高中数学必修一_函数性质

合集下载

高中数学必修一 《3 2 函数的基本性质》多媒体精品课件

高中数学必修一 《3 2 函数的基本性质》多媒体精品课件
(1)所有的函数在其定义域上都具有单调性.
(× )
(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为
“存在两个自变量”.
(× )
(3)任何函数都有最大值或最小值.
( × )
(4)函数的最小值一定比最大值小.
( √ )
2.函数 y=f(x)的图象如图所示,其增区间是
A.[-4,4]
B.[-4,-3]∪[1,4]
2.利用函数的单调性解函数值的不等式就是利用函数在某个区间内的
单调性,去掉对应关系“f”,转化为自变量的不等式,此时一定要注意自变
量的限制条件,以防出错.
[跟踪训练五]
1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.
题型二
利用函数的图象求函数的最值
例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的
最值情况,并写出值域.
3-, ≥ 1,
解:y=-|x-1|+2=
函数图象如图所示.
+
+11,
, < 1,
1,
由图象知,函数y=-|x-1|+2的最大值为2,没有最小值.所以其值域
为(-∞,2].
称 M 是函数 y=f(x)
结论
称 M 是函数 y=f(x)的最小值
的最大值
几何 f(x)图象上最 高 点
意义
的纵坐标
f(x)图象上最低 点的纵坐标
[点睛] 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y
=x2(x∈R)的最小值是0,有f(0)=0.
小试身手
1.判断(正确的打“√”,错误的打“×”)

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A

高中数学必修一第三章函数的概念与性质知识点梳理(带答案)

高中数学必修一第三章函数的概念与性质知识点梳理(带答案)

