高中数学解题思想方法(数学归纳法)

合集下载

高中数学的解析如何利用数学归纳法解决数学问题

高中数学的解析如何利用数学归纳法解决数学问题

高中数学的解析如何利用数学归纳法解决数学问题数学归纳法是一种常用的数学推理方法,特别适用于解决涉及自然数的问题。

它的基本思想是通过证明某个命题在第一个自然数上成立,并假设该命题在第k个自然数上成立,再利用这一假设证明该命题在第k+1个自然数上也成立。

本文将着重讨论高中数学中一些典型问题,介绍如何使用数学归纳法解决这些问题。

一、等差数列的性质证明等差数列是高中数学中一个重要的概念,其性质证明常常可以使用数学归纳法。

我们以等差数列的前n项和公式为例进行说明。

首先,我们需要证明等差数列前n项和公式在第一个自然数上成立。

当n=1时,等差数列的前n项和显然等于它的第一个项,命题成立。

其次,我们假设等差数列前k项和公式在第k个自然数上成立,即Sn = (2a1 + (k-1)d)k/2 (式1)我们需要证明等差数列前(k+1)项和公式在第(k+1)个自然数上也成立。

通过对等差数列前k+1项求和可以得到:S(k+1) = a1 + a2 + ... + ak + a(k+1)S(k+1) = [(k+1)(a1 + a(k+1))/2] + kd (式2)将式1代入式2中,整理后可得:S(k+1) = [(k+1)(2a1 + (k+1-1)d)/2] + kdS(k+1) = [(k+1)(2a1 + kd)/2] + kdS(k+1) = [(k+1)(2a1 + kd) + 2kd]/2S(k+1) = (2a1 + (k+1)d)(k+1)/2由此可见,假设在第k个自然数上等差数列前k项和公式成立,可以推出在第(k+1)个自然数上该公式也成立。

因此,根据数学归纳法的推理步骤,我们可以得出等差数列前n项和公式对于任意正整数n都成立的结论。

二、数学归纳法解决不等式问题数学归纳法不仅可以用于证明等式的性质,还可以用于解决不等式问题。

我们以证明平方不等式n^2 ≥ n(n ≥ 1)为例。

首先,我们需要证明当n=1时平方不等式成立,即1^2 ≥ 1,命题成立。

高中数学数学归纳法的使用技巧

高中数学数学归纳法的使用技巧

高中数学数学归纳法的使用技巧在高中数学中,数学归纳法是一种常用的证明方法,用于证明一些关于自然数的命题。

它的基本思想是通过证明命题在某个特定条件下成立,并且在该条件下,命题在下一个自然数也成立,从而推导出该命题对于所有自然数都成立。

数学归纳法的使用技巧对于高中数学学习者来说至关重要,本文将从基本原理、典型例题以及解题技巧三个方面进行论述。

一、基本原理数学归纳法的基本原理可以概括为以下两点:1. 基础步骤:证明当n等于某个特定值时,命题成立。

2. 归纳步骤:假设当n等于k时,命题成立,然后证明当n等于k+1时,命题也成立。

基于这两个原理,我们可以使用数学归纳法证明一些关于自然数的命题。

接下来,我们通过几个典型例题来说明数学归纳法的具体应用。

二、典型例题例题1:证明对于任意正整数n,1+2+3+...+n = n(n+1)/2。

解析:首先,在n=1时,等式左边为1,右边也为1,等式成立。

接下来,假设当n=k时,等式成立,即1+2+3+...+k = k(k+1)/2。

我们需要证明当n=k+1时,等式也成立。

根据归纳步骤,我们可以得到:1+2+3+...+k+(k+1) = k(k+1)/2 + (k+1)= (k^2 + k + 2k + 2) / 2= (k^2 + 3k + 2) / 2= (k+1)(k+2) / 2由此可见,当n=k+1时,等式也成立。

因此,根据数学归纳法,我们可以得出结论:对于任意正整数n,1+2+3+...+n = n(n+1)/2。

例题2:证明2^n > n^2,其中n为正整数且n≥4。

解析:首先,在n=4时,等式左边为16,右边为16,等式成立。

接下来,假设当n=k时,等式成立,即2^k > k^2。

我们需要证明当n=k+1时,等式也成立。

根据归纳步骤,我们可以得到:2^(k+1) = 2^k * 2> k^2 * 2= 2k^2由于k≥4,所以2k^2 > (k+1)^2。

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高中数学_快速解题的六种数学思维方法

高中数学_快速解题的六种数学思维方法

高中数学_快速解题六种数学思维方法对一个高中生,特别是高三年级准备参加高考的童鞋来说,保证做题量是学好数学的必要条件,在做题的同时要保证做题的质量。

总结题型归纳方法是数学学习的更高境界,下面介绍的是高中数学6种数学思维方式和总结题型归纳的方法,包括:第一种快速解题数学思维方法:配方法第二种快速解题数学思维方法:换元法第三种快速解题数学思维方法:待定系数法第四种快速解题数学思维方法:数学归纳法第五种快速解题数学思维方法:参数法第六种快速解题数学思维方法:反正法只有用这种数学思维的思想武装自己,童鞋们才能更有效的学习数学。

更多数学思想方法,请参阅《高中数学_必须掌握的六种常用的数学思想方法》。

第一种快速解题数学思维方法:配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方.有时也将其称为“凑配法”.最常见的配方是进行恒等变形,使数学式子出现完全平方.它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺项的二次曲线的平移变换等问题.配方法使用的最基本的配方依据是二项完全平方公式:将这个公式灵活运用,可得到各种基本配方形式,如:例题:第二种快速解题数学思维方法:换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用.换元的方法有:局部换元、三角换元、均值换元等.局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.第三种快速解题数学思维方法:待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项或者两个多项式各同类项的系数对应相等.待定系数法解题的关键是依据已知,正确列出等式或方程.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判阿断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解.使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决.如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程.比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程.第四种快速解题数学思维方法:数学归纳法运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

数学归纳法在中学数学中的应用

数学归纳法在中学数学中的应用

数学归纳法在中学数学中的应用数学归纳法是高中数学中的一项重要内容,它不仅在代数学和数学分析中具有广泛的应用,而且在初中数学中也扮演着重要的角色。

本文将重点介绍中学数学中数学归纳法的应用,以及如何正确运用数学归纳法解题。

一、数学归纳法的基本思想数学归纳法是一种证明方法,通常用于证明由自然数组成的数列或命题,其基本思想是:第一步:证明当n=1时,命题成立。

第二步:假设当n=k(k≥1)时命题成立,并用此假设来证明当n=k+1时命题也成立。

第三步:由第一、二步可知,对于集合{1,2…}中的每一个正整数n,命题成立。

二、应用举例1.证明1+2+…+n=n(n+1)/2对于此题,我们可以按照数学归纳法的步骤逐步解题。

第一步:当n=1时,1=1(1+1)/2,命题成立。

第二步:假设当n=k时1+2+…+k=k(k+1)/2,根据假设,当n=k+1时:1+2+…+k+(k+1)=(k)(k+1)/2+(k+1)=(k+1)(k/2+1)=(k+1)((k+1)+1)/2命题成立。

第三步:由第一、二步可知,对于集合{1,2…}中的每一个正整数n,命题成立。

因此,数学归纳法可以用来证明1+2+…+n=n(n+1)/2。

(注:此处省略了对不符合条件的情况的讨论)2.证明以下命题成立2的n次方大于等于n+1,其中n为正整数。

第一步:当n=1时,2的1次方大于等于1+1,命题成立。

第二步:假设当n=k时,2的k次方大于等于k+1,根据假设,当n=k+1时:2的k+1次方大于等于2(k+1)而(k+1)+1=k+2因此,当n=k+1时,命题成立。

