直流辉光放电与射频辉光放电
辉光放电质谱应用和定量分析
辉光放电质谱应用和定量分析作者:吴赫淮鑫斌来源:《商品与质量·学术观察》2013年第04期摘要:辉光放电质谱(GDMS)是利用辉光放电源作为离子源的一种无机质谱方法。
本文作者介绍了GDMS的基本原理和特点,然后在应用和定量方面进行了深入研究。
关键词:辉光放电质谱深度分析应用定量分析辉光放电质谱法(GDMS)被认为是目前对固体导电材料直接进行痕量及超痕量元素分析的最有效的手段。
由于其可以直接固体进样,近20 年来已广泛应用于高纯金属、合金等材料的分析。
1、基本原理辉光放电(G10w Discharge)是一种低压气体放电现象,由于气体放电的操作简单,可以产生很强的离子流,所以在早期的质谱研究中,气体放电就被用作离子源。
在真空火花源发展之前,气体放电源体现了巨大的实用价值。
火花源质谱(SSMS)得到发展后,表现出了很强的分析能力,在相当长的一段时间里,辉光放电淡出了研究者的视野。
然而,随着火花源研究的不断深入,这种离子源的局限性也逐渐显露,而辉光放电源则以自身出色的稳定性重新获得了重视。
2、辉光放电质谱的特点2.1 辉光放电质谱的工作原理辉光放电质谱由辉光放电离子源和质谱分析器两部分组成。
辉光放电离子源(GD源)利用惰性气体(一般是氩气,压强约10-100Pa)在上千伏特电压下电离产生的离子撞击样品表面使之发生溅射,溅射产生的样品原子扩散至等离子体中进一步离子化,进而被质谱分析器收集检测。
辉光放电属于低压放电,放电产生的大量电子和亚稳态惰性气体原子与样品原子频繁碰撞,使样品得到极大的溅射和电离。
同时,由于GD源中样品的原子化和离子化分别在靠近样品表面的阴极暗区和靠近阳极的负辉区两个不同的区域内进行,也使基体效应大为降低。
GD 源对不同元素的响应差异较小(一般在10倍以内),并具备很宽的线性动态范围(约10个数量级),因此,即使在没有标样的情况下,也能给出较准确的多元素半定量分析结果,十分有利于超纯样品的半定量分析。
薄膜太阳能电池介绍
薄膜太阳能电池介绍
薄膜太阳能电池是一种新型的光伏器件,其核心原材料包括硅材料、非晶硅材料、CIGS材料和CdTe材料等。
其中,非晶硅材料是太阳能电池的核心原材料之一,具有降低制造成本、易于实现大面积和大批量连续生产等优点,是降低成本和提高光子循环效率的理想材料。
薄膜太阳能电池除了具有平面结构外,还具有可挠性和可制成非平面构造等特性,使其在应用范围上非常广泛,可以与建筑物结合或变成建筑物的一部分。
薄膜太阳能电池的制造方法包括电子回旋共振法、光化学气相沉积法、直流辉光放电法、射频辉光放电法、溅射法和热丝法等。
其中,射频辉光放电法由于其低温过程、易于实现大面积和大批量连续生产,已成为国际公认的成熟技术。
薄膜太阳能电池在光伏建筑一体化、屋顶并网发电系统以及光伏电站等领域有着广泛的应用前景。
此外,非晶硅薄膜太阳电池在高气温条件下衰减微弱,适合高温、荒漠地区建设电站。
同时,薄膜太阳能电池的原材料来源广泛、生产成本低、便于大规模生产,具有广阔的市场前景。
磁控溅射镀膜技术
暗区的宽度与电子的平均自
由程有关。
14
二、溅射镀膜的基本原理
靶材的位置
(一)直流辉光放电:
(4)负辉光区(辉光最强): 随着电子速度增大,很快获
得了足以引起电离的能量,于是 离开阴极暗区后使大量气体电离, 产生大量的正离子。
正离子移动速度慢,产生积 聚,电位升高;与阴极之间的电 位差成为阴极压降。
30
三、磁控溅射
溅射沉积方法有两个缺点:第一,沉积速率较低;第二,溅射所需 的工作气压较高。为了在低气压下进行高速溅射,必须有效的提高气体 的离化率,发展出了磁控溅射技术。 (一)磁控溅射的工作原理:
(一)直流辉光放电:
直流辉光放电是在真空度约1~10Pa的稀薄气体中,两个电极之间 在一定电压下产生的一种气体放电现象。
气体放电时,两电极之间的电压和电流的关系复杂,不能用欧姆定 律描述。
5
二、溅射镀膜的基本原理
6
二、溅射镀膜的基本原理
7
二、溅射镀膜的基本原理
由巴邢定律知,在气体成分和电极
材料一定的情况下,起辉电压V只与气 体压强P和电极距离d的乘积有关。
磁控溅射镀膜技术
3
二、溅射镀膜的基本原理
溅射镀膜基于高能离子轰击靶材时的溅射效应,整个溅 射过程都是建立在辉光放电的基础上,即溅射离子都来源于 气体放电。
➢ 放电方式: (1)直流溅射——直流辉光放电 (2)射频溅射——射频辉光放电 (3)磁控溅射——环状磁场控制下的辉光放电
4
二、溅射镀膜的基本原理
13
二、溅射镀膜的基本原理
(一)直流辉光放电:
(2)阴极辉光区:
电子通过阿斯顿暗区后,在