高中数学必修一第三章函数的概念与性质知识点梳理单选题>0,1、已知函数f(x)=(m2−m−1)x m3−1是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断答案:B解析:根据函数为幂函数以及函数在(0,+∞)的单调性,可得m,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.由题可知:函数f(x)=(m2−m−1)x m3−1是幂函数则m2−m−1=1⇒m=2或m=−1>0又对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2所以函数f(x)为(0,+∞)的增函数,故m=2所以f(x)=x7,又f(−x)=−f(x),所以f(x)为R单调递增的奇函数由a+b<0,则a<−b,所以f(a)<f(−b)=−f(b)则f(a)+f(b)<0故选:B>小提示:本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如f(x1)−f(x2)x1−x20,[f(x1)−f(x2)]⋅(x1−x2)>0,属中档题.<0,且f(2)=0,则不2、定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1等式xf(x)>0的解集是()A.(−2,2)B.(−2,0)∪(2,+∞)C.(−∞,−2)∪(0,2)D.(−∞,−2)∪(2,+∞)分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f (x )在(−∞,0)上单调递增,再根据f(2)=0,即可得到f (x )的大致图像,结合图像分类讨论,即可求出不等式的解集; 解:因为函数f(x)满足对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,即f(x)在[0,+∞)上单调递减,又f (x )是定义在R 上的偶函数,所以f (x )在(−∞,0)上单调递增, 又f(2)=0,所以f (−2)=f (2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0 或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C3、已知函数f (x )对于任意x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,且当x >0时,f (x )>2,若已知f (2)=3,则不等式f (x )+f (2x −2)>6的解集为( ) A .(2,+∞)B .(1,+∞)C .(3,+∞)D .(4,+∞)分析:设g (x )=f (x )−2,分析出函数g (x )为R 上的增函数,将所求不等式变形为g (3x −2)>g (4),可得出3x −2>4,即可求得原不等式的解集. 令g (x )=f (x )−2,则f (x )=g (x )+2,对任意的x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,则g (x )+g (y )=g (x +y ), 令y =0,可得g (x )+g (0)=g (x ),可得g (0)=0,令y =−x 时,则由g (x )+g (−x )=g (0)=0,即g (−x )=−g (x ), 当x >0时,f (x )>2,即g (x )>0,任取x 1、x 2∈R 且x 1>x 2,则g (x 1)+g (−x 2)=g (x 1−x 2)>0,即g (x 1)−g (x 2)>0,即g (x 1)>g (x 2), 所以,函数g (x )在R 上为增函数,且有g (2)=f (2)−2=1,由f (x )+f (2x −2)>6,可得g (x )+g (2x −2)+4>6,即g (x )+g (2x −2)>2g (2), 所以,g (3x −2)>2g (2)=g (4),所以,3x −2>4,解得x >2. 因此,不等式f (x )+f (2x −2)>6的解集为(2,+∞). 故选:A. 4、函数f(x)=0√x−2定义域为( )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞) 答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零. 要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞). 故选:C.小提示:具体函数定义域的常见类型: (1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零;(3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y轴上;(5)实际问题中的函数,要具有实际意义.5、下列函数既是偶函数又在(0,+∞)上单调递减的是()A.y=x+1x B.y=−x3C.y=2−|x|D.y=−1x2答案:C分析:逐项判断函数奇偶性和单调性,得出答案.解析:A项y=x+1x,B项y=−x3均为定义域上的奇函数,排除;D项y=−1x2为定义域上的偶函数,在(0,+∞)单调递增,排除;C项y=2−|x|为定义域上的偶函数,且在(0,+∞)上单调递减.故选:C.6、函数f(x)为奇函数,g(x)为偶函数,在公共定义域内,下列结论一定正确的是()A.f(x)+g(x)为奇函数B.f(x)+g(x)为偶函数C.f(x)g(x)为奇函数D.f(x)g(x)为偶函数答案:C分析:依次构造函数,结合函数的奇偶性的定义判断求解即可.令F1(x)=f(x)+g(x),则F1(−x)=f(−x)+g(−x)=−f(x)+g(x)≠−F1(x),且F1(−x)≠F1(x),∴F1(x)既不是奇函数,也不是偶函数,故A、B错误;令F2(x)=f(x)g(x),则F2(−x)=f(−x)g(−x)=−f(x)g(x)=−F2(x),且F2(−x)≠F2(x),∴F2(x)是奇函数,不是偶函数,故C正确、D错误;故选:C7、已知f(2x−1)=4x2+3,则f(x)=().A.x2−2x+4B.x2+2x C.x2−2x−1D.x2+2x+4答案:D分析:利用换元法求解函数解析式. 令t =2x −1,则x =t+12,f (t )=4(t+12)2+3=t 2+2t +4;所以f(x)=x 2+2x +4. 故选:D.8、下列四组函数中,表示相同函数的一组是( ) A .f(x)=x 2−x x,g (x )=x −1B .f(x)=√x 2,g(x)=(√x)2C . f (x )=x 2−2,g (t )=t 2-2D .f (x )=√x +1⋅√x −1,g(x)=√x 2−1 答案:C分析:根据相同函数的判断原则进行定义域的判断即可选出答案. 