第三步:由第一、二步可知,对于集合{1,2…}中的每一个正整数n,命题成立。

因此,命题为真。

三、数学归纳法的要点虽然数学归纳法是一种简单的证明方法,但是正确的运用还有一定难度。

下面是数学归纳法中需注意的要点:1.首先要确保递推式适用于所有的正整数。

2.要明确所要证明的命题。

3.要分清递推式、递推式中的变量和由递推式推出的式子。

高中数学中的数学归纳法解题技巧

高中数学中的数学归纳法解题技巧

高中数学中的数学归纳法解题技巧数学归纳法是一种常用的解题思路,特别适用于高中数学中的证明、递推问题以及数列等内容。

通过观察题目的特点,我们可以灵活运用数学归纳法的解题技巧,快速解决问题。

本文将从数学归纳法的基本概念、应用场景以及解题策略三个方面,介绍高中数学中的数学归纳法解题技巧。

一、数学归纳法的基本概念数学归纳法是一种数学推理方法,常用于证明命题对于所有自然数都成立。

其基本思想是:先证明当n为某个自然数时命题成立,然后证明如果n为某个自然数时,命题对于n+1也成立。

根据这个思路,如果命题对于n=1成立,并且对于n=k成立时,可以推出对于n=k+1也成立,那么我们可以断定命题对于所有自然数都成立。

二、数学归纳法的应用场景数学归纳法的应用场景广泛,特别适用于证明与递推问题。

在高中数学中,常见的应用场景包括:1. 证明等式和不等式成立。

2. 证明数列的通项公式。

3. 证明递推关系式成立。

4. 证明集合中的元素具有某种性质。

三、数学归纳法解题策略在应用数学归纳法解题时,我们可以按照以下策略进行操作:1. 确定基本情况:首先证明当n为某个具体的数时命题成立。

通常选择n=1或n=0作为基本情况。

2. 假设归纳成立:假设命题对于n=k成立,即假设命题在n=k时是成立的。

3. 证明归纳成立:利用假设的前提,证明对于n=k+1时命题也成立。

可以通过计算、推导、代入等方法进行证明。

4. 总结归纳:由于基本情况成立并且归纳步骤推导成立,我们可以得出结论,命题对于所有的自然数n成立。

通过上述解题策略,我们可以快速有效地运用数学归纳法解决涉及证明、递推、数列等问题。

需要注意的是,在解题过程中,我们要保证每一步的推导都是准确无误的,以确保最终结论的可靠性。

总结数学归纳法是高中数学中常用的解题思路,它能够帮助我们理清问题的思路,快速解决证明、递推、数列等类型的问题。

在运用数学归纳法时,我们要注意确定基本情况,假设归纳成立,证明归纳成立以及总结归纳的步骤。

掌握数学归纳法高中数学归纳法问题的解题技巧

掌握数学归纳法高中数学归纳法问题的解题技巧

掌握数学归纳法高中数学归纳法问题的解题技巧数学归纳法是一种证明数学定理的技巧,它被广泛应用于高中数学中的数列、递归和整数论等分支中。

掌握数学归纳法不仅是学生迈向高中数学成功的重要一步,也对于日后从事理科相关工作的人士非常有用。

但是,许多学生在学习数学归纳法时,可能会感到困难和挫败。

接下来,本文将提供一些有用的技巧,以帮助学生掌握高中数学归纳法。

1. 理解归纳法归纳法的基本思想是,如果证明了一个定理对于其中某一个数值成立,那么就可以证明该定理对于如此数值以上所有的数值均成立。

也就是说,这种技巧要通过逐步证明某些特定的问题,以确保它们与已知的问题保持一致性。

2. 寻找基准情况在使用数学归纳法证明定理时,我们首先需要找到一个基准情况,即某个特定情况下,定理是否成立。

如果只是单纯的陈述一个问题,是无法进行任何操作的。

例如,如果证明一个数列的特点适用于数列的第一项或第二项,那么我们就可以说明在这些元素上定理是完全成立的。

这就是所谓的“基准情况”。

3. 假设成立条件在数学归纳法中,需要假设某些情况下定理是成立的。

这些情况不一定要包括所有的情况,也可以是一部分情况。

你需要考虑哪种形式的假设能够完成证明。

4. 做归纳假设的情况下证明定理公式成立在这一步中,我们通常会针对基准情况进行证明,并假设此时证明是成立的。

接下来,我们使用归纳假设对定理的公式进行证明,以证明基准情况之后所有的情况都是成立的。

需要注意的是,当证明过程中会出现一些细节问题,需要认真考虑如何解决。

5. 以基准情况为前提,证明更广泛的情况当基于归纳假设证明某定理的公式成立时,我们还需要证明它适用于更广泛的情况。

这一步的关键问题是,我们已经知道基准情况以及在某些情况下成立,所以我们也就需要证明除此之外的其他情况均成立。

在运用数学归纳法时,我们需要确保对这些所谓的“其他情况”进行明确的定义,并给出符合这些条件的例子以加强证明的可行性和可靠性。

6. 思考如何使用归纳法学会如何正确运用数学归纳法并不容易,需要经过实践和思考。

高中数学中的数学归纳法应用解题技巧

高中数学中的数学归纳法应用解题技巧

高中数学中的数学归纳法应用解题技巧数学归纳法是高中数学中常见的一种解题方法,它通常用于证明数学结论或者计算数列等。

但是,并不是所有的数学归纳法都适用于所有的数学问题,在实际解题中,我们需要根据具体问题具体分析,选择合适的数学归纳法作为解题方法。

本文将详细介绍在高中数学中,如何应用数学归纳法解题。

一、数学归纳法的基本原理数学归纳法是一种证明方法,它基于如下原理:如果能够证明一个命题对于某一个正整数成立,同时能够证明它对于任何一个大于该正整数的正整数也成立,那么可以证明这个命题对所有正整数都成立。