电场的作用下获得了足够的能量,
辉光放电发射光谱法在材料分析中的应用
收稿日期 : 2007212228
作者简介 :杨 明 ( 19782) ,男 ,湖北人 ,助研 ,主要从事元素分析及 ICP2AES实验室的管理和测试工作 ,发表
0. 2
Mo
1
0. 8
Nb
2
0. 6
Ni
3
0. 1
Si
3
0. 4
Ti
1
0. 6
V
1
1. 0
Zr
2
1. 5
图 1 辉光放电阴极溅射光源示意图 Fig. 1 Scheme of glow discharge cathodic sputtering
1. 3 应用特点 由于辉光放电属于低气压放电 ,具有高度的稳
型及镀层表观厚度的概念 [ 17 ] 。 Zdenek W eiss等人用辉光放电光谱法对硬涂层
近年来 ,科学家发现在许多情况下 ,材料表层组 成及结构对材料的性质有特殊的作用 ,因此表层分 析和逐层分析的重要性日益为分析家所关注 。通常 用于表面分析的手段有俄歇电子能谱 (AES) 、X 射 线光电子能谱 (XPS) 、二次离子质谱 ( SIM S)和辉光 放电发射光谱 ( GD 2OES) 等 [ 1 ] 。由于设备价格 、分 析准确度和精密度等不同 ,在日常分析中的应用也 不一定相同 。辉光放电发射光谱分析技术 ,近几年 来正在被广泛应用于新材料的研究开发和产品的质 量控制中 [ 2~6 ] 。
和放电气压对元素谱线发射强度及相对强度稳定性 的影响 ;测定了中低合金钢标准样品中 C、Si、M n、
(整理)电容感应耦合放电
2.2 电容耦合射频放电为了维持直流辉光放电,电极必须是可导电的。
如果其中一端或两端电极都不可导电,如当辉光放电用于绝缘材料的光谱化学分析或介质薄膜的沉积,此时电极表面附着绝缘材料,电极因正负电荷的积累而充电,辉光放电熄灭。
为了解 决这个问题,可以在电极间加交流电压,这样,每个电极都可以充当阳极和阴极,在电压正半周期时积累的部分电荷将会在电压负半周期时被抵消。
通常,电压频率为射频范围(1kHz-310kHz ,常见频率为13.56MHz )。
严格的说,在其他电压频率时,也会产生电容耦合放电,所以称其为交流放电更合适。
另外,频率应该很高,这样半个周期才会比绝缘体充满电的时间短。
否则,电极将会相继呈相反极性,引起短暂放电,而不是持续放电。
由计算可得,当所加电压频率大于100kHz 时,放电能持续。
实际上,很多射频辉光放电过程产生于13.56MHz 。
因为该频率是国际通信局规定的,其在传播一定能量的时候不会对通信产生干扰。
此时需要强调,所谓电容耦合,指的是将输入功率耦合为放电一种方式,也就是说,利用两个电极及其鞘层形成一个电容。
后面会讲到,射频功率也可以利用其它方法耦合放电。
在典型射频频率下,电子和离子的行为完全不同,这可通过它们不同的质量解释。
电子质量小,可以跟得上射频电压产生的时变电场的变化。
实际上,电子的固有频率,或所谓的电子等离子体频率为:;02εe e pe m e n w = e pe n f 9000=(Hz ) (1) e n 用3-cm 表示。
当电子密度从1010变化到31310-cm 时,等离子体频率由9×810变化至3×1010Hz ,比13.56MHz 大很多。
如果电压频率小于离子等离子体频率,离子可以跟得上鞘层内的电场的变化。
由于离子等离子体频率与质量呈反比,电子可以跟的上典型射频时电场的变化,而离子只能跟得上随时间均匀变化的电场。
电容耦合射频放电的另一个重要的方面是,自给偏压现象,也是由电子和离子质量的不同引起的。
薄膜物理与技术题库
一、填空题在离子镀膜成膜过程中,同时存在沉积和溅射作用,只有当前者超过后者时,才能发生薄膜的沉积薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。
1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。
2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm之间。
3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。
4.气体分子的速度具有很大的分布空间。
温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。
二、解释下列概念溅射:溅射是指荷能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值:称为平均自由程,饱和蒸气压:在一定温度下,真空室内蒸发物质与固体或液体平衡过程中所表现出的压力。
凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。
物理气相沉积法:物理气相沉积法(Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程真空蒸发镀膜法:是在真空室内,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。
在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将靶原子溅射出来,这些被溅射出来的原子带有一定的动能,并且会沿着一定的方向射向衬底,从而实现薄膜的沉积。
直流辉光放电与射频辉光放电
t = T/2
Vb = 1200 V,
C‘
t = T/2 时,Va 跳变为 +1000 V, 由于 C 上存有 –200 V电压(下正上负), Vb = 1200 V。
射频辉光放电>射频电极的自偏压(产生过程四)
T/2 < t < T
Vb → +100 V,
eee
C‘
T/2 < t < T 区间, 电子迅速中和C 上正电荷,Vb 快速下降至 +100 V, 相应地 Vb – Va = -900 V。
射频辉光放电>射频电极的自偏压(六)
实用中采用的正弦波电压及所产生 的直流自偏压。
summary
气体放电的伏安特性与分类 气体的击穿电压与气压的关系—帕邢定律 直流辉光放电 (放电区结构和分布、放电过程,空心阴极放电) 射频辉光放电 (射频放电的特点、自偏压的产生)
Appendix: 弹性碰撞界面与电子速度的关系
射频辉光放电>射频电极的自偏压(产生过程五)
V阿 ≈ -1000 V,
t=T
Vb ≈ -1900 V,
C‘
t = T 时,Va跳变为 -1000 V,由于 C 上存有 900 V电压(上正下负), Vb = -1900 V。
如上所示每经历一周期, Va都将更负一些。到若干周期以后,电压波形趋于稳定,整体向负 电位偏移而产生负的直流分量,即负的自偏压。
射频辉光放电的特点
击穿电压低,放电气压低,放电 易自持,电极可以放在放电室外 面等。
实际用于气体放电的射频源频率统一 为13.56 MHz,以避免干扰正常通讯。
射频辉光放电>射频电极的自偏压(产生过程一)
t=0
第四章_溅射镀膜
dnx nxdx
设x=0时,nx=n0,对上式积分
nx n0ex
如果阴极和阳极间的距离为d,在均匀电场中, 到达阳极的电子数为
nx n0ed
10
那么可以算出从阴极逸出的n0个电子所引起的电离次数,即所产生的新电子数 (或等量的正离子数)应为:
n0ed n0 n0 (ed 1)
20
EF段——在E点以后,电流平稳增加,而电压维持不变。这时两极之间出现辉光。“正 常辉光放电区”。在此阶段,放电自动调整阴极轰击面积。最初,轰击不均匀,主要集 中在阴极边缘附近或表面不规则处。但随着电源功率的增加,轰击区逐渐增大,直到阴 极面上的电流密度均匀为止。 辉光放电:随着电压继续增加,电流一直增加直到C点,电压突然降低,此时表明气体 已被击穿,Ub是击穿电压(点燃电压)。被击穿的气体发光放电称为辉光放电。这时的 电子和正离子来源于电子的碰撞和正离子的轰击,而不是自然的游离离子和电子,所以 称为自持放电。此时的电流密度与电压无关,而与极板上产生辉光的表面积有关,与阴 极材料及其形状、气体种类和压强有关。Un即Uzmin 由于正常辉光放电时的电流密度仍比较小,所以有时溅射选择在异常辉光放电区工作。
14
BC段——电压升高后,带电离子和电子获得了足够的能量,与中性气体分子发 生碰撞产生电离,电流平稳增加,但电压在电源高输出阻抗的限制下呈一常数。 “汤森放电区”(Townsend discharge)。 汤森放电:电压继续增加,电子的运动速度越来越快,它与中性气体之间的碰 撞有可能使分子电离出新的离子和电子,这些新的电子又加入向阳极加速的进 程中,从而碰撞电离出更多的气体分子。 B点电压Ub即为点燃电压Uz。 上述两种放电,都以有自然电离源为前提,如果没有游离的电子和正离子存在, 则放电不会发生。即,非自持放电。
第三章溅射薄膜制备技术
结果:任何与等离子体接触的表面自动处于一 个负电位,并在其表面处伴随有正电荷的积累。 形成等离子体鞘层。
鞘层电压:
V p
kTe e
ln(
m
1
)2
2.3me
典型值:-10V,并变化不大。
在薄膜制备中的意义:离子受到加速,轰击基片,
电子受到减速,需大的能量方能到达基片。
鞘层厚度b:与电子密度及温度有关,典型值100微米。
