煤气化技术
煤气化技术的基本原理
煤气化技术的基本原理煤气化是一种将煤转化为合成气(Syngas)的技术,合成气是由氢气(H2)、一氧化碳(CO)和少量的甲烷(CH4)、二氧化碳(CO2)组成的气体混合物。
煤气化技术的基本原理是通过高温和压力将煤与氧气(或水蒸气)反应转化为可燃气体。
1.干煤气化:干煤气化是指在缺乏水蒸气的条件下,将煤转化为合成气。
在干煤气化过程中,煤被分解成固体炭和气体产物。
首先,煤被加热至高温,煤中的有机物质开始分解。
然后,产生的气体与煤中残留的炭反应,生成合成气。
2.水煤气化:水煤气化是指在存在水蒸气的条件下,将煤转化为合成气。
在水煤气化过程中,水蒸气与煤反应,生成氢气和一氧化碳。
水煤气化通常在高温和高压下进行,以提高反应效率和产气质量。
3.煤热解:煤热解是将煤在缺乏氧气的条件下加热,使其发生裂解反应,产生可燃气体。
煤热解可以通过煤干馏或焦化过程实现。
在煤热解过程中,煤中的有机物质被分解为固体炭、液体烃和气体产物。
液体烃和气体产物可以进一步加工提炼为石油产品或作为燃料使用。
1.碳气化反应:C+H2O->CO+H2煤中的碳与水蒸气反应,生成一氧化碳和氢气。
这个反应是煤气化过程中生成合成气的主要途径之一2.碳气化反应:C+2H2->CH4煤中的碳与氢气反应,生成甲烷。
这个反应也可以在煤气化过程中生成合成气。
3.热解反应:C->C+C煤中的高分子有机物质在高温下发生裂解反应,生成固体炭。
煤气化技术的应用广泛,可用于生产合成气、液体燃料、化学品和氢气等。
合成气可用于发电、制造合成燃料、合成化学品和进行化学反应。
煤气化技术在能源转型和减少对化石燃料的依赖方面具有重要地位。
然而,煤气化技术也面临一些挑战,如高能耗、环境污染和废弃物处理等问题。
因此,在推广和应用煤气化技术时,需要综合考虑技术、经济和环境等方面的因素。
煤气化技术
煤气化技术煤气化技术是清洁利用煤炭资源的重要途径和手段。
目前,国内自行开发和引进的煤气化技术种类很多,但总体上可以分为以下三大类:一、移动床气化技术以鲁奇为代表的加压块煤气化技术。
鲁奇加压气化技术是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化技术,技术成熟可靠,曾是世界上建厂最多的煤气化技术。
鲁奇气化技术是制取城市煤气和合成气装置中的心脏设备。
它适应的煤种广﹑气化强度较大﹑气化效率高。
鲁奇气化技术的特点为:采用碎煤加压式供料方式,即连接在炉体上部的煤锁将煤块升压,加入气化炉的预热层,然后,下移至反应层,煤在反应层气化,反应热量取自于气化剂与燃烧形成的燃烧层。
产生的粗煤气从出口排出。
炉篦上方的灰渣从底部出口排到下方连接的灰锁中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。
鲁奇炉的代表炉型即第三代MARK-IV型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,用作保护炉的过热和产生蒸汽,结构更为合理的炉型。
鲁奇公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。
图1 鲁奇加压块煤气化装置二、流化床气化技术以恩德炉、灰熔聚为代表的气化技术。
恩德炉粉煤流化床气化技术是朝鲜恩德“七.七”联合企业在温克勒粉煤流化床气化炉的基础上,经长期的生产实践,逐步改进和完善的一种煤气化工艺。
灰融聚流化床粉煤气化技术根据射流原理,在流化床底部设计了灰团聚分离装置,形成床内局部高温区,使灰渣团聚成球,借助重量的差异达到灰团与半焦的分离,在非结渣情况下,连续有选择地排出低碳量的灰渣。
目前,中科院山西煤化所山西省粉煤气化工程研究中心开发的加压灰熔聚气化工业装置已经成功应用于晋煤集团天溪煤制油分公司1 0万吨/年煤基MTG合成油示范工程项目,该项目配备了6台灰熔聚气化炉(5开1备),气化炉操作压力0.6MPa,日处理晋城无烟煤1600吨,干煤气产量125000Nm3/h(配套30万吨/年合成甲醇)。
煤气化的基本原理
煤气化的基本原理
1煤气化技术
煤气化技术是利用煤碳气化反应,将煤碳与氧气通过煤气炉加热分解,生成煤气作为资源的一种技术。
煤气化技术是一种“一步到位”、即高效利用煤碳源,一次性获取煤气(CO+H2)的技术。
此外,煤气化技术所得到的煤气可直接用于高效照明、车用燃料、加热烹饪和工业用途。
2煤气化的基本原理
煤气化的基本原理是将煤碳气化反应物(C)和氧气(O2)加入煤气炉中,将煤碳、氧气分解为较小的分子碳氢化物。
这种反应可以生成氢气和二氧化碳,并释放大量的热量。
C+O2=CO2+H2+Heat
煤气化反应的起始温度为750~850℃,当反应温度达到了
1500~1700℃时,大量的氢气和二氧化碳就会生成,就会产生大量的热量,使煤气化反应更加有效率。
3应用
煤气化的应用范围广泛,开发了许多应用方案,被广泛应用于房屋建筑、化工行业、煤炭电厂等领域。
例如,它被广泛应用于汽车行业,生产汽油类燃料;用于工业烧窑中,分解成气体,生产低温灰光火;用于电厂,生产热水用于温度控制;在医院用于消毒,清洗等等。
4发展
煤气化技术作为一种可再生资源,具有资源可持续利用的特点,可有效降低利用化石能源的负担,以及降低对环境的污染。
煤气化技术的使用也可以减少很多二氧化碳的排放、改善空气环境,促进人类可持续发展。
由于这些特性,煤气化技术的发展受到越来越重视,大量的科研如今正在付诸实施,有朝一日,它将发挥出更大的行业影响力。
煤气化技术简介
量较高 (>30%) 时,气化炉的经济性会急剧下降。因而要求煤炭灰熔点
