在数轴上表示不等式的解集常考题(详细的答案解析)word版本

合集下载

中考数学不等式与不等式祖专题训练50题(含参考答案)

中考数学不等式与不等式祖专题训练50题(含参考答案)

中考数学不等式与不等式祖专题训练含答案一、单选题1.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b 2.不等式5x ≥的解集在数轴上表示正确的是( )A .B .C .D . 3.一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3- 4.若a b >,则下列各式正确的是( )A .33a b -<-B .0a b -<C .33a b <D .a b >5.如图,不等式组1239x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6.不等式组 21352x x ->-⎧⎨->⎩的整数解有( ) A .3个 B .4个 C .5个 D .6个 7.若m <n ,则下列不等式正确的是( )A .m ﹣2>n ﹣2B .44m n >C .﹣6m >﹣6nD .﹣8m <﹣8n 8.下列语句或式子中正确的是( )A .任何实数的零次幂都等于1B .5的倒数的相反数是-5C .1111()()a b a b ab ---++=D .若a<b ,则a 2<b 29.已知不等式30x a +≥的负整数解恰好是3-,2-,1-.那么a 满足条件( ) A B CD10.若点P (2m +1,312m -)在第四象限,则m 的取值范围是( ) A .m <13 B .m >12- C .1123m -<< D .1123m -≤≤ 11.若x <y ,比较2-3x 与2-3y 的大小,则下列式子正确的是( )A .2-3x >2-3yB .2-3x <2-3yC .2-3x=2-3yD .无法比较大小12.不等式组21013x x ->⎧⎨+≤⎩的解集表示在数轴上正确的是( ) A . B .C .D .13.不等式ax -2<0的解集在数轴上表示如图,那么a 的取值范围是( )A .1a <B .2a <C .1a =D .2a =14.下列不等式的解集中,不包括-3的是( )A .3x ≤-B .3x ≥-C .4x ≤-D .4x >- 15.若0<x <1,则x,2x ,3x 的大小关系是( )A .x <2x <3xB .x <3x <2xC .3x <2x <xD .2x <3x <x 16.(天津市和平区普通中学2018届初三数学中考复习综合练习题)如果m<n<0,那么下列式子中错误的是A .m −9<n −9B .−m>−nC .1m <1nD .m n>1 17.若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1 18.用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,设需要x 分钟才能将污水抽完,则x 的取值范围是( ) A .x≥40 B .x≤50 C .40<x <50 D .40≤x≤50 19.下列说法中,错误的一项是( )A .由a (m 2+1)<b (m 2+1)成立可推a <b 成立B .由a (m 2﹣1)<b (m 2﹣1)成立可推a <b 成立C .由a (m +1)2<b (m +1)2成立可推a <b 成立D .由a (m +b )<b (m +a )成立可推am <bm 成立20.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组二、填空题21.x 的3倍与5的差小于6,用不等式表示为________.22.如果关于x 的一元二次方程210kx +=有两个不相等的实数根,则k 的取值范围是________.23.不等式11x -的非负整数解是__.24.已知一次函数()1123y a x a =-+-,如果函数值y 随着自变量x 的增大而减小,那么在平面直角坐标系中,这个函数图象与y 轴的交点M 位于y 轴的______半轴.(填正或负)25.若不等式|x +1|+|x ﹣2|>a 对任意实数x 恒成立,则a 的取值范围是_____.26.不等式组31432x x -<⎧⎨+≥⎩的解集是___________. 27.不等式2x ﹣1≤3x +2的负整数解的和是 ___.28.若点P (1﹣a ,1)在第二象限,则(a ﹣1)x <1﹣a 的解集为______.29.不等式7x+21>0的解集为_____30.不等式()231a x -<的解集是123x a >-,则a 的取值范围是_______________________.31.不等式2﹣x >0的解集是_____.32.把一些书分给几名同学,如果每人分4本,那么余3本;如果前面的每名同学分6本,那么最后一人就分得不超过2本,则这些书有本______. 33.若不等式组841x x x m +>-⎧⎨≤⎩的解集为x<3,则m 的取值范围是____________. 34.如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是________.35.不等式组2421x x -<⎧⎨-≥⎩的解集是______. 36.当_________时,34x x -++有最小值,最小值是_________;37.如果(1)20m m x +-<是关于x 的一元一次不等式,则m=_______38.