解:由题意得: 对于选项A :f(x)=x 2−x x的定义域为{x|x ≠0},g(x)=x −1的定义域为R ,所以这两个函数的定义域不同,不表示相同的函数,故A 错误;对于选项B :f(x)=√x 2的定义域为R ,g(x)=(√x)2的定义域为{x|x ≥0},所以这两个函数的定义域不同,不表示相同的函数,故B 错误;对于选项C :f (x )=x 2−2的定义域为R ,g (t )=t 2−2的定义域为R ,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C 正确;对于选项D :f (x )=√x +1⋅√x −1的定义域为{x|x ≥1},g(x)=√x 2−1的定义域为{x|x ≤−1或x ≥1},所以这两个函数的定义域不同,不表示相同的函数,故D 错误. 故选:C 多选题9、已知f(2x −1)=4x 2,则下列结论正确的是A .f(3)=9B .f(−3)=4C .f(x)=x 2D .f(x)=(x +1)2答案:BD解析:利用换元法求出f(x)的解析式,再对选项进行一一验证,即可得答案. 令t =2x −1⇒x =t+12,∴f(t)=4(t+12)2=(t +1)2.∴f(3)=16,f(−3)=4,f(x)=(x +1)2. 故选:BD.小提示:本题考查换元法求函数的解析式、函数值的求解,考查运算求解能力,属于基础题.10、已知函数f (x )={kx +1,x ≤0log 2x,x >0,下列是关于函数y =f [f (x )]+1的零点个数的判断,其中正确的是( )A .当k >0时,有3个零点B .当k <0时,有2个零点C .当k >0时,有4个零点D .当k <0时,有1个零点 答案:CD解析:令y =0得f [f (x )]=−1,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.令y =f [f (x )]+1=0,得f [f (x )]=−1,设f (x )=t ,则方程f [f (x )]=−1等价为f (t )=﹣1, ①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .小提示:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.11、下列函数既是偶函数,在(0,+∞)上又是增函数的是()A.y=x2+1B.y=2x C.y=|x|D.y=|1x−x|答案:AC分析:根据偶函数的定义和增函数的性质,逐个分析判断即可得解.对A,开口向上,且对称轴为x=0,所以y=x2+1是偶函数,在(0,+∞)上是增函数,故A正确;对B,y=2x为奇函数,故B错误;对C,y=|x|为偶函数,当x∈(0,+∞)时,y=x为增函数,故C正确;对D,令f(x)=|1x −x|,f(−x)=|1−x+x|=|1x−x|=f(x)为偶函数,当x∈(0,1),y=1x−x为减函数,故D错误,故选:AC填空题12、有对应法则f:(1)A={0,2},B={0,1},x→x2;(2)A={-2,0,2},B={4},x→x2;(3)A=R,B={y|y>0},x→1x2;(4)A=R,B=R,x→2x+1;(5)A={(x,y)|x,y∈R},B=R,(x,y)→x+y.其中能构成从集合A到集合B的函数的有________(填序号).答案:(1)(4)分析:利用函数的定义判断.(1)由函数的定义知,正确;(2)当x=0时,B中不存在数值与之对应,故错误;(3)当x=0时,B中不存在数值与之对应,故错误;(4)由函数的定义知,正确;(5)因为集合A不是数集,故错误;所以答案是:(1)(4)13、函数y=√7+6x−x2的定义域是_____.答案:[−1,7].分析:由题意得到关于x的不等式,解不等式可得函数的定义域.由已知得7+6x−x2≥0,即x2−6x−7≤0解得−1≤x≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.14、已知函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,若函数g(x)=[f(x)]2−4f(x)+m+1恰有8个零点,则m的范围为___________.答案:2≤m<3解析:设f(x)=t,则g(x)=[f(x)]2−4f(x)+m+1=0,转化为t2−4t+m+1=0,由g(x)有8个零点,转化为方程f(x)=t,t∈(0,3]有4个不同的实根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,利用数形结合法求解.画出函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,的图像如图所示,设f(x)=t,由g(x)=[f(x)]2−4f(x)+m+1=0,得t2−4t+m+1=0.因为g(x)有8个零点,所以方程f(x)=t有4个不同的实根,结合f(x)的图像可得在t∈(0,3]内有4个不同的实根.所以方程t2−4t+m+1=0必有两个不等的实数根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,画出函数y=−t2+4t的图象,如图所示:结合图像可知,3≤m+1<4,故2≤m<3.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解解答题15、已知幂函数f(x)=(m2−2m+2)x3k−k2(k∈Z)是偶函数,且在(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)若f(2x−1)<f(2−x),求x的取值范围:(3)若实数a,b(a,b∈R∗)满足2a+3b=7m,求3a+1+2b+1的最小值.答案:(1)f(x)=x2;(2)(−1,1);(3)2.分析:(1)由幂函数定义得m值,由单调性得k的范围,结合奇偶性得k值.(2)利用偶函数和单调性解不等式;(3)由(1)得2a+3b=7,用“1”的代换凑配出定值,由基本不等式得最小值.(1)f(x)是幂函数,则m2−2m+2=1,m=1,又f(x)是偶函数,所以3k−k2=k(3−k)是偶数,f(x)在(0,+∞)上单调递增,则3k−k2>0,0<k<3,所以k=1或2.所以f(x)=x2;(2)由(1)偶函数f(x)在[0,+∞)上递增,f(2x−1)<f(2−x)⇔f(|2x−1|)<f(|2−x|)⇔|2x−1|2<|2−x|2⇔−1<x<1.所以x的范围是(−1,1).(3)由(1)2a+3b=7,2(a+1)+3(b+1)=12,a>0,b>0,3 a+1+2b+1=112(3a+1+2b+1)[2(a+1)+3(b+1)]=112(12+9(b+1)a+1+2(a+1)b+1)≥112(12+2√9(b+1)a+1×4(a+1)b+1)=2,当且仅当9(b+1)a+1=4(a+1)b+1,即a=2,b=1时等号成立.所以3a+1+2b+1的最小值是2.。