数学归纳法的证明分为两步:第一步是证明当$n=1$时命题成立;第二步是假设$n=k$时命题成立,证明$n=k+1$时命题也成立。

这样证明完了这两步之后,便可以得出结论:这个命题对于所有正整数都成立。

二、数学归纳法的应用技巧1. 注意命题的表述方式在应用数学归纳法解题时,需要注意命题的表述方式。

一般来说,命题的表述应该是对于所有正整数$n$,某一个性质成立,而不是只对于某一个正整数成立。

比如说,我们要证明所有的正整数的平方都大于该正整数本身,那么命题的表述应该是对于所有正整数$n$,$n^2>n$ 成立,而不是只对于某一个正整数成立。

2. 确定归纳假设在利用数学归纳法证明某一结论时,需要先确定归纳假设。

归纳假设是指我们假设当$n=k$时命题成立,然后尝试证明当$n=k+1$时命题也成立。

归纳假设的选择很关键,一般来说,需要根据命题的特点和数学归纳法的思想,选择合适的归纳假设。

3. 找到证明方法在确定归纳假设之后,需要找到一个证明方法,证明当$n=k+1$时命题也成立。

这个证明方法可以直接由归纳假设推导得到,或者是通过某些算术变形、代数运算等得到。

需要注意的是,证明方法必须是正确的,不能有逻辑漏洞或者不严谨的地方。

三、数学归纳法的实例下面通过两个实例来说明如何应用数学归纳法解题。

实例1:证明$1+3+5+...+(2n-1)=n^2$解:首先进行基本步骤的证明,当$n=1$时,显然,$1=1^2$,公式成立。

22人教版高中数学新教材选择性必修第二册--4.4数学归纳法

22人教版高中数学新教材选择性必修第二册--4.4数学归纳法

4.4*数学归纳法课标解读课标要求素养要求1.了解数学归纳法的原理;2.能用数学归纳法证明数列中的一些简单命题.1.逻辑推理——能用数学归纳法证明数列命题;2.数学运算——能利用数列的公式进行计算.自主学习·必备知识教材研习教材原句一般地,证明一个与①正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n=n0(n0∈N∗)时命题成立;(2)(归纳递推)以“当n=k(k∈N∗,k≥n0)时命题成立”为条件,推出“当②n=k+1时命题也成立”.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,这种证明方法称为数学归纳法.记P(n)是一个关于正整数n的命题,我们可以把用数学归纳法证明的形式改写如下:条件:(1)P(n0)为真;(2)若P(k)(k∈N∗,k≥k0)为真,则P(k+1)也为真.结论:P(n)为真.自主思考1.正整数n0一定是1吗?答案:提示不一定.n0可以是1,也可以是2或3等其他正整数.名师点睛1.数学归纳法证明命题的适用范围数学归纳法是科学的证明方法,利用数学归纳法可以证明一些关于正整数n的命题.2.数学归纳法证明命题的基本思想数学归纳法是完全归纳法的一种,是一种归纳—演绎的推理方法.数学归纳法的理论依据是“自然数归纳原理”:设A(n)表示关于自然数n的一个命题,如果满足条件:(i)A(1)正确;(ii)假设A(k)成立,推断A(k+1)也成立,那么A(n)对一切自然数n都成立.其中(i)是验证,是证明的基础;(ii)是假设A(k)成立,通过演绎推理,推证出A(k+1)也正确.即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k∈N∗,k≥n0)时,命题成立.根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.3.再强调一点:完成第一步、第二步后,必须要下结论,其格式为:根据(1)(2)可知命题对任意n∈N∗都成立.所以用数学归纳法证明概括起来就是“两个步骤,一个结论”.互动探究·关键能力探究点一数学归纳法的概念自测自评1.用数学归纳法证明凸n边形的内角和为(n−2)π,第一步应该证明( )A.当n=1时命题成立B.当n=2时命题成立C.当n=3时命题成立D.当n=4时命题成立答案:C解析:边数最少的凸n边形是三角形,所以第一步应该证明当n=3时,三角形的内角和为π.2.用数学归纳法证明1+3+5+⋯+(2n−1)=n2(n∈N∗)成立.那么,“当n=1时,命题成立”是“当n∈N∗时,命题成立”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:“当n=1时,命题成立”不一定能推出“当n∈N∗时,命题成立”,“当n∈N∗时,命题成立”可以推出“当n=1时,命题成立”,所以“当n=1时,命题成立”是“当n∈N∗时,命题成立”的必要不充分条件,故选B.3.用数学归纳法证明−1+3−5+⋯+(−1)n(2n−1)=(−1)n n(n∈N∗)成立.假设当n= k时等式成立,那么证明当n=k+1时等式也成立,该等式为( )A.−1+3−5+⋯+(−1)k(2k−1)=(−1)k kB.−1+3−5+⋯+(−1)k+1(2k−1)=(−1)k+1(k+1)C.−1+3−5+⋯+(−1)k+1(2k+1)=(−1)k(k+1)D.−1+3−5+⋯+(−1)k+1(2k+1)=(−1)k+1(k+1)答案:D4.(★)用数学归纳法证明命题:“对于一切正整数n,等式12−22+32−42+⋯+(−1)n−1n2=(−1)n−1n(n+1)成立”.2第一步证明当n=1时, 成立;第二步证明从“假设n=k时等式成立”到“n= k+1时等式也成立”时,等式两边应同时加上.;; (−1)k(k+1)2答案:12=(−1)0×1×22成立”.解析:第一步证明“当n=1时,12=(−1)0×1×22第二步证明“假设n=k(k∈N∗)时等式12−22+32−42+⋯+(−1)k−1k2=(−1)k−1⋅k(k+1)成立,2则当n=k+1时,等式12−22+32+⋯+(−1)k−1⋅k2+(−1)k(k+1)2=(−1)k(k+1)(k+2)2也成立”,所以假设成立的等式两边应同时加上(−1)k(k+1)2.解题感悟理解数学归纳法证明命题的特点与方法步骤1.数学归纳法主要用于研究与证明与正整数有关的命题,但并不是所有与正整数有关的命题都能用数学归纳法证明.2.用数学归纳法证明命题时,n0是命题成立的第一个正整数,并不一定所有的第一个允许值n0都是1.3.用数学归纳法证明命题的过程可以概括为“两个步骤,一个结论”.探究点二用数学归纳法证明与正整数有关的等式精讲精练例用数学归纳法证明:2+4+6+⋯+2n=n2+n(n∈N∗).答案:证明(1)当n=1时,左边=2,右边=2,等式成立.(2)假设当n=k(k是任意正整数)时,等式成立,即2+4+6+⋯+2k=k2+k,则当n=k+1时,2+4+6+⋯+2k+2(k+1)=k2+k+2(k+1)=(k+1)2+(k+ 1),所以当n=k+1时,等式也成立.根据(1)(2)可知,等式2+4+6+⋯+2n=n2+n对任意n∈N∗都成立.变式下面关于用数学归纳法证明“2+4+6+⋯+2n=n2+n+1(n∈N∗)”的过程是否正确?说明理由.答案:证明假设n=k时等式2+4+6+⋯+2k=k2+k+1成立,那么当n=k+1时,2+4+6+⋯+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1.即当n=k+1时等式也成立.所以2+4+6+⋯+2n=n2+n+1对一切正整数n都成立.解析:不正确.用数学归纳法证明命题的两个步骤缺一不可,特别是第一步,往往看起来十分简单,但却是不可忽视的步骤.当n=1时,左边=2,右边=3,左边≠右边,事实上,等式对任何正整数n都不成立,即对一切正整数n,总有2+4+6+⋯+2n=n2+n<n2+n+1.解题感悟用数学归纳法证明等式的注意事项1.第一步是证明的基础,只有证明对第一个正整数n0等式成立,第二步证明才有意义.2.用数学归纳法证明与正整数有关的数学命题的步骤中,证明的难点和重心是第二步,即“假设n =k 时命题成立,证明n =k +1 时命题也成立”.3.运用数学归纳法证明命题的注意事项:递推基础不可少,归纳假设要用到,结论写明莫忘掉. 迁移应用1.用数学归纳法证明:2+4+8+⋯+2n =2n+1−2(n ∈N ∗) . 答案:(1)当n =1 时,左边=2,右边=2,等式成立.(2)假设当n =k(k 是任意正整数)时,等式成立,即2+4+8+⋯+2k =2k+1−2 , 则当n =k +1 时,2+4+8+⋯+2k +2k+1=2k+1−2+2k+1=2⋅2k+1−2=2(k+1)+1−2 ,所以当n =k +1 时,等式也成立.根据(1)(2)可知,等式2+4+8+⋯+2n =2n+1−2 对任意n ∈N ∗ 都成立.探究点三 用数学归纳法证明与正整数有关的不等式精讲精练例已知数列{a n } 的前n 项和为S n , 若a n =√n(n +1) .利用数学归纳法证明:n(n+1)2<S n <(n+1)22.答案:先证明S n <(n+1)22:(1)当n =1 时,S 1=a 1=√2<(1+1)22=2, 不等式成立.(2)假设当n =k(k ∈N ∗) 时, S k <(k+1)22成立,则当n =k +1 时,S k+1=S k +√(k +1)(k +2)<(k+1)22+√(k +1)(k +2)<(k+1)22+(k+1)+(k+2)2=(k+2)22.所以当n =k +1 时,S k+1<[(k+1)+1]22也成立.由(1)和(2)可知,原不等式对一切n ∈N ∗ 均成立. 同理,可以证明n(n+1)2<S n ,所以n(n+1)2<S n <(n+1)22.解题感悟关于证明不等式的放缩技巧1.本题在由n =k 到n =k +1 的推证过程中应用了“放缩”的技巧,使问题简单化,这是利用数学归纳法证明不等式时常用的方法之一.2.常见的不等式的放缩技巧:n<√n(n+1)<n+1;1 (n+1)2<1n(n+1)<1n2.