若不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,且使关于x 的分式方程6mx x -=436x x +- 有整数解,那么符合条件的所有整数m 的值之和是______.39.在橙子收获旺季,某果园开展现场采摘现场销售活动,每天接待到果园采摘橙子的游客络绎不绝.果园里有A 、B 、C 三种不同品种的橙子,第一周A 、B 、C 三种橙子的采摘重量之比为4:3:5,第一周C 品种橙子的单价是A 、B 品种橙子的单价之和的3倍,第一周C 品种橙子的单价小于21元且不低于3元.第二周继续接待采摘三种橙子的游客,本周A 、C 品种橙子的采摘重量之比为2:3,B 品种橙子的采摘重量比第一周下降了15,A 品种橙子的单价与第一周相同,B 品种橙子的单价比第一周增加1倍,C 品种橙子的单价是第一周的4倍.两周结束后,经统计,第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额多1090元,第一周三种橙子的总采摘重量与第二周三种橙子的总采摘重量之差不低于166斤且小于196斤,则这两周C 种橙子的总销售额一共为 _____元,(A 、B 、C 三种不同品种橙子的单价为每斤整数元,以及每次采摘重量都是整数斤)三、解答题40.下面是小明解不等式532122x x ++-<的过程: ①去分母,得5132x x +-<+,①移项、合并同类项,得22x,①两边都除以-2,得1x >.先阅读以上解题过程,然后解答下列问题.(1)小明的解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是___________________________________________________;(3)第①步的依据是___________________________________________;(4)该不等式的解集应该是________________. 41.解不等式组4+6>13(1)5x x x x --≤-⎧⎨⎩①② 请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式①,得_____;(3)把不等式①和①的解集在数轴上表示出来.(4)原不等式组的解集为_____.42.下面是小红同学解不等式5117263x x -≤-的过程,请认真阅读并完成相应任务. 解:5111214x x -≤-,.............第一步5121114x x -≤-,.............第二步73x -≤-....................第三步37x ≤........................第四步 任务一:填空.(1)以上解题步骤中,第___步是去分母,去分母的依据是___;(2)第___步出现错误,这一步错误的原因是___,这一步正确的结果是___,依据是___.任务二:除了任务一中出现的错误外,请根据平时的学习经验,就解不等式时还需要注意的事项给其他同学提一条建议.43.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式3x ≥ (选填“是”或“不是”3x ≤的“云不等式”).(2)若关于x 的不等式20x a -≥与不等式1211x x ->-互为“云不等式”且有2个公共的整数解,求a 的取值范围.44.解不等式(组):(1)()3511x x >+-; (2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 45.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案? 46.2021年体育实验考试期间,商城县某初中组织本校332名九年级考生和8名领队教师到商城高中参加考试,学校准备租用45座甲种客车和30座的乙种客车.若租用1辆甲种客车和2辆乙种客车共需租金1650元;若租用2辆甲种客车和1辆乙种客车共需租金1800元.(1)求甲乙两种客车每辆的租金各是多少元?(2)为了保证安全,学校要求每辆车上至少要有一名领队教师陪同,在总租金不超过5200元的情况下,有多少种租车方案?并求出最省钱的租车方案.47.为应对新型冠状病毒,某药店老板到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌的数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?48.2019年4月29日至2019年10月7日,2019年中国北京世界园艺博览会(简称北京世园会)在中国北京市延庆区举行,展期162天.这是继云南昆明后第二个获得国际园艺生产者协会批准及国际展览局认证授权举办的A1级国际园艺博览会.北京世园会门票种类分为平日票、指定日票、三次票等票种,同时按销售对象分为普通票、优惠票和团队票(学生享受优惠票,15人以上可以享受团体票).指定日包括开园日、“五一”假期、端午节假期、中秋节假期、“十一”假期这些日期,其余时间为平日;三次票是指除指定日外,同一持票人在展会期间可以任选三天入园的票种. 具体如下表:小明,小亮两家共10人打算一起参观北京世园会(10人均需购票).(1)若他们端午节去北京世园会参观购买门票共用去1360元,问买了普通票和优惠票各几张(2)如果他们平日去北京世园会参观,且购买门票的费用不超过2000元,那么在保证游玩的前提下最多可以买几张三次票?