高考数学二轮复习 专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习

合集下载

2019-2020年高考数学二轮复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题课件

2019-2020年高考数学二轮复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题课件

考点整合 1.利用导数解决不等式恒成立问题的“两种”常用方法
(1)分离参数后转化为函数最值问题:将原不等式分离参数, 转化为不含参数的函数的最值问题,利用导数求该函数的 最值,根据要求得所求范围.一般地,f(x)≥a恒成立,只需 f(x)min≥a即可;f(x)≤a恒成立,只需f(x)max≤a即可. (2)转化为含参函数的最值问题:将不等式转化为某含待求 参数的函数的最值问题,利用导数求该函数的极值(最值), 伴有对参数的分类讨论,然后构建不等式求解.
[微题型2] 不等式恒成立求参数范围问题 【例1-2】 (1)已知函数f(x)=ax-1-ln x,a∈R.
①讨论函数 f(x)的单调区间; ②若函数 f(x)在 x=1 处取得极值,对∀x∈(0,+∞),f(x)≥bx -2 恒成立,求实数 b 的取值范围. (2)设 f(x)=xx+ln 1x,若对∀x∈[1,+∞),f(x)≤m(x-1)恒成立, 求 m 的取值范围.
间0,
4
k-2上单调递减.当 0<x< 4 k
k-k 2时,h(x)<h(0)=0,
即 f(x)<kx+x33.所以当 k>2 时,f(x)>kx+x33并非对 x∈(0,1)恒
成立.综上可知,k 的最大值为 2.
探究提高 (1)证明 f(x)≥g(x)或 f(x)≤g(x),可通过构造函数 h(x) =f(x)-g(x),将上述不等式转化为求证 h(x)≥0 或 h(x)≤0,从 而利用求 h(x)的最小值或最大值来证明不等式.或者,利用 f(x)min ≥g(x)max 或 f(x)max≤g(x)min 来证明不等式. (2)在证明不等式时,如果不等式较为复杂,则可以通过不等式 的性质把原不等式变换为简单的不等式,再进行证明.

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

高考数学二轮复习 专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习(

高考数学二轮复习 专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习(

创新设计(浙江专用)2017届高考数学二轮复习专题一函数与导数、不等式第5讲导数与不等式的证明、恒成立及能成立问题练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(浙江专用)2017届高考数学二轮复习专题一函数与导数、不等式第5讲导数与不等式的证明、恒成立及能成立问题练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(浙江专用)2017届高考数学二轮复习专题一函数与导数、不等式第5讲导数与不等式的证明、恒成立及能成立问题练习的全部内容。

专题一函数与导数、不等式第5讲导数与不等式的证明、恒成立及能成立问题练习一、选择题1.设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且f(0)=0,f错误!=0,则不等式f(x)<0的解集为( )A。

错误!B。

错误!C。

错误!D。

错误!解析如图所示,根据图象得不等式f(x)<0的解集为错误!。

答案C2。

若不等式2x ln x≥-x2+ax-3恒成立,则实数a的取值范围为()A。

(-∞,0) B。

(-∞,4]C。

(0,+∞) D.[4,+∞)解析条件可转化为a≤2ln x+x+错误!恒成立.设f(x)=2ln x+x+错误!,则f′(x)=错误!(x>0).当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增,所以f(x)min=f(1)=4.所以a≤4.答案B3.若存在正数x使2x(x-a)<1成立,则a的取值范围是( )A。

(-∞,+∞) B.(-2,+∞)C。

(0,+∞) D.(-1,+∞)解析∵2x(x-a)<1,∴a>x-12x 。

第5讲-利用导数研究不等式恒成立及相关问题PPT课件

第5讲-利用导数研究不等式恒成立及相关问题PPT课件
二轮数学第55讲利用导数研究不等式恒成立及相关问题二轮数学考向分析核心整合热点精讲阅卷评析二轮数学考向分析考情纵览年份考点20112012201320142015利用导数解决与函数有关的不等式恒成立问题21利用导数解决与不等式有关的问题212121212121二轮数学真题导航41
二轮·数学
第5讲 利用导数研究不等式恒成立及 相关问题
二轮·数学
考向分析 核心整合 热点精讲 阅卷评析
二轮·数学
考向分析
考情纵览
年份 考点
利用导数解 决与函数有 关的不等式 恒成立问题
利用导数解 决与不等式 有关的问题
2011 21
2012 21
2013 ⅠⅡ
21 21
2014