迁移应用1.用数学归纳法证明:1n+1+1n+2+⋯.+13n>56(n≥2,n∈N∗).答案:(1)当n=2时,左边=13+14+15+16>56,不等式成立.(2)假设当n=k(k≥2,k∈N∗)时不等式成立,即1k+1+1k+2+⋯+13k>56,则当n=k+1时,1 (k+1)+1+1(k+1)+2+⋯.+13k+13k+1+13k+2+13(k+1)=1k+1+1k+2+⋯+13k+(13k+1+13k+2+13k+3−1k+1)>56+(13k+1+13k+2+13k+3−1k+1)>56+(3×13k+3−1k+1)=56,所以当n=k+1时不等式也成立.由(1)和(2)可知,原不等式对一切n≥2,n∈N∗均成立.探究点四用数学归纳法证明整除问题精讲精练例用数学归纳法证明:11n+1+122n−1能被133整除(n∈N∗).答案:①当n=1时,11n+1+122n−1=112+12=133能被133整除,所以n=1时结论成立.②假设当n=k(k∈N∗)时,11k+1+122k−1能被133整除,那么当n=k+1时,11k+2+122k+1=11k+1×11+122k−1×122=11k+1×11+122k−1×11−122k−1×11+122k−1×122=11×(11k+1+122k−1)+133×122k−1.由归纳假设可知11×(11k+1+122k−1)+133×122k−1能被133整除,即11k+2+122k+1能被133整除,所以n=k+1时结论也成立.综上,由①②得,n∈N∗时11n+1+122n−1能被133整除.解题感悟证明整除问题的方法技巧——“凑项”证明整除问题的关键是“凑项”,即采用增项、减项、拆项和因式分解等手段,将n=k+1时的式子凑出n=k时的式子,从而通过归纳假设使问题获证.迁移应用1.用数学归纳法证明:42n+1+3n+2能被13整除,其中n∈N∗.答案:①当n=1时,42×1+1+31+2=91能被13整除.②假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1⋅42+3k+2⋅3+42k+1⋅3−42k+1⋅3=42k+1⋅13+3⋅(42k+1+ 3k+2),∵42k+1⋅13能被13整除,42k+1+3k+2能被13整除,∴当n=k+1时结论也成立.由①②得n∈N∗时,42n+1+3n+2能被13整除.评价检测·素养提升课堂检测1.用数学归纳法证明“1−12+13−14+⋯.+12n−1−12n=1n+1+1n+2+⋯+12n”时,由n=k的假设证明n=k+1时,如果从等式左边证明右边,则必须证得右边为( )A.1k+1+⋯+12k+12k+1B.1k+1+⋯+12k+12k+1+12k+2C.1k+2+⋯+12k+12k+1D.1k+2+⋯+12k+1+12k+2答案:D解析:由所证明的等式,当n=k+1时,右边=1(k+1)+1+⋯+12(k+1)−1+12(k+1)=1k+2+⋯.+12k+1+12k+2,故选D.2.对于不等式√n2+n≤n+1(n∈N∗),某同学的证明过程如下:(1)当n=1时,√12+1≤1+1,不等式成立.(2)假设n=k(k∈N∗)时,不等式成立,即√k2+k≤k+1,则当n=k+1时,√(k+1)2+(k+1)=√k2+3k+2<√(k2+3k+2)+(k+2)=√(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立.下列关于证明过程的叙述正确的是( )A.过程全都正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确答案:D解析:当n=1时,对不等式的验证正确,归纳假设也正确,但从n=k到n=k+1的推理过程中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故选D.3.(2021山东枣庄高二检测)用数学归纳法证明(n+1)(n+2)⋅(n+3)…(n+n)=2n×1×3×5×….×(2n−1)(n∈N∗)的过程中,当n从k到k+1时,等式左边应增乘的式子是( )A.2k+1B.(2k+1)(2k+2)C.(2k+1)(2k+2)k+1D.2k+2k+1答案:C4.在用数学归纳法证明等式1+2+3+⋯+(n+3)=(n+3)(n+4)2(n∈N∗)时,第一步验证n=1时,左边式子为.答案:1+2+3+4解析:当n=1时,n+3=4,故左边应为1+2+3+4.5.用数学归纳法证明:n∈N∗时,11×3+13×5+⋯+1(2n−1)(2n+1)=n2n+1.答案:①当n=1时,左边=11×3,右边=12×1+1=13,左边=右边,所以等式成立.②假设n=k(k∈N∗)时,等式成立,即有11×3+13×5+⋯+1(2k−1)(2k+1)=k2k+1,则当n=k+1时,1 1×3+13×5+⋯+1(2k−1)(2k+1)+1(2k+1)(2k+3)=k2k+1+1(2k+1)(2k+3)=k(2k+3)+1(2k+1)(2k+3)=2k2+3k+1(2k+1)(2k+3)=k+12k+3=k+12(k+1)+1.所以n=k+1时,等式也成立.由①②可知,对一切n∈N∗等式都成立.素养演练数学运算与逻辑推理——归纳、猜想与证明1.(2020全国课标Ⅲ,17,12分)设数列{a n}满足a1=3,a n+1=3a n−4n. (1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n .答案:(1)由a1=3,a n+1=3a n−4n得a2=3a1−4=9−4=5,a3=3a2−8=15−8= 7,由数列{a n}的前三项可猜想数列{a n}是以3为首项,2为公差的等差数列,即a n=2n+1. 证明如下:当n=1时,a1=3成立;假设n=k时,a k=2k+1成立,那么n=k+1时,a k+1=3a k−4k=3(2k+1)−4k=2k+3=2(k+1)+1,即当n= k+1时也成立.则对任意的n∈N∗,都有a n=2n+1成立.(2)由(1)可知,a n⋅2n=(2n+1)⋅2n,则S n=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2S n=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得−S n=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即S n=(2n−1)⋅2n+1+2.素养探究:归纳—猜想—证明的思想方法:数学归纳法作为证明与正整数有关的命题的一种重要方法,常常体现在“归纳—猜想—证明”这一基本推理证明的思想方法中.一方面可用数学归纳法证明已有的与自然数有关的结论;另一方面,要能用不完全归纳法去发现某些结论、规律并用数学归纳法证明其正确性,形成“归纳—猜想—证明”的思想方法,这是发生发展新结论更重要的方法途径.迁移应用1.已知数列{a n}的前n项和为S n,其中a n=S nn(2n−1),且a1=13.(1)求a2,a3;(2)猜想数列{a n}的通项公式,并证明.答案:(1)由题意得a2=S22×(2×2−1)=a1+a26,又a1=13,解得a2=115,类似地求得a3=135.(2)由a1=11×3,a2=13×5,a3=15×7,…,猜想a n=1(2n−1)(2n+1).证明:①当n=1时,由(1)可知等式成立;②假设当n=k时等式成立,即a k=1(2k−1)(2k+1),那么当n=k+1时,由题设a n=S nn(2n−1),得a k=S kk(2k−1),a k+1=S k+1(k+1)(2k+1),所以S k=k(2k−1)a k=k(2k−1)(2k−1)(2k+1)=k2k+1,S k+1=(k+1)(2k+1)a k+1,a k+1=S k+1−S k=(k+1)(2k+1)a k+1−k2k+1,因此,k(2k+3)a k+1=k2k+1,所以a k+1=1(2k+1)(2k+3)=1[2(k+1)−1][2(k+1)+1],即当n=k+1时等式成立.由①②可知等式对任何n∈N∗都成立,即a n=1(2n−1)(2n+1).课时评价作业基础达标练1.用数学归纳法证明1+a+a2+⋯+a n+1=1−a n+21−a(n∈N∗,a≠1),在验证n=1时,式子左边为( )A.1B.1+a+a2C.1+aD.1+a+a2+a3答案:B2.观察等式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10= 72,……,则第n个式子是( )A.n+(n+1)+(n+2)+⋯+(2n−1)=n2B.n+(n+1)+(n+2)+⋯+(2n−1)=(2n−1)2C.n+(n+1)+(n+2)+⋯+(3n−2)=(2n−1)2D.n+(n+1)+(n+2)+⋯+(3n−1)=(2n−1)2答案:C3.(2020浙江绍兴高二检测)利用数学归纳法证明不等式1+12+13+⋯.+12n−1<f(n)(n≥2,n∈N∗)的过程中,由n=k变到n=k+1时,式子左边增加了( ) A.1项B.k项C.2k−1项D.2k项答案:D4.用数学归纳法证明n2≤2n(n为自然数且n≥4)时,第一步应( )A.证明当n=0时,n2<2nB.证明当n=5时,n2<2nC.证明当n =4 时,n 2=2n ,当n =5时,n 2<2nD.证明当n =5 时,n 2<2n ,当n =6时,n 2<2n 答案:C5.(多选)在用数学归纳法证明凸n 边形的对角线为12n(n −3) 条时,下列说法正确的是( ) A.第一步检验第一个值n 0 等于1 B.第一步检验第一个值n 0 等于3C.