
例2、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以:总和数=(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
例3、把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等例4、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。
但由例1、例2的分析知道,(1+2+3+4+5)+重叠数=每条直线三数之和×2,每条直线上三数之和=(15+重叠数)÷2。
奥数:有趣的数阵图
有趣的数阵图(一)教学要求:1、使学生掌握解答有趣的数阵图的方法。
2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。
教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图。
它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵。
二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相解题思路:找出中间数,填在中间的公关位置,再剩下的数中,找一对和相等的数。
再分别填入。
2、教学例2:把1~6形式尝试,练习。
解题思路:由于三个顶点上的数要加二次,所以我们先假设,顶点,再推出,其它的点。
3、教学例3:把1~9这九个数,填入到方格中,使横、竖、斜上的三个数和相等。
解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填。
方法有多种。
4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等。
解题思路:有2行3列,而1+2+3+5+6+7 =24,所以每行为12,这样分成(1、5、6);(2、3、7)两组。
每列和是24÷3=8,所以:(1、7);(2、6);(3、5)。
答案多种。
三、课堂练习:1、填上合适的数,2、用1~534、使横、竖、斜和相等。
余数的妙用(二)教学要求:1、使学生掌握正确计算有余数的除法。
2、培养学生活跃的思维能力,提高学习奥数的兴趣。
教学过程:一、导入新课:同学们都会正确计算有余数的除法,其实有余数除法还蕴含着丰富的数学知识,所以我们运用它还可以解决不少的数学难题。
今天,我们将继续学习余数的妙用(二)。
二、探索新知:1、教学例4:体育课排队,老师让同学们按1、2、3、4、5循环报数,最后一个人报2,这一排有()人。
A、26B、27C、28D、32《吉林省“金翅杯”小学数学竞赛试题》解题思路:答案必须是5的倍数还要加2,所以我们经过计算发现可以选B D。
小学奥数第23讲 数阵图(含解题思路)
23、数阵图【方阵】例1 将自然数1至9,分别填在图5.17的方格中,使得每行、每列以及两条对角线上的三个数之和都相等。
(长沙地区小学数学竞赛试题)讲析:中间一格所填的数,在计算时共算了4次,所以可先填中间一格的数。
(l+2+3+……+9)÷3=15,则符合要求的每三数之和为15。
显然,中间一数填“5”。
再将其它数字顺次填入,然后作对角线交换,再通过旋转(如图5.18),便得解答如下。
例2 从1至13这十三个数中挑出十二个数,填到图5.19的小方格中,使每一横行四个数之和相等,使每一竖列三个数之和又相等。
(“新苗杯”小学数学竞赛试题)讲析:据题意,所选的十二个数之和必须既能被 3整除,又能被 4整除,(三行四列)。
所以,能被12整除。
十三个数之和为91,91除以12,商7余7,因此,应去掉7。
每列为(91—7)÷4=21而1至13中,除7之外,共有六个奇数,它们的分布如图5.20所示。
三个奇数和为21的有两种:21=1+9+11=3+5+13。
经检验,三个奇数为3、5、13的不合要求,故不难得出答案,如图5.21所示。
例3 十个连续自然数中,9是第三大的数,把这十个数填到图5.22的十个方格中,每格填一个,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数的最小值是______。
(1992年全国小学数学奥林匹克初赛试题)讲析:不难得出十个数为:2、3、4、5、6、7、8、9、10、11。
它们的和是65。
在三个2×2的正方形中,中间两个小正方形分别重复了两次。
设中间两个小正方形分别填上a和b,则(65+a+b)之和必须是 3的倍数。
所以,(a+b)之和至少是7。
故,和数的最小值是24。
【其他数阵】例1 如图5.23,横、竖各12个方格,每个方格都有一个数。
已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3、5、8和“×”四个数,那么“×”代表的数是______。
小学奥数教程-数阵图2 (含答案)