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

版高中数学必修一函数及其性质基础知识点归纳总结

版高中数学必修一函数及其性质基础知识点归纳总结

版高中数学必修一函数及其性质基础知识点归纳总结函数及其性质基础知识点归纳总结如下:一、函数的概念及相关术语1.函数的定义:函数是一种具有特定关系的映射关系,每一个自变量对应唯一一个因变量。

2.函数的符号表示:通常用f(x)、y=f(x)、y=f(x,y)等形式表示。

3.定义域:函数的自变量的所有可能取值组成的集合。

4.值域:函数的因变量的所有可能取值组成的集合。

5.奇偶性:关于y轴对称的函数称为偶函数,关于原点对称的函数称为奇函数。

6.周期性:当存在一个正数T,使得对于函数f(x)有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数的周期。

二、函数的表示方法1.函数的显式表示:直接给出函数关系式,如y=2x+12.函数的隐式表示:通过方程来表示函数,如x^2+y^2=13.函数的参数表示:将函数看作参数方程的形式,如x=t,y=t^2三、函数的基本性质1.函数的单调性:若对于函数f(x)在定义域上的任意两个实数x1和x2,有x1<x2,则有f(x1)<f(x2)(单调增)或者f(x1)>f(x2)(单调减)。

2.函数的零点:若对于函数f(x),有f(x)=0,则称x为函数f(x)的零点。

3.函数的最值:若在函数f(x)的定义域上,存在一点x0使得对于任意的x,都有f(x)≤f(x0)(称f(x0)为函数f(x)的极大值)或f(x)≥f(x0)(称f(x0)为函数f(x)的极小值)。

4.函数的奇偶性:当函数f(x)满足f(-x)=-f(x)时,称函数为奇函数;当函数f(x)满足f(-x)=f(x)时,称函数为偶函数。

5.函数的周期性:若存在一个正数T使得对于函数f(x)有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数的周期。

6.反函数:若对于函数f(x)的定义域上的任意两个实数x1和x2,有f(x1)=f(x2),则称函数f(x)是可逆的。

函数f(x)的反函数记作f^(-1)(x)。

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
2. f(x)为奇函数 f(-x)=-f(x)
f(x)为偶函数 f(-x)=f(x)
定义域
x≠0
3. f(x)为奇函数,且f(x)在 x=0 处有定义 f(0)=0
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
5. 根据函数奇偶性的特征,可以简化函数图象的画法.
偶函数图象关于 y轴 对称. 奇函数图象关于 原点 对称.
例3、已知函数 y=f(x) 是偶函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
y
相等
0
x
例3、已知函数 y=f(x) 是奇函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
即f ( x 1 ) < f ( x 2 ) 所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
练习1 证明:函数 f ( x ) = x2+3 在 (0,+∞)上是单调增函数.
练习2 证明函数 y 1 在 (0,+∞)上是单调性. x
证明:设x1, x2是(0,+∞)上任意两个实数,且x1<x2,则
若函数在此区间上是增函数,则区间为单调递增区间