第二步假设凸k 边形的对角线为12k(k −3) 条,证明凸k +1 边形的对角线为12k(k −2)(k ≥3) 条D.第二步假设凸k 边形的对角线为12k(k −3) 条,证明凸k +1 边形的对角线为12(k +1)(k −2)(k ≥3) 条 答案:B ; D6.(2020湖南长沙明德中学高二检测)已知f(n)=(2n +7)⋅3n +9 ,若存在自然数m ,使得对任意n ∈N ∗ ,都能使m 整除f(n) ,则m 的最大值为( ) A.30B.26 C.36D.6 答案:C7.用数学归纳法证明不等式∑1i 3n i=1<2n−1n(n ≥2,n ∈N) 时,第一步应验证的不等式为 . 答案:1+123<328.(2020河南南阳高二月考)用数学归纳法证明“当n ∈N ∗ 时,1+2+22+23+⋯+25n−1 是31的倍数”时,当n =1 时,原式为 ,从n =k 到n =k +1 时需增添的项是 . 答案:1+2+22+23+24 ;; 25k +25k+1+25k+2+25k+3+25k+49.已知平面上有n(n ∈N ∗,n ≥3) 个点,其中任何三点都不共线,过这些点中任意两点作直线,设这样的直线共有f(n) 条,则f(5)= ,f(n +1)=f(n)+ . 答案:10; n解析:由题意得当n =k 时,有f(k) 条直线.当n =k +1 时,增加的第k +1 个点与原k 个点共连成k 条直线,即增加k 条直线,所以f(k +1)=f(k)+k ,即f(n +1)=f(n)+n , 又f(2)=1 ,所以f(3)=3,f(4)=6,f(5)=10 .10.如图,第n 个图形是由正n +2 边形“扩展”而来(n =1,2,3,…) ,则第n −2(n ≥3,n ∈N ∗) 个图形中共有 个顶点.答案:n(n +1)解析:当n =1 时,顶点共有3+3×3=3×4=12(个), n =2 时,顶点共有4+4×4=4×5=20(个), n =3 时,顶点共有5+5×5=5×6=30(个), n =4 时,顶点共有6+6×6=6×7=42(个),故第n 个图形共有顶点(n +2)+(n +2)(n +2)=(n +2)(n +3) 个, 所以第n −2 个图形共有顶点n(n +1) 个.素养提升练11.设f(x) 是定义在正整数集上的函数,且f(x) 满足:当f(k)≥k 2 成立时,总可推出f(k +1)≥(k +1)2 成立.那么,下列命题恒成立的是( ) A.若f(3)≥9 成立,则当k ≥1 时,均有f(k)≥k 2 成立 B.若f(5)≥25 成立,则当k ≤5 时,均有f(k)≥k 2 成立 C.若f(7)<49 成立,则当k ≥8 时,均有f(k)>k 2 成立 D.若f(4)=25 成立,则当k ≥4 时,均有f(k)≥k 2 成立 答案:D解析:对于选项A,若f(3)≥9 ,则当k ≥3 时,均有f(k)≥k 2 成立,故选项A 不符合题意. 对于选项B,要求逆推到比5小的正整数,与题设不符,故选项B 不符合题意. 对于选项C,没有说明f(8)≥82 ,故选项C 不符合题意.对于选项D,f(4)=25≥42 ,由题设的递推关系,可知结论成立,故选D. 12.用数学归纳法证明2n −12n +1>nn+1对任意的n ≥k(n,k ∈N ∗) 都成立,则k 的最小值为( ) A.1B.2C.3D.4 答案:C解析:当n =1 时,左边=2−12+1=13,右边=11+1=12,13<12,不等式不成立;当n =2 时,左边=22−122+1=35, 右边=22+1=23,35<23, 不等式不成立; 当n =3 时,左边=23−123+1=79, 右边=33+1=34=68,79>68, 不等式成立. 若对任意n ≥k(n,k ∈N ∗) 都成立,则k 的最小值为3.13.(2020四川宜宾宜宾珙县中学高二月考)若数列{a n } 满足a 1=1 ,a n+1 =2a n +1 (n =1,2,3,…),则a 5= ,归纳猜想a n = . 答案:31; 2n −1解析:因为a n+1=2a n +1(n =1,2,3,…),且a 1=1 .所以a 2=2×1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31 . 猜想a n =2n −1 用数学归纳法证明: ①当n =1 时,显然猜想成立;②假设n =k 时,a k =2k −1, 则a k+1=2a k +1=2×(2k −1)+1=2k+1−1, 故n =k +1 时,猜想也成立.综上,对所有正整数n ,都有a n =2n −1 .14.用数学归纳法证明:n 3+(n +1)3+(n +2)3 能被9整除(n ∈N ∗) . 答案:①当n =1 时,13+23+33=36 能被9整除,所以结论成立; ②假设当n =k(k ∈N ∗) 时,结论成立, 即k 3+(k +1)3+(k +2)3 能被9整除, 则当n =k +1 时,(k +1)3+(k +2)3+(k +3)3=[k 3+(k +1)3+(k +2)3]+[(k +3)3−k 3] =[k 3+(k +1)3+(k +2)3]+9k 2+27k +27 =[k 3+(k +1)3+(k +2)3]+9(k 2+3k +3).因为k 3+(k +1)3+(k +2)3 能被9整除,9(k 2+3k+3) 也能被9整除,所以(k +1)3+(k +2)3+(k +3)3 也能被9整除,即n =k +1 时,结论也成立. 由①②知,命题对任何n ∈N ∗ 都成立.15.是否存在常数a 、b 、c, 使得等式1×22+2×32+3×42+⋯+ n(n +1)2=n(n+1)12(an 2+bn +c) 对任何n ∈N ∗ 都成立?并证明你的结论.答案:假设存在常数a 、b 、c 使题中式子对任何n ∈N ∗ 都成立,则当n =1,2,3 时该式也成立,则{1×22=16(a +b +c),1×22+2×32=12(4a +2b +c),1×22+2×32+3×42=9a +3b +c,解方程组,得a =3,b =11,c =10 .下面用数学归纳法证明等式 1×22+2×32+3×42+⋯+n(n +1)2=n(n+1)12⋅(3n 2+11n +10) 对任何n ∈N ∗ 都成立.①当n =1 时,等式显然成立.②假设n=k时,等式成立.即1×22+2×32+3×42+⋯+k(k+1)2=k(k+1)12(3k2+11k+10),那么当n=k+1时,1×22+2×32+3×42+⋯+k(k+1)2+(k+1)(k+2)2=k(k+1)12(3k2+11k+10)+(k+1)(k+2)2=k+112[k(3k2+11k+10)+12(k+2)2]=(k+1)(k+2)12(3k2+17k+24)=(k+1)[(k+1)+1]12[3(k+1)2+11(k+1)+10].即当n=k+1时,等式也成立.综上所述,存在常数a=3,b=11,c=10,使得等式1×22+2×32+3×42+⋯+n(n+1)2=n(n+1)12(an2+bn+c)对任何n∈N∗都成立.创新拓展练16.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2nπ2)a n+sin2nπ2,n=1,2,3,….(1)求a3,a4以及数列{a n}的通项公式;(2)设b n=a2n−1a2n ,S n=b1+b2+⋯+b n.证明:当n≥6时,|S n−2|<1n.解析:命题分析本题综合考查数列的通项公式与前n项和、三角函数、不等式以及数学归纳法等知识,考查数学运算和逻辑推理素养.答题要领(1)先求出a3,a4,再根据数列的递推公式证明数列的奇数项为等差数列,偶数项为等比数列,并求通项公式.(2)先利用错位相减法求数列的前n项和,再利用数学归纳法证明与正整数有关的不等式. 答案:(1)因为a1=1,a2=2,所以a3=(1+cos2π2)a1+sin2π2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k−1(k∈N∗)时,a2k+1=[1+cos2(2k−1)π2]a2k−1+sin2(2k−1)π2=a2k−1+1,即a2k+1−a2k−1=1.所以数列{a2k−1}是首项为1,公差为1的等差数列, 因此a2k−1=k.当n=2 k(k∈N∗)时,a2k+2=(1+cos22kπ2)a2k+sin22kπ2=2a2k,即a2k+2a2k=2.所以数列{a2 k}是首项为2,公比为2的等比数列, 因此a2 k=2k故数列{a n}的通项公式为(2)由(1)知,b n=a2n−1a2n =n2n,所以S n=12+222+323+⋯+n2n,①1 2S n=122+223+324+⋯+n2n+1,②①-②得,12S n=12+122+123+⋯+12n−n2n+1=12[1−(12)n]1−12−n2n+1=1−12n−n2n+1,所以S n=2−12n−1−n2n=2−n+22n.故要证明当n≥6时,|S n−2|<1n 成立,只需证明当n≥6时,n(n+2)2n<1成立.下面用数学归纳法证明:(i)当n=6时,6×(6+2)26=4864=34<1成立;(ii)假设当n=k(k≥6)时不等式成立,即k(k+2)2k<1. 则当n=k+1时,(k+1)(k+3)2k+1=k(k+2)2k×(k+1)(k+3)2k(k+2)<(k+1)(k+3)(k+2)⋅2k<1.由(i)(ii)得当n≥6时,n(n+2)2n<1.即当n≥6时,|S n−2|<1n.方法感悟解答数列综合问题的方法技巧:1.根据条件求出数列的前几项,呈现数列的项的规律,如果数列的奇数项和偶数项分别由等差数列和等比数列构成,那么数列的通项公式要通过奇偶讨论表示为分段函数的形式.2.如果要证明的不等式与正整数有关,通常运用数学归纳法进行证明,注意数学归纳法证明命题的三个步骤.。