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
例题精讲知识点拨教学目标5-1-3-2.数阵图【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】 请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C )+(A+F+G )+(A+D+E )+(B+D+F )+(C+E+G )=5k ,3A+2B+2C+2D+2E+2F+2G=5k ,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1题。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
小学奥数系列:第九讲 有趣的数阵图(一)
第九讲有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C 地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x 所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解:x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、 2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.。
三年级奥数教程第13讲 数阵图
三年级奥数教程第13讲数阵图例1、把1~6这六个数字分别填入图13一l的六个圈内,使得每个正方形顶点上的数的和都为13.分析从1到6这六个数的和是21.而两个正方形8个顶点上的数之和是26(=13×2),比六个数的总和大5.这是因为中间两个圈内的数,都被算了两次,所以,多出来的5就是中间两个圈内的数的和.解在1到6六个数中,两个数的和为5,只可能是1+4、2+3.当中间两个圈内填1与4时,剩下的四个数,3与5、2与6配对即可以满足条件.当中间两个圈内填2与3时,剩下的四个数无法组成和相等的两对,因而无法满足条件.所以,得到如图13—2的填法.随堂练习1将3、4、6这三个数填入图13—3的三个圆圈内,使得每条边上的三个数的和等于11.例2、将2到7这六个数,填入图13—4的圈中,使得每条线上的三个数的和相等.分析与解将三条线上的三个数都相加,中间的1被加了3次,所以三条线上三个数的和为1+2+…+6+7+1+1=30.从而每条线上的和是10(=30÷3),即每条线上剩余两个圆圈内数的和是9(=10—1).由 2+7=4+5=3+6=9.可以得到如图13—5的解.随堂练习2 将1到7这七个数填入图13—6,使得每条线上的三个数的和相等.例3、将1到9这九个数填入图13—7,使得从中心出发的每条线段上的三个数的和相等.分析与解先来确定中心的数.设这个数为a,则4条线上12个数(中心的数出现4次,其余的数各出现一次)的和1+2+…+9+a+a+a是4的倍数,即45+3×a是4的倍数.所以a只可能是1、5、9.(1)当a=1时,2与9、4与7、8与3、5与6两两搭配填入同一条线的两个圈内即可.(2)当a=5时,l与9、2与8、3与7、4与6搭配.(3)当a=9时,1与8、2与7、3与6、4与5搭配.这样得到如图13—8所示的三个解.随堂练习3 将1~8填入图13—9,使两个正方形顶点上的数的和相等,并且用斜线连接的4对数的和也都相等.例4、将1到5这五个数填入图13-10,使得圆周上四个数的和与每条直线上的三个数的和都相等.分析与解设处于中心圈内的数是a,因为竖线上的三个数的和等于圆周上的四个数的和,所以a等于它左、右两个数的和.同理,a等于它上、下两个数的和.从而a是最大的数5.其余四个数,2与3搭配,1与4搭配,写在同一条线上.得到的解如图13—11所示.随堂练习4 在图13一12中圆圈内填上7、8、10、12,使得每个圆内的四个数的和相等.例5、将1~6这六个数填入图13~13的六个圆圈内,使得每条边上的三个数的和相等.分析与解用字母a、b、c表示三个顶点上的数.如果l、6都在边上,那么a、b、c中有两个数的差是5(=6—1).这不可能.所以可设以a=1或6.如果a=1,那么由2+6=3+5.3+6=4+5.可得图13—14的(1),(2).如果a=6,同样可得图13—14的 (3),(4).随堂练习5 将l到16填入图13—15,使得每条线段上四个数的和相等,两个八边形八个顶点上的数的和也相等.例6、将1~16填入图13—16的正方形,使每行、每列、每条对角线的和都相等.图13—16分析与解本题也就是造一个四阶幻方.四阶幻方的造法很多,解也不惟一.下面介绍一种最简的做法,可以称为调整法.先将1~16依照次序先左后右,先上后下逐一填入图13—17(1)中得1234114154115144 567896712126799101112510118810115 13141516132316133216⑴⑵⑶图13—17四阶幻方中每行和、每列和、每条对角线的和都是 (1+2+…+16)÷4=(1+16)×16÷2÷4=34.