第一节、基本概念
1、溅射镀膜的定义:
高能离子在电场作
用下高速轰击阴极 (靶),经过能量
溅
交换与转移,靶材
粒子飞离出来,
淀积在基板上形成 薄膜。
射
离子轰击固体表曲所引起的各种效应
等离子体
占靶产物的85-90% 镀膜
SIMS分析
刻蚀,清洗
2、什么是等离子体
当温度增高到使原子(分子)间的热运动动能与 电离能相当的时候,变成(部分)电离气体,系 统的基本组元变成了离子和电子(可以包含大量 的原子和分子)。电磁力开始作用,这就是等离 子体状态。
原子作用势为Thomas-Fermi势 平均表面势垒;垂直入射
碰撞阻止能
1969年,Sigmund给出,当离子能量>1keV:
S 0.042 (m2 / m1)Sn (E)
U0
表面势垒, 一般取升华能
(m2
/
m1 )
0.15
0.13
m2 m1
若考虑原子的相互作用:
S
3.56 (m2
/
m1)
Z1Z 2
工作气压: ;
2. 真空度低,1-10Pa,方能维持放电。 3. 残留气体对膜层的污染较严重。 4. 淀积速率低,小于10nm/min; 5. 基板的温升高,辐照损伤大; 6. 靶材必须是良导体(直流)。
溅射的基本原理之辉光放电
溅射的基本原理——辉光放电
异常辉光放电区(EF)
当轰击覆盖住整个阴极表面之后,进一步 增加功率,放电电压和电流同时增加,进入非 正常辉光放电。
特点:电流增大时,放电电极间电压升高,且 阴极电压降与电流密度和气体压强有关。 阴极表面情况:此时辉光布满整个阴极,离子层已 无法向四周扩散,正离子层向阴极靠拢,距离缩短。 此时若想提高电流密度,必须增加阴极压降,使正 离子有更大的能量轰击阴极,使阴极更多的二次电 子才行。
Vd为辉光放电空间与 靶之间的电压
溅射的基本原理——辉光放电
辉光放电空间与靶和接地电极之间的电压存在如下关 系: 4
Vc Ad Vd Ac
式中,Ac 和 Ad 分别为容性耦合电极(靶)和直接耦合电极 (接地电极)的面积。 由于 Ad Ac ,所以 Vc Vd 。 在射频辉光放电时, 等离子体对接地的基片(衬底)只有极微小的轰击,而 对溅射靶进行强烈轰击使之产生溅射。
上述两种情况都以自然电离源为前提,且导电而不发光。因 此,称为非自持放电。
溅射的基本原理——辉光放电 过渡区CD
过 C 点后,发生“雪崩点火”, 离子轰击阴极,产生二次电子,二 次电子与中性气体分子发生碰撞, 产生更多的离子,离子再轰击阴极, 阴极产生更多的二次电子,大量的 离子和电子产生后,放电达到自持, 气体被击穿,开始起辉,两极间电 流剧增,电压迅速降低,放电呈现 负阻现象。
可认为正离子在空间不动,并形成更强的正空间电荷,对放 电起增强作用。
溅射的基本原理——辉光放电
耦合特性:电极表面电位自动偏置为负极性 二极管整流器 有效电流为零
溅射的基本原理——辉光放电
溅射靶与基片对称 配置,不能成膜。
溅射靶绝缘,并通 过电容耦合到射频电 源上;另一电极为直 接耦合电极(真空室 壁,接地电极) Vc为辉光放电空间与 靶之间的电压 靶 基片
磁控溅射原理
Making the IMPOSSIBLE possible
➢中频(MF)磁控溅射
15
中频交流磁控溅射可用在单个阴极靶系统中。 工业上一般使用孪生靶溅射系统。
让不可能成为可能
Making the IMPOSSIBLE possible
16
➢中频(MF)磁控溅射
中频交流孪生靶溅射的两个靶位上的工作波形
让不可能成为可能
Making the IMPOSSIBLE possible
➢磁控溅射分类
11
• 射频(RF)磁控溅射 • 直流(DC)磁控溅射 • 中频(MF)磁控溅射
让不可能成为可能
Making the IMPOSSIBLE possible
➢射频(RF)磁控溅射
12
右图为射频磁控溅射实验装 置示意图。
易打弧,不稳定 工作稳定,
在反应溅射中要严格 无打弧现象, 控制反应气体流量 溅射速率快
让不可能成为可能
Making the IMPOSSIBLE possible
➢Al背电极工艺参数
24
制备方法的选择:采用DC溅射铝平面矩形靶
工艺参数: • 本底真空2~3×10-3Pa
• 工作气压~0.3~0.6 Pa
21
➢中频(MF)磁控溅射
中频孪生旋转靶磁控溅射
让不可能成为可能
Making the IMPOSSIBLE possible
22
➢中频(MF)磁控溅射
中频反应磁控溅射中的“迟滞回线”现象
Process control:
high deposition rate
unstable transition mode.