高中数学思想方法

高中数学思想方法

高中数学思想方法高中数学思想方法高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的.分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法2近年来,高考命题方向很明显地朝着对知识网络交汇点、数学思想方法及对数学能力的考查发展,考生在复习的过程中,应对所学知识进行及时的梳理,这里既包含对基础知识的整理,也包括对数学思想方法的总结。

【新教材】高中数学课件之数学归纳法

【新教材】高中数学课件之数学归纳法

【新教材】高中数学课件之数学归纳法一、教学内容本节课选自新教材高中数学必修三,主要涉及第十二章第一节“数学归纳法”。

详细内容包括数学归纳法的定义、应用步骤、以及数学归纳法在数列和不等式证明中的应用。

二、教学目标1. 理解数学归纳法的概念,掌握数学归纳法的应用步骤。

2. 能够运用数学归纳法证明数列的通项公式和不等式。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:数学归纳法证明过程中逻辑关系的理解,特别是递推关系的建立。

教学重点:数学归纳法的定义、应用步骤,以及其在数列和不等式证明中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:教材、练习本、笔。

五、教学过程2. 新课导入:讲解数学归纳法的定义,阐述其基本思想。

3. 例题讲解:以数列通项公式的证明为例,详细讲解数学归纳法的应用步骤,强调递推关系的建立。

4. 随堂练习:让学生尝试运用数学归纳法证明一个简单的不等式。

5. 知识拓展:介绍数学归纳法在数学竞赛中的应用。

六、板书设计1. 数学归纳法2. 定义:数学归纳法的概念及递推关系。

3. 步骤:数学归纳法的应用步骤。

4. 例题:数列通项公式证明。

5. 练习:简单不等式证明。

七、作业设计1. 作业题目:(1)运用数学归纳法证明:1+2+3++n = n(n+1)/2。

(2)运用数学归纳法证明:对于任意正整数n,都有2^n > n。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对数学归纳法的掌握情况,教学中存在的问题,以及改进措施。

2. 拓展延伸:引导学生研究数学归纳法在其它数学分支中的应用,如组合数学、数论等。

鼓励学生参加数学竞赛,提高运用数学归纳法解决问题的能力。

重点和难点解析1. 教学难点与重点的识别。

2. 例题讲解中数学归纳法应用步骤的详细阐述。

3. 作业设计中作业题目的难度和答案的准确性。

4. 课后反思及拓展延伸的深度和实用性。

数学归纳法教案含答案金锄头文库

数学归纳法教案含答案金锄头文库

数学归纳法教案含答案金锄头文库一、教学内容本节课选自高中数学教材《数学选修22》的第三章“数学归纳法”。

具体内容包括数学归纳法的概念、原理和应用。

详细内容如下:1. 数学归纳法的概念:介绍数学归纳法的基本思想和步骤。

2. 数学归纳法的原理:阐述数学归纳法的基本原理,包括基础步骤和归纳步骤。

3. 数学归纳法的应用:通过实例讲解数学归纳法在数学问题解决中的应用。

二、教学目标1. 理解数学归纳法的概念,掌握数学归纳法的基本步骤。

2. 能够运用数学归纳法解决简单的数学问题。

3. 培养学生的逻辑思维能力和推理能力。

三、教学难点与重点1. 教学难点:数学归纳法的基本原理和证明方法。

2. 教学重点:数学归纳法的概念、步骤和应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、《数学归纳法学习指导》。

五、教学过程1. 引入:通过一个实践情景(如:数列求和问题)引入数学归纳法的概念。

2. 新课导入:(1)介绍数学归纳法的概念和基本思想。

(2)讲解数学归纳法的基础步骤和归纳步骤。

3. 例题讲解:(1)讲解数学归纳法在数列求和中的应用。

(2)分析归纳假设在解题中的作用。

4. 随堂练习:(1)让学生独立完成数学归纳法的证明题。

(2)针对学生的解答进行点评,指出错误和不足。

六、板书设计1. 数学归纳法2. 内容:(1)数学归纳法的概念与步骤(2)数学归纳法的原理(3)数学归纳法的应用实例七、作业设计1. 作业题目:(1)证明:1+2+3++n = n(n+1)/2(2)证明:对于任意正整数n,都有2^n > n。