现在图13—17(1)的两条对角线的和都已经是34,合乎要求.所以对角线上的数不要再动.先来调整行.将第一行的2、3分别与第四行的14、15对调,第二行的5、8分别与第三行的9、12对调,得图13—17(2),这个图中,不但每条对角线的和是34,每一行的和也都是34.再调整列.将图13—17(2)第一列的9、5分别与第四列的12、8对调,第二列的14、2分别与15、3对调,得图13—17(3),这个图就是一个合乎要求的幻方.随堂练习6 比较例6所得的幻方与随堂练习5的答案.有何联系?读一读……………………………………………………可能与必然上节末,说到一个游戏“数独”.数独怎么填呢?比如先看第一行,在上节末的图中,有6个空格,应填1、2、4、7、8、9这6个数字.每个空格填的数有6种可能,难以确定.如果看第二列,只有2个空格,应填2、7,每个空格有2种可能,但还不能惟一确定.可能性太多,需要逐个枚举讨论,比较麻烦.所以应先考虑可能较小的方格.最好能发现一些方格,只有一种填法,也就是说这些方格填什么数是必然的.将这些方格先填好,对填其他方格会有帮助.同时考虑几个方面的要求,可以得到必然的填法.比如中间的3×3的正方形,只有3个空格,应填2、6、8.再结合第四行已经有8,第六行也已经有8,所以8必须填在中央.接下去,因为第四行已经有6,所以6必须填在第六行,2填在第四行.现在再看第四行,只剩2个空格,应填9与3.第九列有9,所以第四行的9只能(必然)在第三列,3在第九列.同样,右中3×3的正方形中,9必然在第六行.第六行第一列必填2.左中3×3的正方形中,5必在第一列,7在第三列.第八列3必填在第九行,9必填在第二行.右上3×3的正方形中,7必填在第七列.右下3×3的正方形中,5必在第八行第七列,2必在第八行,1在第九列第七行,6在第七行第七列.右中3×3的正方形中,6在第九列,2在第七列.左下3×3的正方形中,2、3、8、6的填法都是必然的.左上3×3的正方形中,按行依次填2、1、4、7、6.右上3×3的正方形中,填4、8.中上3×3的正方形中填8、9、6、2、7、4.中下3×3的正方形中填9、3、6、4、1、7.填法都是必然的。
三年级数学 奥数讲座 数阵图二
三年级数阵图(二)上一讲我们讲了仅有一个“重叠数”的辐射型数阵图的填数问题,这一讲我们讲有多个“重叠数”的封闭型数阵图。
例1将1~8这八个数分别填入右图的○中,使两个大圆上的五个数之和都等于21。
分析与解:中间两个数是重叠数,重叠次数都是1次,所以两个重叠数之和为21×2-(1+2+…+8)=6。
在已知的八个数中,两个数之和为6的只有1与5,2与4。
每个大圆上另外三个数之和为21-6=15。
如果两个重叠数为1与5,那么剩下的六个数2,3,4,6,7,8平分为两组,每组三数之和为15的只有2+6+7=15和3+4+8=15,故有左下图的填法。
如果两个重叠数为2与4,那么同理可得上页右下图的填法。
例2将1~6这六个自然数分别填入右图的六个○内,使得三角形每条边上的三个数之和都等于11。
分析与解:本题有三个重叠数,即三角形三个顶点○内的数都是重叠数,并且各重叠一次。
所以三个重叠数之和等于11×3-(1+2+…+6)=12。
1~6中三个数之和等于12的有1,5,6;2,4,6;3,4,5。
1如果三个重叠数是1,5,6,那么根据每条边上的三个数之和等于11,可得左下图的填法。
容易发现,所填数不是1~6,不合题意。
同理,三个重叠数也不能是3,4,5。
经试验,当重叠数是2,4,6时,可以得到符合题意的填法(见右上图)。
例3将1~6这六个自然数分别填入右图的六个○中,使得三角形每条边上的三个数之和都相等。
分析与解:与例2不同的是不知道每边的三数之和等于几。
因为三个重叠数都重叠了一次,由(1+2+…+6)+重叠数之和=每边三数之和×3,得到每边的三数之和等于[(1+2+…+6)+重叠数之和]÷3=(21+重叠数之和)÷3=7+重叠数之和÷3。
因为每边的三数之和是整数,所以重叠数之和应是3的倍数。
考虑到重叠数是1~6中的数,所以三个重叠数之和只能是6,9,12或15,对应的每条边上的三数之和就是9,10,11或12。
小学奥数:数阵图(三).专项练习及答案解析
1.了解数阵图的种类2.学会一些解决数阵图的解题方法3.能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1.定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【考点】数阵图与数论【难度】3星【题型】填空【关键词】迎春杯,三年级,初赛,第8题【解析】设顶点分别为A、B、C 、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、E分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a1,公差为d.利用求和公式5(a1+a1+4d)2=55,得a1+2d=11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.例题精讲知识点拨教学目标5-1-3-3.数阵图【答案】2种可能【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