FT<1500℃,灰含量在8%~20%之间; (4) Shell气化炉要把煤炭的含水量降低到很小的值 (烟煤的含水量降至2%, 褐煤降至 6%),因此在煤炭处理的时候需要有烘干设备,不宜利用含水量
较高的煤炭;
(5) 干法进料系统的粉尘排放远大于水煤浆进料系统; (6) 气化炉结构过于复杂,加工难度大。
按进料方式分类 按气化介质分类
水煤浆气化
粉煤气化
纯氧或富氧气化
空气气化
Texaco
Shell、GSP、 三菱
Shell、Texaco GSP、BGL
三菱
2. 典型的煤气化技术
2.1 煤气化技术
研发机构 GE 西门子 Shell 英国煤气公司 日本三菱公司 华东理工与兖矿集团 华东理工 西安热工研究院 西北化工研究院 北京航天万源煤化工 气化技术 Texaco水煤浆加压气化技术 GSP干煤粉加压气化技术 Shell干煤粉加压气化技术 BGL气化技术 吹空气煤气化技术 多喷嘴水煤浆气化技术 四喷嘴对置式干煤粉加压气化技术 两段式干煤粉加压气化技术 多元料浆单喷嘴顶置气化技术 航天炉
循环发电。
2. 典型的煤气化技术
2.2 Texaco气化炉
结构组成: 由喷嘴、气化室、激冷室(或 废热锅炉)组成。 水煤浆(58~62wt%)供料 液态排渣炉 内壁衬里有多层耐火砖 水煤浆和氧气从炉顶的燃烧 器高速连续喷入气化室,高 温状态下工作的喷嘴设有冷 却水装置,水煤浆喷入气化 炉内迅速发生反应,数秒钟 内完成气化过程。 气化炉的下部因冷却方式不 同有2种形式,一种激冷型 冷却方式,一种废热锅炉型。
空分装置投资。
13种煤气化工艺的优缺点及比较解析
13种煤气化工艺的优缺点及比较有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。
现就适合于大型煤化工的比较成熟的几种煤气化技术作评述,供大家参考。
1、常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3、鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。
4、灰熔聚流化床粉煤气化技术中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。
床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。
缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。
此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。
5、恩德粉煤气化技术恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。
煤气化工艺技术论文
煤气化工艺技术论文煤气化是一种将固体煤转化为可燃性气体燃料的化学过程。
煤气化技术被广泛应用于能源开发和化工领域,可以用于替代传统的燃煤发电和炼油工艺,实现清洁能源的生产和利用。
煤气化工艺技术主要有两种:一种是直接煤气化技术,另一种是间接煤气化技术。
直接煤气化技术是指将煤直接暴露于高温和高压的气氛中,通过化学反应生成煤气。
直接煤气化技术具有高效、节能的特点,但是由于操作条件相对较苛刻,工艺较为复杂,设备投资费用高,因此应用相对较少。
间接煤气化技术是指先将煤通过焦化、气化等预处理工艺转化为焦炭,再将焦炭气化生成煤气。
间接煤气化技术相对直接煤气化技术来说,设备投资较少,操作简单,但是能源利用率较低。
根据实际需求和经济效益,选择合适的煤气化技术是非常重要的。
随着社会对能源和环境问题的日益关注,煤气化技术得到了广泛的应用和发展。
煤气化技术可以有效地降低环境污染物排放,提高能源利用率,实现清洁能源的生产和利用。
在煤气化过程中,煤中的有机物质被分解为低分子量气体,其中含有大量的一氧化碳和氢气。
这些气体可以被用作炼焦、合成油、合成天然气和发电等方面。
同时,煤气化技术还可以生产工业原料,如甲醇、氯化氢等。
这些产品不仅可以替代传统能源,还可以降低对化石燃料的依赖,实现能源结构的多样化。
然而,煤气化过程中还存在一些问题和挑战需要解决。
首先,煤气化过程需要高温和高压的条件,这对设备和设施的稳定性和安全性要求较高。
其次,煤气化过程中会产生大量的副产品和废弃物,对环境造成潜在的污染。
此外,煤气化过程中的化学反应速度较慢,对反应速度的控制和优化是一个复杂的问题。
为了解决这些问题,需要不断进行科学研究和技术创新。
煤气化技术的研究重点包括改进煤的气化性能、设计和开发高效的催化剂、提高反应速率和产气效率等方面。
同时,需要加强环境保护和废弃物处理技术的研究,减少煤气化过程对环境的影响。
此外,还需要加强煤气化工艺的自动化和智能化水平,提高运行效率和安全性。
煤气化
2. 1煤气化技术概述2.1.1煤气化的含义煤的气化过程是热化学过程,煤或煤焦与气化剂(如空气、氧气、水蒸汽、氢气等)在高温下发生化学反应,将煤或煤焦中的有机物转变为煤气地过程(煤气是煤与气化剂在一定条件下反应得倒的混合气体,即气化剂奖每种的碳转化成可燃性气体。
煤气的有效组成成分为一氧化碳、氢气和甲烷。
)。
煤气化过程是进行的一个复杂的多相物理及物理化学过程,反应产生碳的氧化物、氢气、甲烷。
主要是固体燃料中的碳与气相中的氧气、水蒸汽、二氧化碳、氢气之间相互作用。
通过煤气化方法,几乎可以利用煤中所含的全部有机物质,因此,煤气化生产时或得基本有机化学工业原料的重要途径,也可以说,煤气化是将煤中无用固体脱除,转化为洁净煤气的过程,用于工业燃料、城市煤气和化工原料。