• 电子运动路径变长,与Ar原子碰撞几率增加, 提高溅射效率。
磁控溅射原理1
让不可能成为可能
Making the IMPOSSIBLE possible
➢中频(MF)磁控溅射
17
TwinMag II
让不可能成为可能
Making the IMPOSSIBLE possible
18
➢中频(MF)磁控溅射
一种典型的平面矩形靶
让不可能成为可能
Making the IMPOSSIBLE possible
5-溅射靶 6-磁力线 7-电场
8-挡板
9-匹配网络
10-电源
11-射频发生器
射频溅射不适于工业生产应用 。
让不可能成为可能
Making the IMPOSSIBLE possible
➢直流(DC)磁控溅射
ⅰ. 直流磁控溅射的特点
直流磁控溅射装置图与射频磁 控溅射装置图相比,其不需要外部 复杂的网络匹配装置和昂贵的射频 电源装置,适合溅射导体或者半导 体材料。现已经在工业上大量使用 。
• 基片温度 ~200C
• 工作电压
• 工作功率密度
• 厚度~500~1000nm
让不可能成为可能
Making the IMPOSSIBLE possible
25
➢前、背电极ZAO工艺参数
制备方法的选择:采用MF溅射锌铝合金旋转靶材
工艺参数: • 本底真空4×10-4Pa
• 工作气压~2.0Pa
• 基片温度 ~200C
• 金属靶表面不断与反应气体( O2 等)生成化合物覆盖层从 而使溅射速率大幅度下降甚至不溅射,称之为靶中毒。
• 过多的反应气体(O2等)使金属靶材表面被氧化。 • 任何不稳定因素(如:电弧)都能破坏系统的平衡,导致
靶中毒。 • 在直流溅射中要非常注意溅射参数的控制。 • 使用射频磁控溅射可解决靶中毒问题。 • 使用中频磁控溅射可杜绝靶中毒问题。
溅射镀膜技术
溅射镀膜技术薄膜是一种特殊的物质形态,由于其在厚度这一特定方向上尺寸很小,只是微观可测的量,而且在厚度方向上由于表面、界面的存在,使物质连续性发生中断,由此使得薄膜材料产生了与块状材料不同的独特性能。
薄膜的制备方法很多,如气相生长法、液相生长法(或气、液相外延法)、氧化法、扩散与涂布法、电镀法等等,而每一种制膜方法中又可分为若干种方法。
薄膜技术涉及的范围很广,它包括以物理气相沉积和化学气相沉积为代表的成膜技术,以离子束刻蚀为代表的微细加工技术,成膜、刻蚀过程的监控技术,薄膜分析、评价与检测技术等等。
现在薄膜技术在电子元器件、集成光学、电子技术、红外技术、激光技术以及航天技术和光学仪器等各个领域都得到了广泛的应用,它们不仅成为一间独立的应用技术,而且成为材料表面改性和提高某些工艺水平的重要手段。
溅射是薄膜淀积到基板上的主要方法。
溅射镀膜是指在真空室中,利用荷能粒子轰击镀料表面,使被轰击出的粒子在基片上沉积的技术。
一.溅射工艺原理溅射镀膜有两类:离子束溅射和气体放电溅射1. 离子束溅射:在真空室中,利用离子束轰击靶表面,使溅射出的粒子在基片表面成膜。
特点:①离子束由特制的离子源产生②离子源结构复杂,价格昂贵③用于分析技术和制取特殊薄膜2. 气体放电溅射:利用低压气体放电现象,产生等离子体,产生的正离子,被电场加速为高能粒子,撞击固体(靶)表面进行能量和动量交换后,将被轰击固体表面的原子或分子溅射出来,沉积在衬底材料上成膜的过程。
二. 工艺特点1.整个过程仅进行动量转换,无相变2.沉积粒子能量大,沉积过程带有清洗作用,薄膜附着性好3.薄膜密度高,杂质少4.膜厚可控性、重现性好5.可制备大面积薄膜6.设备复杂,沉积速率低。
三.溅射的物理基础——辉光放电溅射镀膜基于高能粒子轰击靶材时的溅射效应。
整个溅射过程是建立在辉光放电的基础上,使气体放电产生正离子,并被加速后轰击靶材的离子离开靶,沉积成膜的过程。
不同的溅射技术采用不同的辉光放电方式,包括:直流辉光放电—直流溅射、射频辉光放电—射频溅射和磁场中的气体放电—磁控溅射1. 直流辉光放电指在两电极间加一定直流电压时,两电极间的稀薄气体(真空度约为13.3-133Pa)产生的放电现象。
辉光放电质谱法在高纯材料分析中的应用
辉光放电质谱法在高纯材料分析中的应用王爽;洪梅;白杉;徐平;王树英;郭雅尘;左文家;张腾月;周渊名;梁雪松【摘要】高纯材料是现代高新技术发展的基础,在电子、光学和光电子等尖端科学领域发挥着重要作用.采用固体样品直接分析的辉光放电质谱法(GDMS),在高纯金属、高纯半导体材料的痕量和超痕量杂质分析中有着非常广泛的应用.综述了GDMS法对高纯金属、高纯半导体材料进行的元素分析,并对分析过程中工作参数、溅射时间、干扰峰等因素的影响进行了阐述.同时,也详述了应用GDMS法对高纯金属钛、镉,高纯半导体硅,分别进行的痕量杂质元素分析,结果显示放电稳定性良好,典型元素含量的相对标准偏差均在较为理想范围内.GDMS应用前景广泛,未来,GDMS将在除固体样品之外的其他样品类型的分析领域中发挥重要作用.