一起学奥数--有趣的数阵图
擦掉1、5、9(留意这三个数的位置),剩下的数首尾相加,
和相等。
4
8
2
随便挑选一组,填到左图圆圈内。
分析例4、5,图形特征与数字特征相同的情况下,填数的方式雷同。
例6、把1~11这十一个数分别填入下图中的各个○内,使每条线段上 三个○内的数的和都等于22。
1
10 5 6 11 9 2
78
4
3
【分析】图形特征:这是中心辐射型,中间圆圈重复使用五次。 数字特征:1-11为11个连续自然数,呈等差数列。与
4组数列分别填在三个顶角,构建成的直线的和不同,所以基本解有4个。而每组三个数在 三个顶点的位置又有6种方式。所以合计填法为: 4×6=24种。
本题可以通过确定直线最小值和最大值,计算出公共点的和,再 分类讨论,剔除不合适的组。方法相对原始,但不容易漏掉。
例3、把1~12这十二个数,分别填在下图中正方形四条边上的十二个 ○内,使每条边上四个○内数的和都等于22,试求出一个基本解。
因为1-12是一个等差数列,确定1-4为四个顶角,且按逆时针方向排列后,可以把剩下 的分成5-8,9-12两组,分别填在直线上对应的位置。
最后一步的规律必须让学生领会。可以把和都为22的条件去掉做讲解
例4、把1~7这七个数分别填入下图中的各个圆圈内,使每条线段上三个 ○内的数的和相等。
7
2
1
4 5
例:将1~16分别填入下图中圆圈内,要求每个扇形上四个数之和及中 间正方形的四个数之和都是34,图中已填好八个数,请将其余的数填完。
9 15 5
10
【分析】图形特征:左图中有16个圆圈,要填的数字为16个,且16 个圆圈可以在大圆上组成4个扇形,4个扇形上的数字之和都为34
(完整版)小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1 题。
例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。
趣味数学—数阵图与幻方
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
奥数:有趣的数阵图
有趣的数阵图(一)教学要求:1、使学生掌握解答有趣的数阵图的方法。
2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。
教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图。
它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵。
二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相解题思路:找出中间数,填在中间的公关位置,再剩下的数中,找一对和相等的数。
再分别填入。
2、教学例2:把1~6形式尝试,练习。
解题思路:由于三个顶点上的数要加二次,所以我们先假设,顶点,再推出,其它的点。
3、教学例3:把1~9这九个数,填入到方格中,使横、竖、斜上的三个数和相等。
解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填。
方法有多种。
4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等。
解题思路:有2行3列,而1+2+3+5+6+7=24,所以每行为12,这样分成(1、5、6);(2、3、7)两组。
每列和是24÷3=8,所以:(1、7);(2、6);(3、5)。
答案多种。
三、课堂练习:1、填上合适的数,2、用1~534、使横、竖、斜和相等。
余数的妙用(二)教学要求:1、使学生掌握正确计算有余数的除法。
2、培养学生活跃的思维能力,提高学习奥数的兴趣。
教学过程:一、导入新课:同学们都会正确计算有余数的除法,其实有余数除法还蕴含着丰富的数学知识,所以我们运用它还可以解决不少的数学难题。
今天,我们将继续学习余数的妙用(二)。
二、探索新知:1、教学例4:体育课排队,老师让同学们按1、2、3、4、5循环报数,最后一个人报2,这一排有()人。
A、26B、27C、28D、32《吉林省“金翅杯”小学数学竞赛试题》解题思路:答案必须是5的倍数还要加2,所以我们经过计算发现可以选B D。
三年级奥数有趣的数阵图解析
【篇一】数阵图就是把一些数按照一定的规则,排列成各种各样的图形,这种图形就称作数阵图。
幻方就是一种特殊的数阵图,而数独可以说是幻方的延伸。
数阵图一般分为三大类型:封闭型、辐射型和复合型。
但具体的数阵图种类繁多、新奇有趣,有一定的难度。
填数阵图时不宜乱填乱试,急于求成,要认真观察、分析数阵图的内在规律,按步骤求解。