2.1.2煤气化技术的含义煤气化技术即煤气化过程所采用的设备、方法。
煤气化是煤化工最重要的方法之一。
煤气化己经有150多年的历史,气化方法有7080种。
开发、选定新型煤气化技术,不仅是经济、合理、有效地利用煤炭资源的重要途径,也是发展煤化工的基础。
中国目前采用的煤气化技术除常压固定床煤气发生炉和水煤气发生炉外,开发和引进了水煤气两段炉、鲁奇加压气化炉和Texaco水煤浆气化技术、Shell气化技术。
目前,新建厂多采用效率较高、制取煤气成分较好的加压Texaco水煤浆气化工艺、加压干粉煤Shell气化工艺和具有自主知识产权的多喷嘴技术。
(2)煤气化过程的主要工艺指标煤气化技术的工艺指标是评价煤气化技术好坏的一个重要方面,只有指标优良的煤气化技术才能给企业带来良好的经济效益,并且节能环保。
通常选择合适的煤气化技术依据的工艺指标有煤气质量、有效气体含量及组成、碳转化率、冷煤气效率等。
1)煤气质量:煤气质量由煤气热值和煤气组成构成。
a.煤气热值:指一标准立方米的煤气在完全燃烧是所放出的热量。
相同所作条件下,煤气热值与气化炉炉型、气化剂类型、操作压力以及煤的挥发分有关。
煤气化技术培训课件
煤气化技术培训课件xx年xx月xx日CATALOGUE目录•煤气化技术概述•煤气化技术的种类与特点•煤气化技术的工艺流程及设备•煤气化技术的操作与安全•煤气化技术的应用实例及效果•煤气化技术的未来发展及趋势01煤气化技术概述煤气化技术是指将固体或液体燃料转化为合成气体的过程,其中合成气体主要由一氧化碳、氢气和二氧化碳组成。
煤气化技术的定义煤气化技术具有高效、清洁、灵活等特点,能够适应不同的燃料类型和不同的产品需求。
煤气化技术的特点煤气化技术的定义国外发展历程自19世纪中叶以来,煤气化技术得到了广泛的应用和不断改进。
早期的煤气化技术主要是基于固定床反应器,后来逐渐发展出了流化床反应器和气流床反应器等先进的煤气化技术。
国内发展历程我国在煤气化技术方面也取得了长足的进步。
20世纪80年代以来,我国逐渐引进了国外先进的煤气化技术,并在此基础上进行了不断的研发和创新。
煤气化技术的发展历程能源领域煤气化技术被广泛应用于能源领域,如电力、热力、燃料等。
通过煤气化技术可以将固体或液体燃料转化为合成气体,进而用于生产电力或热力,也可以将合成气体用于生产各种燃料,如甲醇、乙醇等。
煤气化技术的应用场景化工领域煤气化技术也被广泛应用于化工领域,如合成氨、甲醇、乙炔等。
通过煤气化技术可以将合成气体转化为各种化工产品,满足工业生产和人民生活的需求。
其他领域除能源和化工领域外,煤气化技术还被广泛应用于冶金、陶瓷、玻璃等行业,以及农村地区和分布式能源等领域。
02煤气化技术的种类与特点气化技术的种类以煤为原料,在高温高压下进行气化,主要产物为煤气、焦油和半焦。
固定床气化技术流化床气化技术气流床气化技术等离子体气化技术以煤为原料,在高温高压下与气化剂进行反应,生成煤气、焦油和半焦。
以煤为原料,在高温高压下与气化剂进行反应,生成煤气、半焦和少量焦油。
以煤为原料,在高温高压下利用等离子体进行气化,生成煤气、半焦和少量焦油。
固定床气化技术设备简单,操作方便,气化效率高,适用于各种煤种。
煤气化技术
煤气化技术煤气化技术是将固体煤转化为气态或液态燃料的一种技术,其主要目的是提高煤的利用率,减少对传统燃料的依赖,达到节能、环保的目标。
本文将从煤气化技术的基本原理、应用领域以及优缺点等方面进行详细阐述。
一、煤气化技术的基本原理所谓煤气化技术,就是将煤通过高温、高压、无氧条件下的气化反应,将煤中的碳、氢、氧等元素与水蒸气或其他工业气体反应,生成一种能源燃气和化工原料的技术。
基本反应式为:C + H2O → CO + H2C + CO2 → 2COH2O + CO → H2 + CO2以上反应产生的气体主要包括一氧化碳(CO)、氢气(H2)和二氧化碳(CO2),其中一氧化碳和氢气是煤气化的两种主要产物,也是煤气化的主要目的。
二、煤气化技术的应用领域煤气化技术可以应用在多个领域,包括:1. 燃料领域:将煤气用作机械动力、燃料燃烧等用途。
2. 化工领域:将煤气用作化工原料,制取烯烃、乙烯、合成氨等。
3. 能源领域:将煤气用作化学燃料,如用合成气生产合成烃等。
4. 环保领域:将煤气用作城市燃气,以代替传统的煤炭、石油等燃料。
5. 冶金领域:将煤气用作高炉燃料,以代替传统的焦炭。
6. 电力领域:利用燃气发电、燃气轮机等,将煤气转化为电能。
三、煤气化技术的优缺点1. 优点:(1)提高煤的利用率:通过煤气化技术,可以将煤中的碳、氢等元素都充分利用,大幅提高煤的利用率。
(2)节约能源:煤气化技术可以将煤转化成可替代传统能源的煤气,实现节能减排。
(3)环保:煤气化技术可以减少尘埃、烟气等污染物的排放,达到环保的目的。
2. 缺点:(1)设备配置复杂:煤气化设备、反应器、气体清洗装置等的设计和制造较为复杂,需要高技术水平的研发和生产。
(2)能源成本高:虽然煤气化技术可以提高煤的利用率,但其能源成本相对较高,需要大量的电力和气体,从而影响了其应用范围和经济效益。
(3)反应过程精确控制难度大:煤气化是一个复杂的反应过程,其反应速度、温度、压力等参数均需要精确控制,一旦发生偏差,就可能影响到产物的质量和产量。
煤气化-煤炭高效清洁利用的核心技术
煤气化•煤炭高效清洁利用的核心技术煤是古代的植物埋藏在水底或是地底下,经过长时间空气的稀缺和漫长的时代发展,在其中进行了复杂多变的物理化学变化和生物化学变化,慢慢形成了一种具有可燃性的固体状矿物。
从组成煤的化学成分来看,煤中主要含有碳、氢、氧、硫等元素,还有一些灰分物质。