共有几种买票方案?分别是什么?49.清明节,除了扫墓踏青之外,传统时令小吃——青团也深受大家欢迎,知味观推出一款鲜花牛奶青团和一款芒果青团,鲜花牛奶青团每个售价是芒果青团的54倍,4月份鲜花牛奶青团和芒果青团总计销售60000个,且鲜花牛奶青团和芒果青团销售量之比为5:7,鲜花牛奶青团销售额为250000元.(1)求鲜花牛奶青团和芒果青团的售价?(2)5月份正值知味观店庆,决定再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花牛奶青团个数的32,且不多于鲜花牛奶青团的2倍,其中,鲜花牛奶青团每个让利a元销售,芒果青团售价不变,并且让利后的鲜花牛奶青团售价不得低于芒果青团售价的78,知味观如何设计生产方案使总销售额最大?参考答案:1.D【分析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.【详解】A .根据不等式的基本性质1可知,44a b +>+,此选项正确,不符合题意; B .根据不等式的基本性质1和2可知,2323a b +>+,此选项正确,不符合题意; C .根据不等式的基本性质1可知,66a b ->-,此选项正确,不符合题意;D .根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a<-3b ,故D 错误;故选D .【点睛】本题考查了不等式的基本性质,解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.2.C【分析】不等式的解集在数轴上表示的方法:①定点,根据不等式中的实数确定数轴上的点(“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示);①定向,根据不等号方向确定(>,≥向右画;<,≤向左画),按要求操作即可得出.【详解】解:根据5和≥确定在数轴上取对应的数字为5的实心点,然后方向向右,从而得到:,故选:C .【点睛】本题考查了不等式的解集在数轴上表示的方法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.D【分析】由一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),利用一次函数图象上点的坐标特征即可得出关于m 的方程,解之即可得出m 的值,由y 的值随着x 的值的增大而减小,利用一次函数的性质可得出m -2<0,解之即可得出m <2,进而可得出m =-3.【详解】解:①一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),①m 2-3=6,即m 2=9,解得:m =-3或m =3.又①y 的值随着x 的值的增大而减小,①m -2<0,①m <2,①m =-3.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m 的方程及一元一次不等式是解题的关键.4.A【分析】根据不等式的性质和绝对值的定义,结合“a b >”,依次分析各个选项,选出正确的选项即可.【详解】解:A 、若a b >,则33a b -<-,正确,该选项符合题意;B 、若a b >,则0a b ->,原变形错误,该选项不符合题意;C 、若a b >,则33a b >,原变形错误,该选项不符合题意; D 、若a 和b 同为负数,若a b >,a b <,该选项不符合题意;故选:A .【点睛】本题考查了不等式的性质和绝对值,正确掌握不等式的性质和绝对值的定义是解题的关键.5.A【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】解:1239x x -⎧⎨-≤⎩<①② 由①,得x <3;由①,得x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A . 【点睛】此题考查在数轴上表示不等式的解集、解一元一次不等式组.解题关键在于掌握把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.A【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【详解】解:解不等式213x ->-得:1x >-,解不等式52x ->得:3x <,所以,不等式组的解集是13x -<<,所以,不等式组的整数解有0、1、2共3个.故选:A .【点睛】本题主要考查了一元一次不等式组整数解的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.C【分析】根据不等式的基本性质,逐项判断即可.【详解】解:A 、①m <n ,①m ﹣2<n ﹣2,①选项A 不符合题意;B 、①m <n ,①44m n <,①选项B 不符合题意; C 、①m <n ,①﹣6m >﹣6,①选项C 符合题意;D 、①m <n ,①﹣8m >﹣8n ,①选项D 不符合题意.故选:C .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.C【分析】根据零次幂,相反数,负指数幂,不等式一一判定即可.【详解】A.0的零次幂没有意义,故错误;B. 5的倒数的相反数是-15,故错误; C. ()()1111a b a b ab---++=,正确; D.