高中数学必修一课件:正弦函数、余弦函数的性质(第1课时)

高中数学必修一课件:正弦函数、余弦函数的性质(第1课时)

∴函数f(x)=sin34x+3π 2 为偶函数.
③f(x)=
(1-cos2x)+sin 1+sin x
x

sin2x+sin 1+sin x
x
=sin
x,但函数应满足1+sin
x≠
0,∴函数的定义域为{x|x∈R,且x≠2kπ+32π,k∈Z}.
∵函数的定义域不关于原点对称,
∴该函数既不是奇函数也不是偶函数.
思考题3 (1)判断下列函数的奇偶性.
①f(x)=sin
x-tan x
x;
②f(x)=lg(1-sin x)-lg(1+sin x);
③f(x)=1-cossi2nx
; x
④f(x)= 1-cos x+ cos x-1.
【答案】 ①偶函数 ②奇函数 ③非奇非偶函数 ④既是奇函数又是偶 函数
(2)函数f(x)=7sin(23x+152π)是( A )
(2)若本例(1)中的“偶函数”改为“奇函数”,“π”改为“
11π 12
”,其他
条件不变,结果如何?
【解析】 f5π 3 =f5π 3 -111π2 ×2=f-π6 =-fπ6 =-sin π6 =-12.
(3)若本例(1)中的条件不变,求当x∈[-π,0]时函数的解析式.
【解析】 因为f(x)是偶函数,所以f(-x)=f(x), 因为x∈0,π2 时,f(x)=sin x, 所以当x∈-π2 ,0时,-x∈0,π2 ,所以 f(-x)=sin(-x)=-sin x=f(x), 即当x∈-π2 ,0时,f(x)=-sin x,
π (2)已知函数f(x)= 2sin(x+ 4 +φ)是奇函数,则φ的值可以是( B )
A.0
B.-π4

高中数学必修一(人教版)《函数的概念与性质》课件

高中数学必修一(人教版)《函数的概念与性质》课件
提醒:要利用函数的单调性、奇偶性、对称性简化作图.
【集训冲关】 已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2. (1)求f(-1); (2)求f(x)的解析式; (3)画出f(x)的图象,并指出f(x)的单调区间. 解:(1)由于函数f(x)是R上的奇函数,所以对任意的x都有f(-x)=-f(x),所 以f(-1)=-f(1)=-(-1+2+2)=-3.
[方法技巧] 函数单调性与奇偶性应用的常见题型
(1)用定义判断或证明函数的单调性和奇偶性. (2)利用函数的单调性和奇偶性求单调区间. 3利用函数的单调性和奇偶性比较大小、解不等式. 4利用函数的单调性和奇偶性求参数的取值范围. 提醒:判断函数的奇偶性时要特别注意定义域是否关于原点对称.
【集训冲关】
(2)由(1)知 f(x)=2x32+x 2=23x+32x.任取 x1,x2∈[-2,-1],且 x1<x2,则 f(x1) -f(x2)=23(x1-x2)1-x11x2=23(x1-x2)·x1xx12x-2 1. ∵-2≤x1<x2≤-1,∴x1-x2<0,x1x2>1,x1x2-1>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴函数 f(x)在[-2,-1]上为增函数, 因此 f(x)max=f(-1)=-43,f(x)min=f(-2)=-53.
2.已知函数 f(x)=m3xx+2+n2是奇函数,且 f(2)=53. (1)求实数 m 和 n 的值; (2)求函数 f(x)在区间[-2,-1]上的最值. 解:(1)∵f(x)是奇函数,∴f(-x)=-f(x), ∴-m3xx2++2n=-m3xx+2+n2=-m3xx2+-2n. 比较得 n=-n,n=0.又 f(2)=53,∴4m6+2=53,解得 m=2.因此,实数 m 和 n 的值分别是 2 和 0.

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析新人教A版必修1高中数学中,函数是一个非常重要的概念,是数学的基础。