不过煤炭中还是主要以矿物质为主,在不同的地质年代和经历了不同的化学变化所形成的煤的组成成分都是大不相同的。
一、何谓煤炭气化煤炭是我国最基本的能源之一,也是战略必备的原料,据科研人员进行的侦测显示,在我国三大化石能源的含量中,煤炭的含量远比我们想象的多,已经超过总含量的百分之九十。
据统计在2016年,中国的煤炭产量为33.6亿吨,占全球总产量的45.7%。
每个国家的运行都缺不了对于煤炭的利用,所以我们要做到对煤炭高效环保的利用,来稳定世界化石能源的含量,保障每个国家的能源安全问题,促进世界的生态文明建设,对于一个国家的经济发展和科技进步有很大的重要作用。
煤炭气化是指在一定的高温和大气压的作用下,使其与氧气、水蒸气进行相应的化学反应,将煤中所含的主要元素转变为由一氧化碳和氢气组成的主要气体的过程,与此同时,在反应过程中会有一些煤渣的产生。
对煤炭气化和煤炭进行燃烧是两个完成不同的过程,对煤炭的燃烧是指将煤炭中的主要元素与空气中的氧气发生燃烧反应,所达到的效果是能够充分利用煤炭中所含有的化学能,将其转化为热能的一个过程。
而对煤炭气化将其中一部分元素进行氧化,目的是能够生成可利用的气体,进而达到目的。
相对于煤炭燃烧,对煤炭气化更加环保、高效,更符合现代所理想的情况。
二、煤炭气化的重要性煤炭气化是对煤炭处理的一个环保、高效的过程,是对煤炭利用的主要过程,是发展煤炭产业、燃料利用和燃料电池的根本。
除此之外,煤炭气化也在炼油、发电、冶金有很大的应用,是这些行业进行发展的不可缺少的一门技术。
我们将对煤炭的利用视野拓宽来看,煤炭不单单是三大化石能源之一,也是化工行业的不可或缺的原料之一。
煤气化技术及其应用前景
煤气化技术及其应用前景煤气化技术是一种将煤炭转化为合成气的过程,该合成气可以用作燃料或化学原料。
煤气化技术在能源领域具有重要的意义,它可以提高煤炭资源的利用效率,减少对传统能源的依赖,并减少环境污染。
本文将探讨煤气化技术的原理、应用领域以及未来的发展前景。
煤气化技术的原理是通过高温和压力条件下,将煤炭与氧气或蒸汽反应,产生合成气。
合成气主要由一氧化碳(CO)、氢气(H2)和少量的甲烷(CH4)组成。
这些气体可以通过合成气的净化和转化,得到燃料气、石化产品、化学品等。
煤气化技术有多种方法,包括固定床煤气化、流化床煤气化和床内煤气化等。
每种方法都有其特点和适用范围,根据煤种和需要的产品,选择适合的煤气化技术是至关重要的。
煤气化技术的应用领域广泛。
首先,煤气化技术可以用于发电。
合成气可以作为燃料,直接供给燃气轮机或内燃机发电。
与传统燃煤发电相比,煤气化发电可以减少大气污染物的排放,提高发电效率。
其次,煤气化技术可以用于石化行业。
合成气可以用作合成油、合成烃和合成醇的原料,用于生产汽油、柴油、乙烯等产品。
此外,煤气化技术还可以用于化学工业。
合成气可以用于合成氨、甲醇、二甲醚等化学品,广泛应用于农药、塑料、合成纤维等领域。
煤气化技术的应用前景看好。
一方面,煤气化技术可以提高煤炭资源的利用率。
煤炭是我国主要的能源资源之一,但传统的燃煤方式存在能源浪费和环境污染的问题。
通过煤气化技术,可以将煤炭转化为合成气,提高能源利用效率。
另一方面,煤气化技术可以减少对传统能源的依赖。
传统能源如石油和天然气资源有限,而煤炭资源丰富。
通过煤气化技术,可以将煤炭转化为替代燃料,减少对进口能源的依赖。
此外,煤气化技术还可以减少环境污染。
煤炭燃烧会产生大量的二氧化碳、二氧化硫和氮氧化物等有害气体,而煤气化技术可以通过净化和转化,减少这些污染物的排放。
然而,煤气化技术也面临一些挑战。
首先,煤气化技术的投资成本较高。
煤气化设施的建设需要大量的资金和技术支持,这对于一些发展中国家来说可能是一个难题。
现代煤气化技术推广及应用手册
现代煤气化技术推广及应用手册简介现代煤气化技术是一种将煤炭转化为合成气的高效能过程。
本手册将详细介绍现代煤气化技术的推广和应用。
煤气化技术概述现代煤气化技术是通过将煤炭与氧气或蒸汽进行反应,将其转化为一种可利用于发电、制造化学品和燃料的合成气体的过程。
煤气化技术有着诸多优势,如高效能、低排放和多产物利用等。
煤气化反应在煤气化过程中,煤炭与氧气或蒸汽发生反应,生成合成气(由一氧化碳和氢气组成)。
反应的主要步骤包括干馏、气化和水煤气变换。
这些步骤将煤炭中的有机物质转化为可用于发电和燃料生产的合成气。
煤气化技术种类现代煤气化技术包括固态煤气化、液态煤气化和气态煤气化。
固态煤气化是将煤炭直接加热到高温并与气化剂反应,液态煤气化是通过高温和高压条件下将煤炭转化为液体燃料,气态煤气化是将煤炭转化为可直接燃烧的煤气。
煤气化技术在电力产业中的应用现代煤气化技术在电力产业中有着广泛的应用。
煤气化技术能够将煤炭转化为合成气,进而用于发电厂的燃烧过程。
煤气化发电工艺流程煤气化发电工艺流程包括煤气化、气体净化、合成气燃烧和发电等步骤。
煤炭经过煤气化反应转化为合成气,合成气通过净化过程去除杂质后,进入燃烧室进行燃烧,并将燃烧产生的高温高压气体用于发电。
煤气化发电的优势煤气化发电技术具有高效能、低排放、多产物利用等优势。
煤气化发电能够提高煤炭的利用率,减少二氧化碳排放,并为其他产业提供合成气资源。
煤气化技术在化工行业中的应用现代煤气化技术在化工行业中有着广泛的应用。
煤气化技术可以将煤炭转化为合成气,进而用于生产化工品。
合成气的化工应用合成气是一种重要的化工原料,可以用于合成多种化工产品,如合成氨、甲醇、乙烯等。
通过合成气可以生产各种合成化工品,推动化工行业的发展。
煤气化技术在化工行业中的优势煤气化技术在化工行业中具有多种优势。