【期刊名称】《中国无机分析化学》【年(卷),期】2019(009)002【总页数】11页(P24-34)【关键词】辉光放电质谱法;高纯金属;高纯半导体;应用【作者】王爽;洪梅;白杉;徐平;王树英;郭雅尘;左文家;张腾月;周渊名;梁雪松【作者单位】锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;北京大学化学生物学与生物技术学院,广东深圳518055;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;北京大学化学生物学与生物技术学院,广东深圳518055;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000;锦州市产品质量监督检验所国家光伏材料质量监督检验中心,辽宁锦州121000【正文语种】中文【中图分类】O657.63;TH843前言辉光放电质谱法(Glow Discharge Mass Spectrometry,GDMS)是目前可以对固体导电样品直接进行痕量及超痕量元素分析最有效的手段之一[1-2],由于其样品制备简单,可固体直接进样,元素间灵敏度差异较小,具有优越的检测限和宽动态线性范围等优点,因而在近20多年来得到快速发展[3-5]。
薄膜物理与技术2020年最新题库
第一次作业1.试述狭义薄膜材料的概念。
答:薄膜,薄膜是一种薄而软的透明薄片。
用塑料、胶粘剂、橡胶或其他材料制成。
薄膜科学上的解释为:由原子,分子或离子沉积在基片表面形成的2维材料。
例:光学薄膜、复合薄膜、超导薄膜、聚酯薄膜、尼龙薄膜、塑料薄膜等等。
薄膜被广泛用于电子电器,机械,印刷等行业。
2.简述薄膜在形成稳定核之前及之后的生长过程?答:形成稳定核之前:沉积原子到达基片表面,会发生三种状态。
一种是能量较大,在到达基片表面时就会发生反射离开;如果能量较低,变会停留在基片表面,而另一部分原子能量较大,在到达基片表面时,会发生表面迁移扩散。
如果扩散原子在驻留时间内不能与其它原子结合形成更大原子团,就会发生再蒸发离开基片表面,而扩散原子团在驻留时间内不能与其它原子相结合,便会发生分解。
如果表面原子或原子团在驻留时间内能与其它原子结合,便形成更大原子团;原子团继续吸附其它原子就会不断长到形成稳定核;形成稳定核之后:大多数薄膜通过岛状生长,少部分通过层状生长模式或者层岛复合模式生长成薄膜。
详细过程为形成稳定核后,稳定核长大,彼此连接形成小岛,新面积形成,新面积吸附单体,发生“二次”成核,小岛结合形成大岛,大岛长大并相互结合,有产生新面积,并发生“二次”、“三次”成核;形成沟道和带有孔洞的薄膜;沟道填平,封孔,形成连续薄膜。
3.简述薄膜的生长过模式及主要的控制因素?答:(1)岛状生长模式;(2)层状生长模式;(3)层岛复合模式。
控制因素主要分两类:晶格失配度和基片表面(或者基片湿润性或浸润性);4.从沉积速率和沉积温度出发,简述如何形成单晶或者粗大晶粒?如何形成多晶、微晶甚至非晶?请给出简单图示?答:提高温度或降低沉积速率可以形成单晶或者粗大晶粒;降低温度或提高沉积速率可形成多晶、微晶甚至非晶。
5.薄膜外延生长的概念?影响实现外延生长主要因素是什么?在单晶基片上延续生长单晶薄膜的方法称为外延生长;温度、沉积速率、单晶基片;第二次作业1.真空的概念?怎样表示真空程度,为什么说真空是薄膜制备的基础?答:(1)真空概念:空在给定的空间内,气体的压强低于一个大气压的状态,称为真空;(2)真空程度:真空度、压强、气体分子密度:单位体积中气体分子数;气体分子的平均自由程;形成一个分子层所需的时间等;(3)物理气相沉积法中的真空蒸发、溅射镀膜和离子镀等是基本的薄膜制备技术。
薄膜物理与技术题库
一、填空题薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。
1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。
2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm之间。
3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。
4.气体分子的速度具有很大的分布空间。
温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。
二、解释下列概念溅射:溅射是指荷能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值:称为平均自由程,饱和蒸气压:在一定温度下,真空室内蒸发物质与固体或液体平衡过程中所表现出的压力。
凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。
物理气相沉积法:物理气相沉积法(Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程真空蒸发镀膜法:是在真空室内,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。
在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将靶原子溅射出来,这些被溅射出来的原子带有一定的动能,并且会沿着一定的方向射向衬底,从而实现薄膜的沉积。