首先要找出数阵中的关键位置(如不同线路的交点,封闭图形的顶点等),根据题目的要求,经过必要的计算,先填写这些关键位置的数;再利用已求出的一些数据和条件,通过尝试、调整,填写出其它位置上的数。
数阵图的解法往往很多,解题时一般只列举几种主要的解法。
学习数阵图,可以培养孩子的观察能力、分析能力,训练孩子思维的灵活性和严密性。
【篇二】将1-8这8个数字分别填入下图中的小圆圈内,使每个五边形上的五个数字的和都等于21:这是个封闭型的数阵图,主要有两种填法。
如下图中,红色圆圈里的数既属于左边五边形,又属于右边五边形。
每个五边形上的五个数字的和都等于21,两个五边形上10个数字总和是42,这样计算,其中红色圆圈里的数字被重复计算,即多算了一遍。
图中1-8八个数字的实际和为:1+2+3+4+5+6+7+8=36。
因此被重复计算的两个红色圆圈里的数字和为:42-36=6。
在1-8中,和为6的只有:2+4=6;1+5=6。
所以红色圆圈里可能是2和4,也可能是1和5。
先试着在红色圆圈里填上2和4(如下左图),还剩下数字1、3、5、6、7、8。
因为每个五边形上的五个数字的和都等于21,所以剩下三个数的和为:21-6=15;又因为7、8两个数的和已经是15了,所以7和8只能在不同的五边形里;填好7和8,剩下的数字凑一凑就可以了。
再尝试在红色圆圈里填上1和5(如下右图),同上理,依次填好7、8和其它的数字,可以得到第二种填法。
【篇三】将1-8填入T形图中,使横行□中所有数的和等于竖行□中所有数的和:红色方框里的数是横行和竖行重叠的数,只要横行剩下4个黑色方框里数字之和等于竖行剩下3个黑色方框里的数字和相等,那么图中横行方框中所有数的和就等于竖行方框中所有数的和。
小学奥数:数阵图(一).专项练习及答案解析
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A、B、C的和为18,则三个顶点上的三个数的和是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【篇一】
数阵图就是把一些数按照一定的规则,排列成各种各样的图形,这种图形就称作数阵图。
幻方就是一种特殊的数阵图,而数独可以说是幻方的延伸。
数阵图一般分为三大类型:封闭型、辐射型和复合型。
但具体的数阵图种类繁多、新奇有趣,有一定的难度。
填数阵图时不宜乱填乱试,急于求成,要认真观察、分析数阵图的内在规律,按步骤求解。
首先要找出数阵中的关键位置(如不同线路的交点,封闭图形的顶点等),根据题目的要求,经过必要的计算,先填写这些关键位置的数;再利用已求出的一些数据和条件,通过尝试、调整,填写出其它位置上的数。
数阵图的解法往往很多,解题时一般只列举几种主要的解法。
学习数阵图,可以培养孩子的观察能力、分析能力,训练孩子思维的灵活性和严密性。
【篇二】
将1-8这8个数字分别填入下图中的小圆圈内,使每个五边形上的五个数字的和都等于21:
这是个封闭型的数阵图,主要有两种填法。
如下图中,红色圆圈里的数既属于左边五边形,又属于右边五边形。
每个五边形上的五个数字的和都等于21,两个五边形上10个数字总和是42,这样计算,其中红色圆圈里的数字被重复计算,即多算了一遍。
图中1-8八个数字的实际和为:1+2+3+4+5+6+7+8=36。
因此被重复计算的两个红色圆圈里的数字和为:42-36=6。
在1-8中,和为6的只有:2+4=6;1+5=6。
所以红色圆圈里可能是2和4,也可能是1和5。
先试着在红色圆圈里填上2和4(如下左图),还剩下数字1、3、5、6、7、8。
因为每个五边形上的五个数字的和都等于21,所以剩下三个数的和为:21-6=15;又因为7、8两个数的和已经是15了,所以7和8只能在不同的五边形里;填好7和8,剩下的数字凑一凑就可以了。
再尝试在红色圆圈里填上1和5(如下右图),同上理,依次填好7、8和其它的数字,可以得到第二种填法。
【篇三】
将1-8填入T形图中,使横行□中所有数的和等于竖行□中所有数的和:
红色方框里的数是横行和竖行重叠的数,只要横行剩下4个黑色方框里数字之和等于竖行剩下3个黑色方框里的数字和相等,那么图
中横行方框中所有数的和就等于竖行方框中所有数的和。
我们先列出可以填入的八个数字:1、2、3、4、5、6、7、8,只要在其中选定七个数字,分成两组,分别是4个数、3个数,且两组数的和相等,把两组数分别填入横行、竖行黑色方框,再把第八个数填入红色方框就可以了。
解题技巧:因为横行比竖行多一个方框,且1+2=3,我们可以在横行前两个黑色方框分别填入1、2,在竖行第一个黑色方框中填入3,再在剩下的五个数字中选择4个分成和相等的两组数,每组两个数字,分别填入横行、竖行的后两个黑色方框,剩下的最后一个数字填入红色方框。
同理,1+7=8,我们可以在横行前两个黑色方框分别填入1、7,在竖行第一个黑色方框中填入8,再在剩下的五个数字中选择4个分成和相等的两组数,每组两个数字,分别填入横行、竖行的后两个黑色方框,剩下的最后一个数字填入红色方框。