21
21
2015


21
二轮·数学
真题导航
1.(2014 新课标全国卷Ⅰ,理 21)设函数 f(x)=aexln x+ bex1 ,曲线 y=f(x)在点 x
由 f′(x0)=0 得 ex0 = 1 ,ln(x0+2)=-x0, x0 2
故 f(x)≥f(x0)= 1 +x0= x0 12 >0.综上,当 m≤2 时,f(x)>0.
x0 2
x0 2
二轮·数学
备考指要
1.怎么考 导数的综合应用是高考命题的重点与热点,每年高考都会考查这一知识点, 具有一定的难度与灵活性. 从知识层面上看,一般考查导数在其他知识中的应用,突出导数的工具性,其 中主要包括: (1)利用导数研究多项式函数、幂函数、分式函数、以e为底的对数和指数 函数的性质及求参数等综合问题; (2)求最值,以实际问题中的最优化问题形式呈现; (3)把导数与函数、方程、不等式、数列等结合综合考查. 从题目的结构层次上看,常以解答题的形式呈现,第一问一般以抽象导函数 值、抽象函数值、切线方程、极值为背景求函数的解析式,或给定参数的值 求函数单调区间问题,较为简单;第二问均为和不等式相联系,考查由不等式 恒成立求参数的取值范围或参数的最值问题、证明不等式等综合问题,常以 压轴题出现,具有一定的难度.

高中数学课件-第5讲 第2课时 利用导数证明不等式

高中数学课件-第5讲 第2课时 利用导数证明不等式

当 x∈-∞,-ln a时,f′(x)<0,f(x)单调递减, 当 x∈(-ln a,+∞)时,f′(x)>0,f(x)单调递增. 综上,当 a≤0 时,fx在 R 上单调递减; 当 a>0 时,fx在-∞,-ln a上单调递减,在-ln a,+∞上单调递 增. (2)证明:由(1)可知当 a>0 时,f(x)在(-∞,-ln a)上单调递减,在(- ln a,+∞)上单调递增, 所以 f(x)min=f(-ln a)=a1a+a+ln a=a2+ln a+1,
8
突破核心命题 限时规范训练
反思感悟
待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减 右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最 值,借助所构造函数的单调性和最值即可得证.
9
突破核心命题 限时规范训练
训练1 (2023·新课标Ⅱ卷节选)证明:当0<x<1时,x-x2<sin x<x. 证明:设f(x)=x-sin x,则f′(x)=1-cos x≥0, 所以函数f(x)在(0,1)上单调递增, 所以当x∈(0,1)时,f(x)>f(0)=0, 即x-sin x>0在(0,1)上恒成立, 所以sin x<x在(0,1)上恒成立. 设g(x)=sin x+x2-x, 则g′(x)=cos x+2x-1.
14
突破核心命题 限时规范训练
反思感悟
如果要证明的不等式由指数函数、对数函数、多项式函数组合而 成,往往进行指对分离,转化为证明g(x)≥h(x),分别求g(x)min,h(x)max进 行证明.
15
突破核心命题 限时规范训练
训练2 (2024·衡水模拟改编)已知函数f(x)=eln x-ex,证明:xf(x)- ex+2ex≤0.

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

高考文科数学二轮复习课件:专题1第5讲《导数与不等式的证明》课件

高考文科数学二轮复习课件:专题1第5讲《导数与不等式的证明》课件
15
(2)y=f(x)-g(x)=x2-ax+2+xln x, 由 y=0,得 a=x+2x+ln x. 令 h(x)=x+2x+ln x,则 h′(x)=x-1x2x+2. 当 x∈1e,e时,由 h′(x)=0,得 x=1. 所以,h(x)在1e,1上单调递减,在[1,e]上单调递增, 因此,hmin(x)=h(1)=3.
6
规律方法 利用导数证明不等式关键是把不等式变形后构造 恰当的函数,然后用导数判断函数的单调性或求出最值,达到 证明不等式的目的.
7ห้องสมุดไป่ตู้
【训练 1】 (2014·武汉调研考试)设 a 为实数,函数 f(x)=ex-
2x+2a,x∈R.
(1)求 f(x)的单调区间与极值;
(2)求证:当 a>ln 2-1 且 x>0 时,ex>x2-2ax+1.
16
由 h1e=1e+2e-1,h(e)=e+2e+1 比较可知 h1e>h(e),所以, 结合函数图象可得,当 3<a≤e+2e+1 时,函数 y=f(x)-g(x) 有两个零点.
规律方法 对于函数零点的个数的相关问题,利用导数和数形 结合的数学思想来求解.这类问题求解的通法是:(1)构造函数, 这是解决此类题的关键点和难点,并求其定义域;(2)求导数, 得单调区间和极值点;(3)画出函数草图;(4)数形结合,挖掘 隐含条件,确定函数图象与 x 轴的交点情况进而求解.
9
而 g(0)=0,从而对任意 x∈(0,+∞),g(x)>0. 即 ex-x2+2ax-1>0,故 ex>x2-2ax+1.
热点二 利用导数解决与函数零点(或方程的根)有关的问题 [微题型 1] 讨论方程根的个数 【例 2-1】 (2014·金丽衢十二校联合考试)已知函数 f(x)=(x2 -3x+3)·ex 的定义域为[-2,t](t>-2). (1)试确定 t 的取值范围,使得函数 f(x)在[-2,t]上为单调函数; (2)当 1<t<4 时,求满足f′exx0 0=23(t-1)2 的 x0 的个数.

