遗传算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法

基本概念

遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

GA的组成:

(1)编码(产生初始种群)

(2)适应度函数

(3)遗传算子(选择、交叉、变异)

(4)运行参数

编码

基因在一定能够意义上包含了它所代表的问题的解。基因的编码方式有很多,这也取决于要解决的问题本身。常见的编码方式有:

(1)二进制编码,基因用0或1表示(常用于解决01背包问题)

如:基因A:00100011010 (代表一个个体的染色体)

(2)互换编码(用于解决排序问题,如旅行商问题和调度问题)

如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。

(3)树形编码(用于遗传规划中的演化编程或者表示)

如,问题:给定了很多组输入和输出。请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。

编码方法:基因就是树形结构中的一些函数。

(4)值编码(二进制编码不好用时,解决复杂的数值问题)

在值编码中,每个基因就是一串取值。这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。

适应度函数

遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。

遗传算子——选择

遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。

SGA(基本遗传算法)中采用轮盘赌选择方法。

轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为:

遗传算子——交叉

所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算在GA中起关键作用,是产生新个体的主要方法。

1. 单交叉点法(用于二进制编码)

选择一个交叉点,子代在交叉点前面的基因从一个父代基因那里得到,后面的部分从另外一个父代基因那里得到。

如:交叉前:

00000|01110000000010000

11100|00000111111000101

交叉后:

00000|00000111111000101

11100|01110000000010000

2.双交叉点法(用于二进制编码)

选择两个交叉点,子代基因在两个交叉点间部分来自一个父代基因,其余部分来自于另外一个父代基因.

如:交叉前:

01 |0010| 11

11 |0111| 01

交叉后:

11 |0010| 01

01 |0111| 11

3.基于“与/或”交叉法(用于二进制编码)

对父代按位"与”逻辑运算产生一子代A;按位”或”逻辑运算产生另一子代B。该交叉策略在解背包问题中效果较好.

如:交叉前:

01001011

11011101

交叉后:

01001001

11011111

4.单交叉点法(用于互换编码)

选择一个交叉点,子代的从初始位置出发的部分从一个基因复制,然后在另一个基因中扫描,如果某个位点在子代中没有,就把它添加进去。

如:交叉前:

87213 | 09546

98356 | 71420

交叉后:

87213 | 95640

98356 | 72104

5.部分匹配交叉(PMX)法(用于互换编码)

先随机产生两个交叉点,定义这两点间的区域为匹配区域,并用交换两个父代的匹配区域。

父代A:872 | 130 | 9546

父代B:983 | 567 | 1420 变为:

TEMP A: 872 | 567 | 9546

TEMP B: 983 | 130 | 1420

对于TEMP A、TEMP B中匹配区域以外出现的数码重复,要依据匹配区域内的位置逐一进行替换。匹配关系:1<——>53<——>67<——>0子代A:802 | 567 | 9143

子代B:986 | 130 | 5427

6.顺序交叉法(OX) (用于互换编码)

从父代A随机选一个编码子串,放到子代A的对应位置;子代A空余的位置从父代B中按B的顺序选取(与己有编码不重复)。同理可得子代B。

父代A: 872 | 139 | 0546

父代B: 983 | 567 | 1420

交叉后:

子代A: 856 | 139 | 7420

子代B: 821 | 567 | 3904

7.循环交叉(CX)法(用于互换编码)

CX同OX交叉都是从一个亲代中取一些城市,而其它城市来自另外一个亲代,但是二者不同之处在于:OX中来自第一个亲代的编码子串是随机产生的,而CX却不是,它是根据两个双亲相应位置的编码而确定的。

父代A:1 2 3 4 5 6 7 8 9

| | | | |

父代A:5 4 6 9 2 3 7 8 1

可得循环基因:1->5->2->4->9->1

用循环的基因构成子代A,顺序与父代A一样

1 2 4 5 9

用父代B剩余的基因填满子代A:

1 2 6 4 5 3 7 8 9

子代B的编码同理。(循环基因5->1->9->4->2->5)

遗传算子——变异

变异是指依据变异概率将个体编码串中的某些基因值用其它基因值来替换,从而形成一个新的个体。GA中的变异运算是产生新个体的辅助方法,它决定了GA 的局部搜索能力,同时保持种群的多样性。交叉运算和变异运算的相互配合,共同完成对搜索空间的全局搜索和局部搜索。

注:变异概率Pm不能太小,这样降低全局搜索能力;也不能太大,Pm > 0.5,这时GA退化为随机搜索。

1.基本位变异算子(用于二进制编码)

基本位变异算子是指对个体编码串随机指定的某一位或某几位基因作变异运算。对于基本遗传算法中用二进制编码符号串所表示的个体,若需要进行变异操作的某一基因座上的原有基因值为0,则变异操作将其变为1;反之,若原有基因值为1,则变异操作将其变为0。

如:变异前:

000001110000000010000

变异后:

相关文档
最新文档