函数不仅在数学上有很多应用,而且在实际生活中也有广泛的应用。

函数的图像和性质是我们学习函数的重要内容之一。

下面我将详细介绍高中数学中的14种函数图像和性质。

一、常数函数图像和性质:常数函数是指对于任何定义域内的自变量,其函数值都是一个固定的常数。

常数函数的图像是一个平行于x轴的直线,也可以看作是y轴上的一个点。

常数函数的性质包括:定义域是全体实数,值域是{常数},奇偶性是偶函数。

二、一次函数图像和性质:一次函数是指函数的表达式为y=kx+b,其中k和b是常数。

一次函数的图像是一条直线,具有斜率k,截距b。

一次函数的性质包括:定义域是全体实数,值域是全体实数,当且仅当k=0时,为常数函数,奇偶性是奇函数。

三、二次函数图像和性质:二次函数是指函数的表达式为y=ax²+bx+c,其中a、b、c是常数,且a≠0。

二次函数的图像是一个开口向上或开口向下的抛物线。

二次函数的性质包括:定义域是全体实数,值域受a的正负号和抛物线的开口方向影响,奇偶性当且仅当a=0时,为一次函数。

四、基本初等函数图像和性质:基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。

它们都有各自的图像和性质。

1. 幂函数图像和性质:幂函数是指函数的表达式为y=xⁿ,其中n是一个实数,且n≠0。

幂函数的图像随着n的不同而变化,当n>0时,函数的图像是递增的曲线,当n<0时,函数的图像是递减的曲线。

幂函数的性质包括:定义域是正实数或负实数,值域受n的正负号影响,奇偶性当且仅当n为偶数时,函数关于y轴对称。

2. 指数函数图像和性质:指数函数是指函数的表达式为y=aⁿ,其中a是一个正实数,且a≠1,n是一个实数。

指数函数的图像随着a和n的取值不同而变化,当0<a<1时,函数的图像是递减的曲线,当a>1时,函数的图像是递增的曲线。

高中数学必修一——函数基本性质

高中数学必修一——函数基本性质

高中数学必修一——函数基本性质引言:函数是高中数学中的重要知识点之一,它不仅在高考中占有一定比重,而且在大学数学、物理等学科中也应用广泛。

因此,学好函数是中学数学的重要任务之一。

本文将介绍函数的基本性质,包括定义域、值域、单调性、奇偶性、周期性等,同时提供20道以上的练习题,供读者参考。

一、函数的定义函数是一种特殊的映射关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数通常用符号f(x)表示,其中x是自变量,f(x)是因变量。

函数可以表示为f:A\rightarrow B,其中A是定义域,B是值域。

二、函数的基本性质1.定义域:函数的定义域是指所有可以输入函数的自变量的值的集合。

函数的定义域可以是实数集、有理数集、整数集等。

在定义函数时,需要指定函数的定义域。

2.值域:函数的值域是指所有函数可能的输出值的集合。

它是由定义域和函数的性质决定的。

3.单调性:函数的单调性指函数在定义域上的单调变化性质,包括单调递增和单调递减。

如果函数的自变量增大,函数值也增大,则称函数在这个区间内是单调递增的;如果函数的自变量增大,函数值减小,则称函数在这个区间内是单调递减的。

4.奇偶性:函数的奇偶性指函数的性质,可以分为偶函数和奇函数。

如果函数在定义域内满足f(-x)=f(x),则称函数为偶函数;如果函数在定义域内满足f(-x)=-f(x),则称函数为奇函数。

5.周期性:函数的周期性指函数在定义域上存在一个最小正周期T,即f(x+T)=f(x),其中T是正实数。

三、练习题1.设函数f(x)=ax+b,其中a,b是实数,且f(2)=3,f(3)=4,求a,b。

2.求函数f(x)=2x^2-3x+1的定义域和值域。

3.若函数f(x)在区间[a,b]上是单调递增的,且f(a)=f(b)=0,证明f(x)=0在区间[a,b]上有且只有一个实根。

4.设函数f(x)=\sin(x+\alpha),其中0<\alpha<\dfrac{\pi}{2},证明f(x)是奇函数。

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.

新教材人教版高中数学必修第一册 5-4-2-1 正弦函数、余弦函数的性质 正弦、余弦函数的周期性

新教材人教版高中数学必修第一册 5-4-2-1  正弦函数、余弦函数的性质  正弦、余弦函数的周期性

由图象可知 T=π.
第十三页,共三十四页。
[方法技巧] 求三角函数最小正周期的常用方法
(1)公式法:将函数化为 y=Asin(ωx+φ)+B 或 y=Acos= 2π 求得. |ω|
(2)定义法:一般地,对于函数 f(x),如果存在一个非零常数 T,使得
定义域内的每一个 x 值,都满足 f(x+T)=f(x),那么非零常数 T 叫做这
第二十三页,共三十四页。
[ 典例 3] (1)下列函数中是奇函数,且最小正周期是π的函数是
()
A.y=cos|2x|
B.y=|sin 2x|
C.y=sin π2+2x
D.y=cos 32π-2x
[ 解析]
(1)y=cos|2x|是偶函数,y=|sin
2x|是偶函数,y=sin
π+2x 2

cos 2x 是偶函数,y=cos 32π-2x =-sin 2x 是奇函数,根据公式得其最小
正周期 T=π. [ 答案] (1)D
第二十四页,共三十四页。
[ 典例 3] (2)定义在 R 上的函数 f(x)既是偶函数,又是周期函数,若
f(x)的最小正周期为π,且当 x∈ 0,π2 时,f(x)=sin x,则 f
5π 3 等于(
)
A.-1 2
B.1 2
C.- 3 2
D. 3 2
[ 解析]
所以函数 f(x)=1+s1i+n xsi-n cxos2x的定义域为
x∈Rx≠2kπ+32π,k∈Z

显然定义域不关于原点对称.
故函数 f(x)=1+s1i+n xsi-n cxos2x是非奇非偶函数.
第十九页,共三十四页。
[方法技巧]
判断函数奇偶性的思路