第5节 第2课时 利用导数证明不等式--2025高中数学一轮复习课件基础版(新高考新教材)

第5节  第2课时 利用导数证明不等式--2025高中数学一轮复习课件基础版(新高考新教材)

3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
3(3 -1)

=
3(-1)(2 ++1)
.

令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
3
3
2
2 1
要证 f(x)>2ln a+2,即证 1+a +ln a>2ln a+2,即证 a -2-ln a>0 恒成立. ........ 7 分
2 1
令 g(a)=a -2-ln a(a>0),则
令 g'(a)<0,则
2
0<a< ,令
2
2 2 -1
= , ................................................ 8 分
2
2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习一、选择题1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ⎝ ⎛⎭⎪⎫-12=0,则不等式f (x )<0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <12B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <12C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或0<x <12D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12≤x ≤0或x ≥12解析 如图所示,根据图象得不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或0<x <12.答案 C2.若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为( ) A.(-∞,0) B.(-∞,4] C.(0,+∞)D.[4,+∞)解析 条件可转化为a ≤2ln x +x +3x恒成立.设f (x )=2ln x +x +3x,则f ′(x )=(x +3)(x -1)x2(x >0). 当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案 B3.若存在正数x 使2x(x -a )<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞)D.(-1,+∞)解析 ∵2x(x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-xln 2>0.∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞),故选D. 答案 D4.(2015·全国Ⅱ卷)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)解析 令F (x )=f (x )x,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A. 答案 A5.(2016·山东师范大学附中二模)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x的解集为( ) A.(-2,+∞) B.(0,+∞) C.(1,+∞)D.(4,+∞)解析 由f (x +2)为偶函数可知函数f (x )的图象关于x =2对称,则f (4)=f (0)=1.令F (x )=f (x )ex,则F ′(x )=f ′(x )-f (x )ex<0.∴函数F (x )在R 上单调递减.又f (x )<e x等价于f (x )ex<1,∴F (x )<F (0),∴x >0.答案 B 二、填空题6.已知不等式e x-x >ax 的解集为P ,若[0,2]⊆P ,则实数a 的取值范围是________. 解析 由题意知不等式e x-x >ax 在x ∈[0,2]上恒成立. 当x =0时,显然对任意实数a ,该不等式都成立.当x ∈(0,2]时,原不等式即a <e xx -1,令g (x )=e xx -1,则g ′(x )=e x(x -1)x2,当0<x<1时,g ′(x )<0,g (x )单调递减,当1<x <2时,g ′(x )>0,g (x )单调递增,故g (x )在(0,2]上的最小值为g (1)=e -1, 故a 的取值范围为(-∞,e -1). 答案 (-∞,e -1)7.已知函数f (x )=ln x -a ,若f (x )<x 2在(1,+∞)上恒成立,则实数a 的取值范围是________.解析 ∵函数f (x )=ln x -a ,且f (x )<x 2在(1,+∞)上恒成立, ∴a >ln x -x 2,x ∈(1,+∞). 令h (x )=ln x -x 2,有h ′(x )=1x-2x .∵x >1,∴1x-2x <0,∴h (x )在(1,+∞)上为减函数,∴当x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1. 答案 [-1,+∞) 8.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是________. 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]上能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.答案 ⎣⎢⎡⎭⎪⎫94,+∞ 三、解答题9.