首先,煤气化技术能够将煤炭转化为合成气,提供了丰富的化工原料资源。
其次,煤气化技术可以将废弃物转化为合成气,实现资源的再利用。
煤气化技术——精选推荐
煤炭气化技术煤炭气化是煤炭转化的主导途径之一,是煤化工、IGCC、加氢工艺、煤液化等的龙头和基础,我公司正在建设的煤直接液化项目,以及即将建设的煤间接液化项目,煤制烯烃项目都要用到煤炭气化。
一、煤气化原理气化过程是煤炭的一个热化学加工过程。
它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。
气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。
煤炭气化包含一系列物理、化学变化。
一般包括热解和气化和燃烧四个阶段。
干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。
其他属于化学变化,燃烧也可以认为是气化的一部分。
煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。
煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。
气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。
主要反应有:1、水蒸气转化反应C+H2O=CO+H2-131KJ/mol2、水煤气变换反应CO+ H2O =CO2+H2+42KJ/mol3、部分氧化反应C+0.5 O2=CO+111KJ/mol4、完全氧化(燃烧)反应C+O2=CO2+394KJ/mol5、甲烷化反应CO+2H2=CH4+74KJ/mol6、Boudouard反应C+CO2=2CO-172KJ/mol二、煤气化工艺煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。
煤的气化技术
煤的气化技术1. 介绍煤是一种常见的化石燃料,在世界范围内广泛使用。
然而,煤的燃烧产生大量的二氧化碳等温室气体,对环境造成严重影响。
为了减少对环境的污染并提高能源利用效率,煤的气化技术应运而生。
煤的气化技术是将煤转化为合成气(syngas)的过程,合成气主要由一氧化碳(CO)、氢气(H2)和少量的二氧化碳(CO2)、氮气(N2)等组成。
合成气可以用作燃料,也可以作为化学原料,用于制造化学品、肥料和液体燃料等。
2. 煤的气化过程煤的气化主要通过以下两个步骤完成:2.1. 干燥和预气化在气化反应器中,煤被加热至高温。
在这个过程中,煤中的水分被蒸发出来,并与空气中的氧气反应生成二氧化碳和水蒸气。
这一步骤主要起到预热作用,为下一步的反应做准备。
2.2. 煤的部分氧化在气化反应器中,预热的煤与氧气反应,生成一氧化碳和水蒸气。
主要的反应方程式如下所示:C + O2 -> CO2 C + CO2 -> 2CO通过控制反应温度和氧气供应量,可以调节合成气中一氧化碳和氢气的比例。
高温和富氧条件下可以生成较多的一氧化碳,而低温和贫氧条件下可以生成较多的氢气。
3. 煤的气化技术分类煤的气化技术可以分为以下几种类型:3.1. 固定床气化固定床气化是最早开发的气化技术之一,也是最常用的气化技术之一。
在这种气化方式下,煤被放置在气化反应器中的固定床上,并通过气化剂(如空气或蒸汽)流过床层。
随着气化反应的进行,煤逐渐转化为合成气,反应产物从顶部排出。
固定床气化适用于各种类型的煤,具有反应稳定、设备简单的优点,但存在反应温度不均匀、产物中存在固体颗粒等问题。
3.2. 流化床气化流化床气化是一种将煤颗粒悬浮在气化剂中进行气化的技术。
在气化反应器中,通过气化剂(通常为空气或蒸汽)的上升流动,使煤颗粒保持悬浮状态。
在高温和富氧条件下,煤颗粒发生气化反应,生成合成气。
流化床气化技术具有高反应效率、适应多种煤种和煤质的优点,但也存在气固分离和热传递问题。
煤气化技术
煤气化技术简介煤气化技术是将煤炭转化为可燃气体的过程。
它可以将煤炭中的有机物质转化为气体燃料,如合成气(一种碳氢混合气体)或甲烷。
煤气化技术在能源转型和环境保护方面具有重要意义。
煤气化原理煤气化是通过加热煤炭,在缺少氧气的条件下进行的化学反应。
这个过程通常在高温(约1000℃)和高压(2-5 MPa)下进行。
在煤气化过程中,煤炭中的碳氢化合物被分解为可燃气体。
由于煤气化是在缺氧条件下进行的,因此产生的气体中几乎不含硫和氮。
这使得煤气化技术相对于传统的燃煤发电技术具有更低的环境污染。
此外,煤气化产生的燃气可以直接用于发电、供热、制氢等多种应用。
煤气化工艺煤气化工艺主要分为干燥气化和水煤浆气化两种。
干燥气化是将煤炭在高温下与热气体接触,使煤炭中的水分蒸发,然后进行气化反应。
水煤浆气化是将煤炭与水形成的浆料喷入气化炉中,在气化过程中煤炭与水蒸汽产生反应。
两种煤气化工艺各有优势。
干燥气化可以直接利用煤炭的热值,不需要额外的供热设备。
而水煤浆气化可以利用水蒸汽的催化作用,提高气化效率。
根据实际需求和条件,选择适合的煤气化工艺非常重要。
应用领域煤气化技术在能源转型和环境保护方面具有广泛的应用。
以下是煤气化技术在几个重要应用领域的应用示例:1.发电:煤气化产生的燃气可以用于燃气轮机或内燃机发电。
与传统的燃煤发电相比,煤气化发电具有更高的效率和更低的污染排放。
2.供热:煤气化产生的燃气可用于供热,替代传统的燃煤供热系统。
煤气化供热系统具有更高的热效率和更少的污染排放。
3.制氢:煤气化可以产生合成气体,其中主要成分为氢气和一氧化碳。