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质函数表示每个输入值对应唯一输出值的一种对应关系。

小编准备了高一数学人教版必修一第一单元知识点,希望你喜欢。

1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于1.(5) 如果函数是由一些基本函数通过四则运算结合而成的. 那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) (2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)值域补充( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. ( 2 ) . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. ( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3. 高中数学必修一函数的基本性质——函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P(x ,y) 的集合C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y) 均满足函数关系y=f(x) ,反过来,以满足y=f(x) 的每一组有序实数对x 、y 为坐标的点(x ,y) ,均在C 上. 即记为C={ P(x,y) | y= f(x) , x ∈A }图象C 一般的是一条光滑的连续曲线( 或直线), 也可能是由与任意平行与Y 轴的直线最多只有一个交点的若干条曲线或离散点组成.(2) 画法A、描点法:根据函数解析式和定义域,求出x,y 的一些对应值并列表,以(x,y) 为坐标在坐标系内描出相应的点P(x, y) ,最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。

高中数学必修一函数性质详解及知识点总结及题型详解

高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)
栏目 导引
第三章 函数的概念与性质
利用奇偶性求函数解析式的思路 (1)“求谁设谁”,即在哪个区间求解析式,x 就设在哪个区间 内. (2)利用已知区间的解析式代入. (3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).
栏目 导引
第三章 函数的概念与性质
1.设 f(x)是偶函数,g(x)是奇函数,且 f(x)+g(x)=x2+2x,求 函数 f(x),g(x)的解析式. 解:因为 f(x)是偶函数,g(x)是奇函数, 所以 f(-x)=f(x),g(-x)=-g(x), 由 f(x)+g(x)=2x+x2.① 用-x 代替 x 得 f(-x)+g(-x)=-2x+(-x)2, 所以 f(x)-g(x)=-2x+x2,② (①+②)÷2,得 f(x)=x2. (①-②)÷2,得 g(x)=2x.
条件 当 x1<x2 时
都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就说函数 f(x)在区间 D 上 那么就说函数 f(x)在区间 D 上
结论
是增函数
是减函数
栏目导航
图示
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
栏目导航
思考 1:增(减)函数定义中的 x1,x2 有什么特征?
栏目 导引
第三章 函数的概念与性质
2.(2019·襄阳检测)已知偶函数 f(x)在区间[0,+∞)上单调递减,
则满足 f(2x-1)>f13的实数 x 的取值范围是(
)
A.13,23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一 函数性质卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 , )1. 下列区间是函数f(x)=1−1x−1的递增区间的是( )A.(1, 2)B.[1, 2]C.(0, +∞)D.(−∞, 2)2. 函数f(x)=1x 2+1的图象关于( ) A.y 轴对称B.直线y =−x 对称C.坐标原点对称D.直线y =x 对称3. 下列函数为偶函数的是( )A.f(x)=x −1B.f(x)=x 2+xC.f(x)=√xD.f(x)=x 24. 已知为f(x)奇函数,在[3, 6]上是增函数,[3, 6]上的最大值为8,最小值为−1,则2f(−6)+f(−3)等于( )A.−15B.−13C.−5D.55. 下列函数中,既是偶函数又在(0, +∞)单调递增的是( )A.y =√xB.y =cos xC.y =e xD.y =ln |x|6. 下列函数中既是奇函数又在(0, π2)上单调递增的是( )A.y =−xB.y =x 2C.y =sin xD.y =cos x7. 已知f(x)=2e x −1+a 为奇函数,则a =( )A.1B.−2C.−1D. 128.已知f(x)={(4−a 2)x +2,x ≤1ax,x >1,是R 上的单调递增函数,则实数a 的取值范围为( )A.(1, +∞)B.(1, 8)C.(4, 8)D.[4, 8)9. 设函数f(x)=(12)|x|,则使得f(−3)<f(2x−1)成立的x的取值范围是()A.(−∞,−1)∪(2,+∞) B.(−1,2)C.(−1,+∞)D.(−∞,−1)10. 下列函数中,既是奇函数,又在(0, +∞)上单调递减的函数是( )A.y=−xB.y=−|x|C.y=1−x2D.y=−2x11. 函数f(x)=x3+x的图象关于()A.y轴对称B.直线y=−x对称C.坐标原点对称D.直线y=x对称12. 下列函数中,为偶函数且在(0, +∞)内为增函数的是()A.f(x)=sin2xB.f(x)=x2+3x2C.f(x)=x12+x2 D.f(x)=x(e x−e−x)卷II(非选择题)二、填空题(本题共计 6 小题,每题 5 分,共计30分,)13. f(x)=(12)x2−2x+3的单调递增区间为________.14. y=x|x|+3的单调增区间是________.15. 已知函数f(x)=2x−3,其中x∈{x∈N|1≤x≤103},则函数的最大值为________.16. 已知函数f(x)是定义在R的奇函数,设F(x)=f(x)+3,且F(x)的最大值为M,最小值为m,则M+m=________.17. 已知函数f(x)是定义在(−∞, +∞)上的奇函数.当x∈(−∞, 0)时,f(x)=2x+1,则f(x)=________.18. 函数f(x)=log0.5(8+2x−x2)的单调递增区间是________.三、 解答题 (本题共计 5 小题 ,每题 12 分 ,共计60分 , )19. f(x)是定义在[−2π, 2π]上的偶函数,当x ∈[0, π]时,y =f(x)=cos x ,当x ∈(π, 2π]时,f(x)的图象是斜率为2π,在y 轴上截距为−2的直线在相应区间上的部分.(1)求f(−2π),f(−π3);(2)求f(x),并作出图象,写出其单调区间.20. 求函数y ={x +3,x <1−x +6,x ≥1的最大值.21. 已知函数f(x)=px 2+2q−3x 是奇函数,且f(2)=−53,求f(x)的解析式.22. 已知函数f(x)=x +k x ,且此函数图象过点(2, 6)(1)求实数k 的值;(2)判断函数f(x)的奇偶性;(3)判断函数f(x)在[3, +∞)上的单调性,并给予证明.23. 已知函数f(x)=1−42a x +a (a >0且a ≠1)是定义在(−∞, +∞)上的奇函数.(1)求a 的值;(2)当x ∈(0, 1]时,t ⋅f(x)≥2x −2恒成立,求实数t 的取值范围.高中数学必修一函数性质参考答案与试题解析一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【考点】函数的单调性及单调区间【解答】解:∵函数y=−1x在(0, +∞)上为增函数,∴将函数y=−1x 向右平移1个单位得到y=−1x−1,此时函数在(1, +∞)为增函数,则函数f(x)=1−1x−1的在(1, +∞)上为增函数,故区间(1, 2)是函数的一个递增区间,故选:A2.