已知a ∈R ,函数f (x )=4x 3-2ax +a . (1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0. (1)解 由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x )=12⎝⎛⎭⎪⎫x -a 6⎝⎛⎭⎪⎫x +a 6,此时函数f (x )的单调递增区间为⎝⎛⎦⎥⎤-∞,-a 6和⎣⎢⎡⎭⎪⎫a6,+∞,单调递减区间为⎣⎢⎡⎦⎥⎤-a6,a 6.(2)证明 由于0≤x ≤1,故当a ≤2时,f (x )+|2-a |=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|2-a |=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1, 则g ′(x )=6x 2-2=6⎝ ⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33,于是所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|2-a |≥4x 3-4x +2>0.10.(2016·湖州一模)已知函数f (x )=ln x +x 2-ax (a 为常数). (1)若x =1是函数f (x )的一个极值点,求a 的值; (2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围. 解 f ′(x )=1x+2x -a .(1)由已知得:f ′(1)=0, 所以1+2-a =0,所以a =3.(2)当0<a ≤2时,f ′(x )=1x +2x -a =2x 2-ax +1x=2⎝ ⎛⎭⎪⎫x -a 42+1-a 28x.因为0<a ≤2,所以1-a 28>0,而x >0,即f ′(x )=2x 2-ax +1x>0,故f (x )在(0,+∞)上是增函数.(3)当a ∈(1,2)时,由(2)知,f (x )在[1,2]上的最小值为f (1)=1-a ,故问题等价于:对任意的a ∈(1,2),不等式1-a >m ln a 恒成立,即m <1-a ln a恒成立.记g (a )=1-aln a (1<a <2),则g ′(a )=-a ln a -1+aa (ln a )2.令M (a )=-a ln a -1+a ,则M ′(a )=-ln a <0, 所以M (a )在(1,2)上单调递减, 所以M (a )<M (1)=0,故g ′(a )<0, 所以g (a )=1-aln a 在a ∈(1,2)上单调递减,所以m ≤g (2)=1-2ln 2=-log 2e ,即实数m 的取值范围为(-∞,-log 2e].11.已知函数f (x )=ax +bx+c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1. (1)用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围; (3)证明:1+12+13+…+1n >ln(n +1)+n2(n +1)(n ≥1).(1)解 f ′(x )=a -bx 2,则有⎩⎪⎨⎪⎧f (1)=a +b +c =0,f ′(1)=a -b =1,解得⎩⎪⎨⎪⎧b =a -1,c =1-2a .(2)解 由(1)知,f (x )=ax +a -1x+1-2a . 令g (x )=f (x )-ln x =ax +a -1x+1-2a -ln x ,x ∈[1,+∞), 则g (1)=0,g ′(x )=a -a -1x 2-1x =ax 2-x -(a -1)x 2=a (x -1)⎝⎛⎭⎪⎫x -1-a a x 2,(ⅰ)当0<a <12时,1-aa>1.若1<x <1-aa,则g ′(x )<0,g (x )是减函数,所以g (x )<g (1)=0,即f (x )<ln x . 故f (x )≥ln x 在[1,+∞)上不成立. (ⅱ)当a ≥12时,1-aa≤1.若x >1,则g ′(x )>0,g (x )是增函数,所以g (x )>g (1)=0,即f (x )>ln x ,故当x ≥1时,f (x )≥ln x .综上所述,所求a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. (3)证明 法一 由(2)知:当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎝ ⎛⎭⎪⎫x -1x ≥ln x (x ≥1),且当x >1时,12⎝ ⎛⎭⎪⎫x -1x >ln x .令x =k +1k ,有ln k +1k <12⎝ ⎛⎭⎪⎫k +1k -k k +1= 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+1k -⎝ ⎛⎭⎪⎫1-1k +1,即ln(k +1)-ln k <12⎝ ⎛⎭⎪⎫1k +1k +1,k =1,2,3,…,n .将上述n 个不等式依次相加得ln(n +1)<12+⎝ ⎛⎭⎪⎫12+13+…+1n +12(n +1),整理得1+12+13+…+1n >ln(n +1)+n2(n +1).法二 用数学归纳法证明.①当n =1时,左边=1,右边=ln 2+14<1,不等式成立.②假设n =k 时,不等式成立,即 1+12+13+…+1k >ln(k +1)+k 2(k +1). 那么1+12+13+…+1k +1k +1>ln(k +1)+k 2(k +1)+1k +1=ln(k +1)+k +22(k +1).由(2)知:当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎝ ⎛⎭⎪⎫x -1x ≥ln x (x ≥1).令x =k +2k +1,得:12⎝ ⎛⎭⎪⎫k +2k +1-k +1k +2≥ln k +2k +1=ln(k +2)-ln(k +1).∴ln(k +1)+k +22(k +1)≥ln(k +2)+k +12(k +2).∴1+12+13+…+1k +1k +1>ln(k +2)+k +12(k +2).这就是说,当n =k +1时,不等式也成立.根据①和②,可知不等式对任何n∈N*都成立.。

相关文档
最新文档