2. 答案:(1)证明:① 当n=1时,1=1(1+1)/2,等式成立。

② 假设当n=k时,1+2+3++k = k(k+1)/2,等式成立。

则当n=k+1时,1+2+3++k+(k+1) = k(k+1)/2 + (k+1) = (k+1)(k+2)/2,等式也成立。

(2)证明:① 当n=1时,2^1 > 1,不等式成立。

高中数学中的数学归纳法

高中数学中的数学归纳法

高中数学中的数学归纳法数学归纳法是一种重要的证明方法,在高中数学中也是一个重要的概念。

它是一种通过证明基础情况成立,再证明推理过程成立的方法,常用于证明自然数性质。

本文将介绍数学归纳法的基本原理、应用以及一些相关的数学问题。

一、数学归纳法的基本原理数学归纳法的基本原理是:如果能够证明以下两个条件成立,那么对于任意自然数n,命题P(n)都成立。

1. 基础情况:证明P(1)成立。

2. 推理过程:假设P(k)成立,证明P(k+1)也成立。

数学归纳法的基本思想是通过证明基础情况成立,再证明推理过程成立,从而得出结论。

它的证明过程类似于搭积木,每一块积木都依赖于前一块的存在,最终搭建出一个完整的结构。

二、数学归纳法的应用数学归纳法在高中数学中有广泛的应用,特别是在数列和不等式的证明中常常用到。

1. 数列的证明:数学归纳法可以用来证明数列的递推公式成立。

首先证明基础情况,即证明当n=1时递推公式成立;然后假设当n=k时递推公式成立,即P(k)成立;接着证明当n=k+1时递推公式也成立,即证明P(k+1)成立。

通过这样的证明过程,可以得出结论:递推公式对于任意自然数n都成立。

2. 不等式的证明:数学归纳法也可以用来证明不等式的成立。

首先证明基础情况,即证明当n=1时不等式成立;然后假设当n=k时不等式成立,即P(k)成立;接着证明当n=k+1时不等式也成立,即证明P(k+1)成立。

通过这样的证明过程,可以得出结论:不等式对于任意自然数n都成立。

三、数学归纳法的相关问题除了基本原理和应用,数学归纳法还与一些相关的数学问题密切相关。

1. 斐波那契数列:斐波那契数列是一个经典的数列,在数学归纳法中有着重要的应用。

斐波那契数列的递推公式为Fn = Fn-1 + Fn-2,其中F1 = 1,F2 = 1。

通过数学归纳法可以证明斐波那契数列的递推公式成立。

2. 整数的奇偶性:数学归纳法还可以用来证明整数的奇偶性。

首先证明基础情况,即证明1是奇数;然后假设k是奇数,证明k+1也是奇数。

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)
二、数学归纳法的证明步骤
1.证明:当 n 取第一个值 n0(如 n0=1 或 2 等)命题正确; 2.假设当 n=k(k∈N*,且 k≥n0)时命题成立,以此为前提,证明当 n=k+1 时命题也成立. 根据步骤 1,2 可以断定命题对于一切从 n0 开始的所有正整数 n 都成立. 其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证 据,解决的是延续性问题(又称传递性问题)。 注意: (1)不要弄错起始 n0:n0 不一定恒为 1,也可能为其它自然数(即起点问题). (2)项数要估算正确:特别是当寻找 n=k 与 n=k+1 的关系时,项数的变化易出现错误 (即跨度问题). (3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过
由归纳假设,凸
k
边形
A1A2A3…Ak
的对角线的条数为
1 2
k(k-3);对角线
A1Ak
是一条;而顶点 Ak+1 与另外(k-2)个顶点 A2、A3、…、Ak-1 可画出(k-2)条对角线,
所以凸(k+1)边形的对角线的条数是: 1 k(k-3)+1+(k-2)= 1 (k+1)(k-2)= 1
2
2
2.原理 数学归纳法首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有
效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法 想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你 可以:
① 证明第一张骨牌会倒。 ② 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。 ③ 那么便可以下结论:所有的骨牌都会倒下。
【解析】

高中数学思想方法总结详细

高中数学思想方法总结详细

高中数学思想方法总结详细高中数学思想方法总结高中数学作为一门重要的学科,培养了学生的逻辑思维能力、数理分析能力、问题解决能力和创新意识。

在学习高中数学的过程中,我们通过掌握各种解题方法和思想,提高了数学素养,培养了数学思维能力。

下面将对高中数学的思想方法进行总结。

第一,灵活运用数学方法。

高中数学是一门抽象的学科,要求学生能够将数学方法灵活运用于实际问题的解决中。

例如,解方程时可以运用代入法、消元法、配方法等,解几何问题时可以运用相似三角形、平行四边形等几何概念与性质解决。

掌握了不同方法的应用范围和解题思路,可以更好地处理和解决各类数学问题。

第二,建立数学模型。

数学模型是将实际问题抽象化、数学化的过程,它可以帮助我们更好地理解和分析问题,在解决实际问题时起到指导作用。

例如,在物理问题中,可以通过建立动力学模型、热力学模型等来研究和分析问题;在经济问题中,可以通过建立供求模型、投资模型等来分析市场变化和经济发展趋势。

建立数学模型需要灵活运用数学知识和方法,从实际问题中提取数学模型的要素,并通过数学方式进行求解和分析。

第三,探索解题思路。

在高中数学学习中,我们遇到的问题往往多种多样,需要我们灵活地运用各种解题思路。

例如,在证明题中,可以运用数学归纳法、反证法等推理方法进行证明;在最优化问题中,可以运用极值定理、微积分知识进行求解。

解题思路的选择是具有主观性的,有时需要通过尝试、探索,发现不同的思路和方法,从而解决问题。

探索解题思路培养了我们的创新意识和问题解决能力。

第四,用数学语言准确表达。

数学是一门精确的学科,要求我们用准确的数学语言进行表达,避免歧义和模糊。

在数学证明中,需要清晰地阐述前提、逻辑推理和结论,用符号表示和推导过程,用正确的数学术语进行描述和解释。

准确表达是数学思想的重要体现之一,也是向他人传递和交流数学思想的有效方式。

第五,培养综合运算能力。

高中数学中,往往需要综合运用多个数学概念和方法来解决问题。

数学思想方法-归纳与数学归纳法

数学思想方法-归纳与数学归纳法

不完全归纳法
归纳是解决许多数学问题常用的探索过程,猜想 的结论是否正确,最终还需严格证明,或通过举出反 例予以否定。在很多情况下,应用不完全归纳法探索 出的对某些规律性的认识,其结论往往超出了前提所 包含的范围,具有某些猜测的性质。因此,不完全归 纳法作为逻辑推理是不严密的。 但是,不完全归纳的作用仍然不可小觑,在探索 问题的过程中,这些方法能给人们提供研究的方向和 线索,帮助人们比较迅速地发现事物的规律。因此, 《课标》把这些“从已有的事实出发凭借经验和直觉 ,通过归纳和类比等推断某些结果”的推理形式称为 合情推理。
情形 一 二 各种条件 A B C B C 被研究的现象 a -
可以认为A是a产生的原因或者部分原因
例如:在种子、土地、气温相同的条件下如果施用有机 肥料就可以增产,若不施用有机肥料则产量低就可以说明 使用有机肥是增产的原因。
3、求同求异法
在一系列的情形中,凡有条件A的都有现象a出现,凡是 没有条件A的则现象a不出现,则可以认为A是a的原因。这 种方法比单纯的求同法或是求异法更为可靠。
情形 一 二 三 各种条件 A B C 被研究的现象 a a a 由上可以认为A是a的原因
A D E A F C
例如:伽利略观察到,摆场相等振幅不相等时, 摆动一个周期的时间不变,于是肯定了摆长是周 期的决定因素。
2、求异法
某种被研究的现象a,只在第一种情形出现,在第二中 情形不出现,而一、二两种情形除一中有条件A而二中没 有条件A外,其余条件都相同,可以认为A是现象a产生的 原因或者部分原因。
试验、归纳与数学归纳法
例在直角三角形ABC中,a,b为直角边,c 为斜边,n为正整数,比较an+bn与cn的大小 。
试验是归纳的基础,归纳才是试验本质的 “飞跃”。归纳正确与否经数学归纳法证明可 知,数学归纳法起保驾护航之功效。

高考数学解题思想方法 数学归纳法 试题

高考数学解题思想方法 数学归纳法 试题

智才艺州攀枝花市创界学校五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的局部对象具有的一共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

0“对任何自然数〔或者n≥n且n∈N〕结论都正确〞。

由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。

比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目的完成解题。

运用数学归纳法,可以证明以下问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

Ⅰ、再现性题组:1.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·2…(2n-1)〔n∈N〕,从“k到k+1〞,左端需乘的代数式为_____。

A.2k+1B.2(2k+1)C.211kk++ D.231kk++2.用数学归纳法证明1+12+13+…+121n-<n(n>1)时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的代数式的个数是_____。

A.2k-1B.2k-1C.2kD.2k+13.(k∈(94年高考)4.数列{a n}中,a1=1,当n≥2时an=an-1+2n-1,依次计算a2、a3、a4后,猜想an的表达式是_____。

A.3n-2B.n2C.3n-1D.4n-35.用数学归纳法证明342n ++521n +(n ∈N)能被14整除,当n =k +1时对于式子3412()k +++5211()k ++应变形为_______________________。

6.设k 棱柱有f(k)个对角面,那么k +1棱柱对角面的个数为f(k+1)=f(k)+_________。

【简解】1小题:n =k 时,左端的代数式是(k +1)(k +2)…(k +k),n =k +1时,左端的代数式是(k +2)(k+3)…(2k +1)(2k +2),所以应乘的代数式为()()21221k k k +++,选B ;2小题:〔2k +1-1〕-〔2k-1〕=2k,选C ;4小题:计算出a 1=1、a 2=4、a 3=9、a 4=16再猜想a n ,选B ; 5小题:答案〔342k ++521k +〕3k +521k +〔52-34〕;6小题:答案k -1。