这些气体可用于制氢,用于石油炼制、化学工业等领域。
4.乙二醇生产:煤气化产生的合成气可以用于乙二醇的生产。
乙二醇是一种重要的工业化学品,广泛应用于塑料、涂料、纺织等行业。
煤气化技术的优势和挑战煤气化技术具有多种优势,但也面临一些挑战。
优势: - 较低的污染排放:煤气化产生的燃气几乎不含硫和氮,具有较低的污染排放。
煤的气化技术
煤的气化技术煤的气化技术是一种将煤转化为可用气体燃料的过程。
这项技术已经存在了很长时间,并在过去几十年中得到了广泛的应用和研究。
煤气化可以将煤中的碳转化为一种称为合成气的混合气体,该混合气体可用于发电、制造化学品和液体燃料等多个领域。
煤气化技术的基本原理是将煤与氧气和水蒸气反应,产生一种气体混合物。
这个过程发生在高温和高压下,通常在1000摄氏度以上进行。
在这个过程中,煤中的碳会与氧气反应,产生一氧化碳和氢气。
一氧化碳和氢气的比例取决于气化过程的条件和煤的性质。
这种合成气可以用作燃料或作为其他化学反应的原料。
煤气化技术有几种不同的变体,包括固定床气化、流化床气化和喷射流气化。
在固定床气化中,煤被放置在一个固定的反应器中,气体通过煤床流过,使煤发生气化反应。
在流化床气化中,煤粒被气体流体化,形成一个流化床,其中煤气化反应发生。
喷射流气化是一种较新的技术,其中煤被喷射到燃烧器中,并与气体混合,形成合成气。
煤的气化技术具有多种优点。
首先,煤气化可以将煤中的碳转化为气体,从而减少对煤的直接燃烧,降低了污染物的排放。
其次,合成气可以用作燃料,替代传统的石油和天然气,从而减少对有限资源的依赖。
此外,合成气还可以用于制造化学品和液体燃料,提供了多样化的能源来源。
然而,煤气化技术也面临一些挑战。
首先,气化过程需要高温和高压条件,这对设备和能源消耗提出了要求。
此外,气化过程还会产生大量的废水和废气,需要适当的处理和排放措施。
此外,煤气化技术的经济性也是一个问题,需要考虑投资成本和气化产物的利用价值。
为了克服这些挑战,研究人员一直在努力改进煤气化技术。
他们致力于开发更高效、节能的气化反应器,以减少能源消耗和排放。
他们还在研究如何更好地利用气化产物,例如开发新的化学品和液体燃料制造技术。
此外,研究人员还在探索将可再生能源与煤气化技术相结合,以进一步降低碳排放。
总的来说,煤的气化技术是一种重要的能源转化技术,可以将煤转化为合成气,为多个领域提供能源和原料。
各种煤气化技术介绍
各种煤气化技术介绍煤气化技术是将煤转化为合成气的一种技术,合成气主要由一氧化碳(CO)和氢气(H2)组成。
煤气化技术可以实现煤炭资源的高效利用,并且合成气还可以作为化工原料、能源供应和替代燃料等多个领域的重要能源。
下面将介绍几种常见的煤气化技术。
亚煮煤气化技术主要是通过在水中煮沸煤炭来实现煤气化过程。
这种技术具有操作稳定性好、产气质量高、煤耗低等特点。
亚煮煤气化技术可以适用于各种不同性质的煤炭,并可以通过调节操作参数来获得不同产气组成和质量。
2. 固定床煤气化(Fixed Bed Gasification,FBG)固定床煤气化技术是将煤炭放置在固定床上,通过通过煤床中的氧气进行燃烧,从而实现煤的气化。
这种技术具有气化效率高、产气质量稳定、操作灵活等特点。
固定床煤气化技术主要适用于高炉煤气和干、湿煤气的生产。
3. 流化床煤气化(Fluidized Bed Gasification,FBG)流化床煤气化技术是将煤炭与气化剂一起放置在气化反应器中,通过气体的上升速度和反应器中的床层来实现气化过程。
这种技术具有反应温度均匀、气化效率高、适用于多种煤种等特点。
流化床煤气化技术主要适用于高硫煤和高灰煤的气化过程。
4. 上升管煤气化(Entrained Flow Gasification上升管煤气化技术是将煤炭和气化剂一起注入到气化反应器中,通过气化剂的速度和反应器中的温度来实现气化过程。
这种技术具有高气化效率、适用于多种煤种等特点。
上升管煤气化技术主要适用于低灰、低硫和低磷的煤气化过程。
5. 行动床煤气化(Moving Bed Gasification,MBG)行动床煤气化技术是将煤炭放置在一个倾斜的床上,通过流化床的气流来实现气化过程。
这种技术具有气化效率高、产气质量好等特点。
行动床煤气化技术主要适用于低灰和低硫煤的气化过程。
总体来说,煤气化技术具有可替代性化石燃料、高效能源利用和多种资源转化等优势,对于能源的可持续发展具有重要意义。
煤气化技术
煤气化技术煤气化技术是一种将煤炭转化为合成气的方法,这种合成气可以用作燃料或作为化学原料。
煤气化技术在能源转型和降低碳排放方面具有重要意义。
本文将详细介绍煤气化技术的原理、应用以及优缺点。
煤气化技术的原理是利用高温和压力,将煤炭与氧气反应,生成一种含有氢气和一氧化碳的混合气体,即合成气。
这种合成气可以通过调整反应条件得到不同的气体比例,例如可以得到富含氢气的合成气,也可以得到富含一氧化碳的合成气。
煤气化技术的关键步骤包括煤的干馏、气化反应以及气体的净化和分离。
煤气化技术具有广泛的应用领域。
首先,合成气可以用作燃料,替代传统的石油和天然气。
它可以用来发电、供热以及工业生产过程中的燃料需求。
其次,合成气还可以用作化学原料,用于合成有机化学品,如甲醇、乙醇和丁烯等。
这种化学原料的生产可以减少对石油和天然气的依赖,降低碳排放。
此外,煤气化技术还可以与其他能源转化技术相结合,如煤炭液化和煤炭气化联产等,进一步提高能源资源的利用效率。
然而,煤气化技术也存在一些缺点。
首先,煤气化过程需要高温和压力,能耗较高。
其次,煤气化过程中会产生大量的副产物,如焦炭和灰渣,对环境造成一定的污染。