【考点】奇偶函数图象的对称性【解答】解:函数的定义域是x≠0.∵f(−x)=1(−x)2+1=1x2+1=f(x),∴f(x)=1x2+1是一个偶函数,由偶函数的性质知函数f(x)=1x2+1的图象关于y轴对称.故选A.3.【考点】函数奇偶性的判断偶函数【解答】解:A,定义域为R,f(−x)=−x−1≠f(x),不是偶函数;B,定义域为R,f(−x)=x2−x≠f(x),不是偶函数;C,定义域为x≥0,定义域不关于原点对称,不是偶函数;D,定义域为R,f(−x)=x2=f(x),是偶函数.故选D.4.【考点】奇偶性与单调性的综合【解答】解:根据已知条件知,f(6)=8,f(3)=−1,f(−6)=−8,f(−3)=1;∴2f(−6)+f(−3)=−16+1=−15;故选A.5.【考点】函数单调性的判断与证明函数奇偶性的判断【解答】解:y=√x在(0, +∞)上递增,但不具有奇偶性,排除A;y=cos x为偶函数,但在(0, +∞)上不单调,排除B;y=e x在(0, +∞)上递增,但不具有奇偶性,排除C;y=ln|x|的定义域为(−∞, 0)∪(0, +∞),关于原点对称,且ln|−x|=ln|x|,故y=ln|x|为偶函数,当x>0时,y=ln|x|=ln x,在(0, +∞)上递增,故选D.6.【考点】奇偶性与单调性的综合【解答】解:对于A,y=−x,k=−1<0,在(0, π2)上单调递减,不满足题意;对于B,y=x2,是偶函数,不满足题意;对于C,y=sin x,是奇函数,在(0, π2)上单调递增,满足题意,故正确.对于D,y=cos x,是偶函数,不满足题意.故选C.7.【考点】函数奇偶性的性质【解答】解:f(x)=2e x−1+a为奇函数,则f(−x)=−f(x),2e−x−1+a=−2e x−1−a,即2e x1−e x +a=21−e x−a,则2(e x−1)1−e x=−2a,即−2=−2a,解得a=1.故选A.8.【考点】函数的单调性及单调区间【解答】解:根据f(x)={(4−a 2)x +2,x ≤1,ax,x >1,是R 上的单调递增函数, 可得4−a 2>0, 且a >0,且4−a 2+2≤a ,求得4≤a <8.故选D .9.【考点】函数单调性的性质【解答】此题暂无解答10.【考点】函数奇偶性的判断函数的单调性及单调区间【解答】解:A ,y =−x 在(0, +∞)上单调递减,且为奇函数,故正确;B ,y =−|x|为偶函数,故不正确;C ,y =1−x 2为偶函数,故不正确;D ,y =−2x 在(0, +∞)上单调递增,故不正确.故选A.11.【考点】奇偶函数图象的对称性【解答】解:∵ f(−x)=−x 3−x =−f(x),∴ 函数f(x)=x 3+x 为奇函数,∵ 奇函数的图象关于原点对称,故选C .12.【考点】函数单调性的判断与证明函数奇偶性的判断【解答】解:对于选项A:f′(x)=2sin x cos x =sin 2x ,而−1≤sin 2x ≤1,不合题意,对于选项B:f′(x)=2x−6x3,当x∈(0, √34)时,f′(x)<0,不合题意,对于选项C:f(x)的定义域是[0, +∞),不是偶函数,不合题意,故选:D.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【考点】复合函数的单调性【解答】解:令t=x2−2x+3,则f(t)=(12)t,故本题即求二次函数t的减区间,再利用二次函数的性质可得二次函数t的减区间为(−∞, 1).故答案为:(−∞, 1).14.【考点】函数单调性的判断与证明【解答】解:∵函数y=f(x)=x|x|+3={x2+3,x≥0−x2+3,x<0,当x≥0时,y=f(x)=x2+3的图象从左向右是上升的,是增函数;当x<0时,y=f(x)=−x2+3的图象从左向右也是上升的,是增函数;∴y=f(x)在定义域(−∞, +∞)上是增函数,∴y=f(x)的单调增区间是(−∞, +∞).故答案为:(−∞, +∞).15.【考点】函数的最值及其几何意义【解答】解:∵ x∈{x∈N|1≤x≤103}={1, 2, 3},由于f(x)=2x−3为递增函数,则x=3时,取得最大值,且为2×3−3=3.故答案为:3.16.【考点】函数奇偶性的性质函数单调性的性质【解答】解:∵函数y=f(x)为奇函数,∴f(−x)=−f(x),又F(x)=F(x)+3的最大值为M,最小值为m,所以F(x)的最大最小值分别为M−3,m−3,由奇数的性质可得(M−3)+(m−3)=0,解得M +m =6,故答案为:617.【考点】奇函数【解答】解:设x ∈(0, +∞)则−x ∈(−∞, 0)当x ∈(−∞, 0)时,f(x)=2x +1所以f(−x)=−2x +1又∵ 函数f(x)是定义在(−∞, +∞)上的奇函数∴ f(−x)=−f(x)∴ f(−x)=−2x +1=−f(x)∴ f(x)=2x −1∴ 当x ∈(0, +∞)时f(x)=2x −1∵ 函数f(x)是定义在(−∞, +∞)上的奇函数∴ f(0)=0故答案为f(x)={2x +1,x <00,x =02x −1,x >018.【考点】复合函数的单调性【解答】解:令t =8+2x −x 2=−(x +2)(x −4)>0,求得−2<x <4,故函数的定义域为(−2, 4), f(x)=log 0.5t ,故本题即求函数t 在定义域内的减区间. 再根据二次函数的性质可得函数t =−(x −1)2+9在定义域(−2, 4)上的减区间为[1, 4), 故答案为[1, 4).三、 解答题 (本题共计 5 小题 ,每题 12 分 ,共计60分 ) 19.【考点】余弦函数的图象函数的单调性及单调区间偶函数【解答】解:(1)当x ∈(π, 2π]时,y =f(x)=2πx −2,又f(x)是偶函数,∴ f(−2π)=f(2π)=2.又x ∈[0, π]时,y =f(x)=cos x ,∴f(−π3)=f(π3)=12.(2)y=f(x)={−2πx−2x∈[−2π,−π)cos x,x∈[−π,π]2πx−2x∈(π,2π]当x∈(−2π, −π]时,根据直线方程的单调性可知其为减函数;当x∈[0, π]时,根据余弦函数的单调性可知为减函数;当x∈[−π, 0]时,根据余弦函数的单调性可知为增函数当x∈[π, 2π]时,函数的图象为直线,斜率大于0,可知为增函数.故调区间为[−2π, −π),[0, π),[−π, 0],[π, 2π].20.【考点】函数的最值及其几何意义【解答】解:当x<1时,y=x+3<1+3=4,当x≥1时,y=−x+6≤−1+6=5,∴当x=1时,函数取得最大值为5.21.【考点】奇函数【解答】解:f(x)=2x 2+2−3x.∵f(x)是奇函数,∴对定义域内的任意的x,都有f(−x)=−f(x),即px 2+2q+3x =−px2+2q−3x,整理得:q+3x=−q+3x,∴q=0又∵f(2)=−53,∴f(2)=4p+2−6=−53,解得p=2∴所求解析式为f(x)=2x2+2−3x.22.【考点】函数奇偶性的判断函数单调性的判断与证明【解答】解:(1)由题意可得f(2)=6,即2+k 2=6,解得,k =8; (2)函数f(x)=x +8x 的定义域为{x|x ≠0}关于原点对称, f(−x)=−x −8x =−(x +8x )=−f(x),则f(x)为奇函数;(3)函数f(x)在[3, +∞)上递增.证明如下:设m >n ≥3,则f(m)−f(n)=m +8m −(n +8n ) =(m −n)+8(n−m)mn =(m −n)⋅mn−8mn ,由m >n ≥3,则m −n >0,mn >9,即mn −8>0, 则有f(m)−f(n)>0,即有f(m)>f(n),故f(x)在[3, +∞)上递增.23.【考点】函数奇偶性的性质与判断【解答】∵ 函数f(x)=1−42a x +a (a >0且a ≠1)是定义在(−∞, +∞)上的奇函数, ∴ f(0)=1−42+a =0,解得a =2.由(1)得f(x)=2x −12x +1,当0<x ≤1时,f(x)>0. ∴ 当0<x ≤1时,t ⋅f(x)≥2x −2恒成立,则等价于t ≥2x −2f(x)=(2x −2)(2x +1)2x −1对x ∈(0, 1]时恒成立,令m =2x −1,0<m ≤1,即t ≥m −2m +1,当0<m ≤1时恒成立,既t ≥m −2m +1在(0, 1]上的最大值,易知y =m −2m +1在(0, 1]上单调递增, ∴ 当m =1时y =m −2m +1有最大值0,所以t ≥0, 故所求的t 范围是:t ≥0.。

相关文档
最新文档