高中数学解题八个思维模式和十个思维策略【精选文档】

高中数学解题八个思维模式和十个思维策略【精选文档】

高中数学解题八种思维模式和十种思维策略引言“数学是思维的体操”“数学教学是数学(思维)活动的教学。

”学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。

作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。

高中数学思维中的重要向题它可以包括:高中数学思维的基本形式高中数学思维的一般方法高中数学中的重要思维模式高中数学解题常用的数学思维策略高中数学非逻辑思维(包括形象思维、直觉思维)问题研究;高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究;高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性高中数学思维的基本形式从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a 同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式. 3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。

二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。

3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。

4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。

5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感.6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。

高中数学数学归纳法解析

高中数学数学归纳法解析

高中数学数学归纳法解析在高中数学学习过程中,归纳法(Mathematical Induction)是一种重要的证明方法,常常应用于数列、等式、不等式等数学问题的证明和推导过程中。

通过递推的方式,它可以帮助我们推广数学结论,解决一类问题,提高解题的效率。

本文将对高中数学中的归纳法进行解析和说明。

一、归纳法基本原理归纳法的基本思想是通过证明“第一步成立,第n步成立则第n+1步也成立”的方法,推导出某个结论在无穷个特定情形下成立。

归纳法主要包括三个步骤:1. 第一步:证明当n取某个特定值时结论成立,通常n=1或n=0;2. 第二步:假设当n=k时结论成立,即假设第k步成立;3. 第三步:通过上述假设,证明当n=k+1时结论也成立,即证明第k+1步成立。

通过上述三个步骤的证明,就可以得出结论在所有特定情形下成立的结论。

二、归纳法的应用举例1. 数列问题归纳法在数列问题的证明中经常被使用。

假设我们有一个数列an,首项a1满足某种条件,同时假设当n=k时结论成立,即an=k成立,通过归纳法证明当n=k+1时结论也成立,即an=k+1也成立。

举例来说,现有一个数列an,前两项已知,a1=1,a2=2,且an=an-1+an-2成立。

我们通过归纳法可以证明这个数列从第三项开始每一项都满足此公式。

2. 等式和不等式问题归纳法在等式和不等式问题的证明中同样可以发挥重要作用。

在证明某个等式或者不等式对于所有特定情形成立时,我们可以通过归纳法简化证明过程。

同样地,我们需要证明当n取特定值时等式或者不等式成立,假设当n=k时结论成立,通过归纳法证明当n=k+1时结论也成立。

举例来说,我们要证明n非负整数时,2的n次方大于等于n。

首先,我们证明当n=0时,2的0次方大于等于0是成立的。

然后,假设当n=k时2的k次方大于等于k成立,通过归纳法证明当n=k+1时结论也成立,即2的k+1次方大于等于k+1也成立。

三、总结归纳法是一种重要的数学证明方法,在高中数学学习中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、数学归纳法
数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是递推的依据。

实际上它使命题的正确性突破了有限,达到无限。

证明时,关键是k +1步的推证,要有目标意识。

Ⅰ、再现性题组: 1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2n
·1·2…(2n -1) (n ∈N ),从“k 到k +1”,左端需乘的代数式为_____。

A. 2k +1
B. 2(2k +1)
C. 211
k k ++ D.
231
k k ++ 2. 用数学归纳法证明1+
12+13+…+121
n -<n (n>1)时,由n =k (k>1)不等式成立,推证n =k +1时,左边应增加的代数式的个数是_____。

A. 2k -1
B. 2k
-1 C. 2k
D. 2k
+1
3. 某个命题与自然数n 有关,若n =k (k ∈N)时该命题成立,那么可推得n =k +1时该命题也成立。

现已知当n =5时该命题不成立,那么可推得______。

(xx 上海高考)
A.当n =6时该命题不成立
B.当n =6时该命题成立
C.当n =4时该命题不成立
D.当n =4时该命题成立
4. 数列{a n }中,已知a 1=1,当n ≥2时a n =a n -1+2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是_____。

A. 3n -2
B. n 2
C. 3
n -1
D. 4n -3
5. 用数学归纳法证明342
n ++521
n + (n ∈N)能被14整除,当n =k +1时对于式子3412
()k +++5211
()k ++应变形为_______________________。

6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k)+_________。

Ⅱ、示范性题组:
例1. 已知数列8113
22
··,得,…,
8212122
··n n n ()()
-+,…。

S n 为其前n 项和,求S 1、S 2、S 3、S 4,推测S n 公式,并用数学归纳法证明。

(xx 全国理) 【解】 计算得S 1=89,S 2=2425,S 3=4849,S 4
=8081 , 猜测S n =()()2112122
n n +-+ (n ∈N)
当n =1时,…
【注】 从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是探索性问题的证法,数列中经常用到。

(试值 → 猜想 → 证明)
【另解】 用裂项相消法求和:
例2. 设a n =12×+23×+…+n n ()+1 (n ∈N),证明:12n(n +1)<a n
<12
(n +1)2 。

【解】 当n =1时,a n =2,
12n(n+1)=12,12
(n+1)2=2 , ∴ n =1时不等式成立。

假设当n =k 时不等式成立,即:12k(k +1)<a k <12
(k +1)2 ,
当n=k+1时,1
2
k(k+1)+()()
k k
++
12<a k+1<
1
2
(k+1)2+()()
k k
++
12

【注】用数学归纳法解决与自然数有关的不等式问题,注意适当选用放缩法。

【另解】也可采用放缩法直接证明。

(抓住对n n()
+1的分析,注意与目标比较)
例3. 设数列{a
n }的前n项和为S
n
,若对于所有的自然数n,都有S
n

n a a
n
()
1
2
+
,证明{a
n
}是等
差数列。

(xx全国文)
【分析】要证等差数列,即证:a
n =a
1
+(n-1)d
【解】设a
2-a
1
=d,猜测a
n
=a
1
+(n-1)d
当n=1时,a
n =a
1
,∴当n=1时猜测正确。

假设当n=k时,猜测正确,即:a
k =a
1
+(k-1)d ,
当n=k+1时,a
k+1=S
k+1
-S
k

()()
k a a
k
++
+
1
2
11-
k a a
k
()
1
2
+
,解得a
k+1
=…

【注】注意问题转化成数学式及a
k+1
的得出。

【另解】可证a
n+1-a
n
= a
n
- a
n-1
而得:
Ⅲ、巩固性题组:
1.用数学归纳法证明:621
n-+1 (n∈N)能被7整除。

2.用数学归纳法证明: 1×4+2×7+3×10+…+n(3n+1)=n(n+1)2 (n∈N)。

3.n∈N,试比较2n与(n+1)2的大小,并用证明你的结论。

4.用数学归纳法证明等式:cos x
2
·cos
x
22
·cos
x
23
·…·cos
x
n
2
=sin
sin
x
x
n
n
2
2
·
(81年全国高考)
5.用数学归纳法证明: |sinnx|≤n|sinx| (n∈N)。

(85年广东高考)
6. 数列{a
n }的通项公式a
n

1
12
()
n+
(n∈N),设f(n)=(1-a
1
)(1-a
2
)…(1-a
n
),试求f(1)、
f(2)、f(3)的值,推测出f(n)的值,并用数学归纳法加以证明。

7.已知数列{a
n }满足a
1
=1,a
n
=a
n-1
cosx+cos[(n-1)x], (x≠kπ,n≥2且n∈N)。

①.求a
2和a
3
;②.猜测a
n
,并用数学归纳法证明你的猜测。

8. 设f(log
a x)=
a x
x a
()
()
2
2
1
1
-
-
, ①.求f(x)的定义域;②.在y=f(x)的图像上是否存在两个不同点,
使经过这两点的直线与x轴平行?证明你的结论。

③.求证:f(n)>n (n>1且n∈N)。

相关文档
最新文档