此外,煤气化技术的建设和运营成本相对较高。
针对煤气化技术的优缺点,一些研究机构和企业正在努力改进和推广相关技术。
例如,通过改进反应条件和催化剂的使用,可以提高合成气的产率和质量,并减少能耗。
此外,通过煤气化废气的尾气治理和资源化利用,可以减少对环境的不良影响。
综上所述,煤气化技术是一种重要的能源转型和碳排放降低的手段,可以将煤炭转化为合成气,用作燃料或化学原料。
尽管该技术存在一些缺点,但通过不断改进和创新,可以进一步提高其效率和环保性。
煤气化技术的发展将有助于实现能源的可持续利用和环境的可持续发展。
(本文总字数:307字)。
煤气化技术的发展和应用研究
煤气化技术的发展和应用研究一、煤气化技术的概述煤气化技术是将煤炭通过高温高压等条件下进行化学反应,将其转化为燃气和化学原料的一种技术手段。
该技术的发展可以追溯到19世纪末期,但是其发展受到了多种因素的制约,如炉渣处理、环境污染等问题。
随着科技的进步,现代煤气化技术已经得到了广泛的应用,成为了当今重要能源利用的手段之一。
二、煤气化技术的历史和发展1、早期煤气化技术早在19世纪末期,工业化进程刚刚开始,煤气化技术就开始了其发展过程。
当时的煤气化设备主要以固定床式反应器和流化床式反应器为主,但是由于设备受到温度、质量和维护等诸多因素的制约,技术发展缓慢,且存在热损失、低利用率和产品排放问题等困扰。
2、现代煤气化技术随着时间的推移,煤气化技术得到了快速发展。
现代煤气化技术主要包括:生物质气化技术、流化床气化技术和齐夫气化技术等。
其中,低质煤、煤矸石等煤炭资源得到了有效的利用,使得煤炭资源得到了更好的环保利用。
三、煤气化技术的应用研究1、煤气化技术在生产中的应用现代煤气化技术得到了广泛的应用,可以用于生产燃气和化工原料,并可以用于制造氨、甲醇、有机化合物等。
煤气化技术可以将煤炭转化为气体,使其更方便运输。
同时,化学原料等诸多产品的制造也会带动市场经济的发展。
2、煤气化技术与化工产业的整合煤气化技术的发展对于化工产业整体的发展来说,是相当有利的。
化工产业可以利用煤气化技术直接生产所需要的气体,而不必通过消耗更多的能源来进行革命工艺。
同时,由于原料的来源可以控制,价格也相对的稳定,因此生产成本也更加可控。
3、清洁煤气的生产技术现代煤气化技术也在研究清洁煤气的生产相关技术方案。
清洁煤气的生产,在能源短缺的今天,具有广泛的应用前景。
通过提高煤气化技术的效率,可以改善煤气生产的质量,减少清洗的需要,实现污染的减少。
四、煤气化技术的未来发展趋势1、环保与低成本的平衡在未来的煤气化技术发展中,环保与低成本是两个方向上的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.ICC加压灰熔聚流化床粉煤气化中试平台102
4.ICC灰熔聚流化床粉煤气化试验数据情况103
第九节 恩德(Ende)流化床气化炉104
1.恩德(Ende)流化床气化炉是什么?104
2.恩德气化炉的工艺特点有哪些?105
3.典型的混合煤气发生炉有哪些?53
4.发生炉煤气站的技术经济指标有哪些?56
5.强化固定床发生炉气化过程有哪些途径?58
6.常压固定床发生炉用煤的标准是什么?59
第三节 水煤气发生炉59
1.制造水煤气的工作循环原理是什么?59
2.水煤气生产的工艺条件控制方法有哪些?61
2.BGL气化炉加压气化的基本原理是什么?83
3.BGL气化炉有哪些工艺特点?与鲁奇炉的区别有哪些?84
4.BGL气化炉对煤质有哪些要求?85
第五章 流化(沸腾)床气化工艺
第一节 流化床气化的基本原理86
1.流化床气化的原理是什么?86
第二节 Winkler气化炉86
第二节 煤气除尘技术158
1.煤气中尘粒的粒径如何?158
2.过滤除尘原理是什么?159
3.湿式除尘的含义是什么?159
4.旋风除尘器工作原理是什么?160
5.静电除尘器的工作原理是什么?160
6.静电除尘器的应用范围如何?161
7.高温陶瓷除尘器的种类及特点是什么?161
1.研究气化过程热力学的目的是什么?4
2.气化反应的热效应如何计算?4
3.气化反应平衡常数的概念及表达方式是什么?5
4.化学平衡的影响因素有哪些?6
5.碳氢氧气化系统的平衡特征是?9
6.煤气组成的热力学计算方法是?10
第二节 气化的物理过程11
1.固定床的基本概念是什么?11
3.有井式地下气化法优点和缺点是什么?146
4.什么叫无井式地下气化?147
5.无井式地下气化法优点和缺点是什么?147
6.无井式气化通道的贯通方式有哪些?147
第四节 影响煤炭地下气化运行因素148
1.原煤种类对煤炭地下气化运行的影响是什么?148
2.煤的组成对煤炭地下气化运行的影响是什么?148
第五节 两段水煤气发生炉69
1.什么是循环鼓风两段水煤气发生炉?69
2.水煤气两段炉工艺流程是怎样的?71
3.两段水煤气炉对煤质有哪些要求?72
第六节 鲁奇(Lurgi)固定床加压气化炉72
1.固定床加压气化的基本原理是什么?72
2.压力对固定床加压气化指标有哪些影响?74
2.流体通过固定床的流动状况如何描述?11
3.流化床的基本概念是什么?12
4.流体通过流化床的基本状况如何描述?12
5.流化床的压降如何计算?13
6.什么是临界流化速度(umf)?13
7.热量传递的方式有几种?14
8.固定床传热的基本状况如何?16
9.流化床传热的基本状况如何?17
4.GSP气化炉对原料有哪些要求?131
第八节 两段干粉气化132
1.两段干粉气化工艺原理是什么?132
2.两段干粉气化工艺有哪些关键设备?133
3.两段干粉气化工艺有哪些特点?133