薄膜制备技术PVD
编辑课件
16
(2)对于化合物和合成材料,常用各种蒸发法和热壁法。
1)闪蒸蒸发(瞬间蒸发):
呈细小颗粒或粉末的薄膜材料,以极小流量逐渐进入高 温蒸发源,使每个颗粒在瞬间全蒸发,成膜,以保证膜的 组分比例与合金相同。
2)多源蒸发: 组成合金薄膜的各元素,各自在单独的蒸发源中加热,蒸 发,并按薄膜材料组分比例成膜。
磁场之作用:
① 等离子束缚在靶表面 ② 电子作旋进运动,使原
子电离机会增加,能量耗 尽后落在阳极,基片温升 低、损伤小
编辑课件
43
编辑课件
44
编辑课件
45
(4)离子束溅射 采用单独的离子源产生用于轰击靶材的离子,原理见下图。
目前已有直径>10cm的宽束离子源用于溅射镀膜。
优点:
轰击离子的能量和 束流密度独立可控, 基片不直接接触等 离子体,有利于控 制膜层质量。
编辑课件
11
真空蒸镀主要特点
1、操作方便,沉积参数易于控制; 2、制膜纯度高,可用于薄膜性质研究; 3、可在电镜监测下镀膜,对薄膜生长过程和生长机理进行 研究; 4、膜沉积速率快,可以多块同时蒸镀; 5、沉积温度较高,膜与基片的结合强度不高。
编辑课件
12
装置:真空系统、蒸发系统、基片撑架、 挡板、监控系统
✓ 离子束由特制的离子源产生 ✓ 离子源结构复杂,价格昂贵 ✓ 用于分析技术和制取特殊薄膜
编辑课件
27
离子束与磁控溅射联合镀膜设备
编辑课件
28
2) 气体放电溅射 利用低压气体放电现象,产生等离子体,产生的正离子,
被电场加速为高能粒子,撞击固体(靶)表面进行能量和 动量交换后,将被轰击固体表面的原子或分子溅射出来, 沉积在衬底材料上成膜的过程。
直流反应溅射和射频反应溅射
直流反应溅射和射频反应溅射直流反应溅射和射频反应溅射的主要问题为: 直流反应溅射不稳定、工艺过程难控制、溅射速率较低; 射频反应溅射设备贵、匹配困难、有人身防护问题、射频电源功率低,溅射速率较低。
当然,对于绝缘靶材来说,仍然不得不使用射频溅射工艺。
在化合物溅射过程中,开始通入Ar,然后逐渐增加反应气体(O2、N2等),在反应气体刚通入之初,溅射速率变化并不大,当反应气体达到某一极限值时,溅射速率呈现出明显的变化,然后,继续增加反应气体,溅射速率又呈现平稳的趋势。
实验发现,这个走向的逆过程在一定区间内往返的曲线不重合,出现“滞回曲线”。
这就是所谓“靶中毒曲线”(如图2.1所示)。
图2.1 靶中毒曲线图反应溅射刚开始时,阴极周围接地的各种构件表面清洁,畅通接地。
逃逸出等离子体约束的电子将飘移到这些接地的表面,形成回路,溅射运行正常。
被溅射出来的化合物粒子通常是绝缘的,在继续的溅射过程中逐渐沉积在上述接地构件表面,使原来作为阳极的接地表面逐渐缩小。
最后,阳极表面完全被绝缘物覆盖,逃逸电子没有去处,形成“阳极消失”现象。
阳极消失现象使辉光放电阻断,放电过程变得越来越不稳定,最后导致频繁的异常弧光放电。
如果不消除阴极消失现象,直流反应溅射根本就无法运行。
化合物溅射过程中频繁出现的弧光放电现象长期以来都是难以克服的问题。
近几年对弧光放电的机理进行了系统的研究,对磁控溅射电源供电模式进行了多方面的改进,开发出一系列实用的新供电模式,例如A2K( Action Arc Killing)自动灭弧电源、非对称脉冲电源、中频交流磁控电源等。
1996年Leybold 推出多年研发的中频交流磁控溅射(孪生靶溅射)技术,消除了“阳极消失”效应和阴极“中毒”问题,大大提高了磁控溅射运行的稳定性,为化合物薄膜的工业化大规模生产奠定了基础[139]。
最近在中频电源上又提出短脉冲组合的中频双向供电模式,运行稳定性进一步提高。
交流溅射的电源电压波形可以是对称的,也可以是不对称的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
During the background ionization stage of the process the electric field applied along the axis of the discharge tube sweeps out the ions and electrons created by ionization from background radiation. Background radiation from cosmic rays, radioactive minerals, or other sources, produces a constant and measurable degree of ionization in air at atmospheric pressure. The ions and electrons migrate to the electrodes in the applied electric field producing a weak electric current. Increasing voltage sweeps out an increasing fraction of these ions and electrons.