4.两段式干粉气化工艺流程如何?134
第九节 多喷嘴水煤浆气化技术135
影响是什么?151
8.煤层储存条件对地下气化过程的影响有哪些?151
9.瓦斯含量及水文地质条件对地下气化过程的影响有
哪些?152
第五节 地下气化发展趋势152
1.地下气化发展趋势是什么?152
第八章求154
3.GE气化过程的主要操作控制参数有哪些?116
4.GE气化炉对煤种的适应性如何?117
5.GE气化典型的煤气组成是怎样的?118
6.GE水煤浆气化技术有哪些主要特点?118
第四节 Egas气化炉119
1.Egas气化技术是怎样发展的?119
2.Egas气化炉的工艺特点及煤质适应性是怎样的?119
1.煤气净化的意义是什么?154
2.合成氨催化剂对原料气有何净化要求?154
3.合成甲醇催化剂对原料气有何净化要求?155
4.间接液化对煤气净化有何要求?155
5.IGCC中燃气轮机对煤气净化有何要求?156
6.城镇燃气对煤气质量有何要求?157
7.工业燃气对煤气质量有何要求?158
1.Prenflo气化技术是怎样发展的?126
2.Prenflo工艺流程及特点如何?127
3.Prenflo气化炉对煤质有哪些要求?128
第七节 GSP气化炉128
1.GSP气化技术是怎样发展的?128
2.GSP煤气化工艺及其主要设备是什么?129
3.GSP气化工艺有哪些特点?130
3.煤的其它理化性质对煤炭地下气化运行的影响是什么?149
4.地下气化操作条件对气化过程的影响——气化剂的控制
有哪些方法?149
5.火层检测的主要手段有哪些?150
6.地下气化炉的结构是如何影响气化过程的?150
7.围岩的岩石矿物成分及其物理力学性质对地下气化过程的
1.Winkler气化工艺有哪些特点?86
2.Winkler气化炉对煤质有哪些要求?88
第三节 HTW气化炉88
1.HTW气化炉工艺有哪些特点?88
2.HTW气化炉对煤质有哪些要求?90
第四节 Ugas气化炉91
1.Ugas气化炉有哪些工艺特点?91
2.地下气化的主要化学反应及其作用是什么?140
第二节 煤炭地下气化发展现状142
1.国外煤炭地下气化发展历史及其现状是什么?142
2.中国国内煤炭地下气化发展现状是怎么样的?143
第三节 煤炭地下气化方法146
1.什么是有井式地下气化?146
2.有井式地下气化技术的技术特点有哪些?146
1.研究气化过程动力学的目的是什么?23
2.化学反应的控制步骤含义是什么?24
3.反应速率随温度的变化情况如何?24
4.主要气化反应的速率控制区如何描述?26
5.研究煤焦气化反应的动力学模型通常有哪些假设?29
6.碳和氧的反应机理如何描述?29
7.碳和二氧化碳的反应机理如何描述?31
2.气化方法按流体力学分类有哪些?45
3.气化方法按气化剂的种类分类有哪些?46
4.气化方法按气化操作压力分类有哪些?47
5.气化方法按灰渣排出形态分类有哪些?47
6.气化方法按气化过程是否连续分类有哪些?48
7.气化方法按热量提供方式分类有哪些?48
8.气化方法按产品煤气热值分类有哪些?49
第二节 KT气化炉109
1.KT炉是怎样发展的?109
2.KT气化炉的工艺流程和设备是怎样的?110
3.KT气化炉对煤种的要求有哪些?有哪些特点?112
第三节 GE(原Texaco)气化技术112
1.GE气化技术是怎样发展的?112
2.GE气化工艺流程和主要设备有哪些?113
9.气化方法按是否加催化剂分类有哪些?49
第四章 固定床气化工艺
第一节 固定床气化的基本原理50
1.固定床气化的原理是什么?50
2.固定床气化炉内分几层?各层的作用是什么?50
第二节 混合发生炉煤气51
1.混合发生炉煤气的组成如何随床层高度变化?51
2.煤气发生站的工艺流程有几种类型?52
2.CFB气化炉煤气化的指标数据有哪些?97
第七节 BRICC流化床气化炉开发98
1.100mm加压流化床气化小试装置运行情况如何?98
2.300mm加压流化床煤气化工艺是怎样的?99
第八节 ICC灰熔聚流化床气化炉100
1.ICC灰熔聚流化床气化技术的特点是什么?100
3.Egas技术指标有哪些?121
第五节 Shell气化炉122
1.Shell气化技术的发展经历了哪些阶段?122
2.Shell气化工艺流程及主要设备有哪些?123
3.Shell气化工艺有哪些主要特点?125
4.Shell气化工艺对原料有哪些要求?126
第六节 Prenflo气化炉126
6.什么是碳转化率?41
7.什么是气化效率和气化热效率?41
8.什么是水蒸气分解率?42
9.什么是汽氧比?43
10.什么是氧煤比?43
11.什么是可用率?43
12.气化过程还有哪些指标?44
第三章 煤炭气化工艺及其分类
1.气化方法按煤炭是否需要开采分类有哪些?45
3.恩德气化炉对煤质的适应性如何?105
第十节 间歇流化床气化炉106
1.间歇流化床气化技术是什么?106
2.FM1.6Ⅰ型气化炉技术参数106
第六章 气流(夹带)床气化技术
第一节 气流床气化的原理107
1.气流床气化的原理是什么?107
2.气流床气化的重要控制条件有哪些?108
1.对置多喷嘴水煤浆气化技术是怎样发展的?135
2.多喷嘴气化工艺有哪些特点?135
第十节 多元料浆气化技术136
1.多元料浆基本原理是什么?136
2.什么是多元料浆的工艺流程?137
第七章 煤炭地下气化
第一节 地下气化基本原理139
1.煤炭地下气化的基本原理是什么?139
10.质量传递的概念是什么?18
11.气固反应的步骤有哪些?18