The regime between A and E on the voltage-current characteristic is termed a dark discharge because, except for corona discharges and the breakdown itself, the discharge remains invisible to the eye.
实验测得的曲线。 注意对应不同 Pd,Vs 有一极小值。
2. Glow Discharge
The glow discharge regime owes its name to the fact that the plasma is luminous. The gas glows because the electron energy and number density are high enough to generate visible light by excitation collisions.
F – G normal glow discharge
After a discontinuous transition from E to F, the gas enters the normal glow region, in which the voltage is almost independent of the current over several orders of magnitude in the discharge current. The electrode current density is independent of the total current in this regime. This means that the plasma is in contact with only a small part of the cathode surface at low currents. As the current is increased from F to G, the fraction of the cathode occupied by the plasma increases, until plasma covers the entire cathode surface at point G.
H - K Arc Discharges
At point H, the electrodes become sufficiently hot that the cathode emits electrons thermoionically. If the DC power supply has a sufficiently low internal resistance, the discharge will undergo a glow-to-arc transition, H-I. The arc regime, from I through K is one where the discharge voltage decreases as the current increases, until large currents are achieved at point J, and after that the voltage increases slowly as the current increases.
B - C The saturation region
Here radiation induces saturation current change
If the voltage between the electrodes is increased far enough, eventually all the available electrons and ions are swept away, and the current saturates. In the saturation region, the current remain constant while the voltage is increased. This current depends linearly on the radiation source strength, a regime useful in some radiation counters. (e.g. 盖革计数器)
C - D Electron avalanche and the Townsend discharge
If the voltage across the low pressure discharge tube is increased beyond point C, the current will rise exponentially. The electric field is now high enough so the electrons initially present in the gas can acquire enough energy before reaching the anode to ionize a neutral atom. As the electric field becomes even stronger, the secondary electron may also ionize another neutral atom leading to an avalanche of electron and ion production. The region of exponentially increasing current is called the Townsend discharge.
E Electrical breakdown(Paschen’s Law)气体的击穿—帕邢定律
击穿电压
Vs
=
BPd ln( APd
)
ln 1
γ
上式称为帕邢定律,表示击穿
电压 Vs 是气压 P 与极间距离 d 乘积 的函数。其中A和B为常数,γ表示一 个正离子撞击阴极表面时平均从阴极 表面逸出的电子数目(二次电子发 射)。
电源
i
V
-
+
直流辉光放电区的结构
阳极暗区
电流密度
1. 阴极区
阴极区由Aston暗区,阴极辉区和阴极暗区(或称克罗克斯暗区)三部分组成。 极间电压大部分加在这里,电子被加速与气体原子碰撞,使原子激发或电离。
Aston Dark Space – A thin region to the right of the cathode with a strong electric field. The electrons are accelerated through this space away from the cathode. This region has a negative space charge, meaning that stray initial electrons together with the secondary electrons from the cathode outnumber the ions in this region. The electrons are too low density and/or energy to excite the gas, so it appears dark.
D - E Corona discharges
Corona discharges occur in Townsend dark discharges in regions of high electric field near sharp points, edges, or wires in gases prior to electrical breakdown. If the coronal cuurents are high enough, corona discharges can be technically “glow discharges”, visible to the eye. For low currents, the entire corona is dark, as appropriate for the dark discharges.
G – H anormal glow discharge
In the abnormal glow regime above point G, the voltage increases significantly with the increasing total current in order to force the cathode current density above its natural value and provide the desired current.