当a ,b 都为负数时,不等式不成立,故错误.故选C【点睛】本题考查了相反数,不等式的性质,熟练掌握概念和性质是解题的关键. 9.D【分析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】解不等式30x a +≥,得:3a x ≥-, 根据题意得:433a -<-≤-, 解得:912a ≤<.故选D . 【点睛】本题考查了不等式的整数解,根据x 的取值范围正确确定3a -的范围是解题的关键.在解不等式时要根据不等式的基本性质.10.C【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:①点P (2m +1,312m -)在第四象限. ①2103102m m +>⎧⎪⎨-<⎪⎩. 解得1123m -<<. 故选:C .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.11.A【分析】根据不等式的基本性质对以下选项进行一一验证即可.【详解】解:在不等式x <y 的两边同时乘以-3,不等号的方向改变,即-3x >-3y . 在不等式-3x >-3y 的两边同时加上2,不等号的方向不变,即2-3x >2-3y ,故选项A 正确.故选:A .【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.A【分析】先求出不等式组的解集,再表示在数轴上即可解答;【详解】解:210x ->,解得:12x >; 13x +≤,解得:2x ≤;①原不等式组的解集为:122x <≤, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组及解集在数轴上的表示,掌握相关知识并正确求解是解题的关键.13.D【分析】先根据题意得出不等式的解集,进而可得出结论.【详解】①数轴上点1处是空心圆点,且折线向左,①不等式的解集为x <1,解不等式ax-2<0得,x <2a, ①2a=1, 解得a=2.故选D . 【点睛】本题考查的是在数轴上表示不等式的解集,熟知不等式解集的表示方法是解答此题的关键.14.C【分析】不包括-3即-3不在解集内,由此可得出答案.【详解】解:根据题意,不包括-3即-3不在解集内,只有C选项,x≤ -4,不包括-3.故选C.【点睛】本题考查不等式的解集,熟练掌握是解题的关键.15.C【详解】试题分析:当0<x<1时,则3x<2x<x.本题可以利用特殊值法来进行比较.考点:数的大小比较16.C【详解】A、根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.m<n两边减去9,得到:m−9<n−9,成立;B、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时乘以−1得到−m>−n,成立;C、由m<n<0,可设m=−2,n=−1,验证1m>1n,不成立.D、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时除以负数n得到mn>1,成立.故选C.17.C【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【详解】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、①a>b,①a+1>b+1,①b+1>b﹣1,①a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是关键.18.D【分析】设大约需x分钟才能将污水抽完,利用总的抽水量超过1200t而不足1500t列出不等式组解决问题.【详解】设大约需x 分钟才能将污水抽完,由题意得:301200{301500x x ≥≤ , 解得:40≤x≤50.故选D .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.B【分析】根据不等式的基本性质逐一判断即可.【详解】解:①m 2+1>0,则不等式的两边同时除以m 2+1,则不等式不变号,①A 正确;①a (m 2﹣1)<b (m 2﹣1)中,m 2﹣1可以是正数也可以是负数或0,①B 错误; ①a (m +1)2<b (m +1)2成立,①(m +1)2≠0,可得(m +1)2>0,则不等式的两边同时除以(m +1)2,则不等式不变号,①C 正确;①a (m +b )<b (m +a )可以化为am +ab <bm +ab ,则不等式的两边同时减去ab ,则不等式不变号,①D 正确;故选:B .【点睛】本题考查不等式的基本性质;熟练掌握不等式的基本性质是解题的关键. 20.D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤. 所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.21.356x <【分析】根据运算的顺序列不等式即可.【详解】解:x 的3倍与5的差小于6,用不等式表示为:356x <,故答案为:356x <.【点睛】本题考查列一元一次不等式,解题关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.22.113k -≤<且0k ≠【分析】根据一元二次方程的定义和根的判别式得出0k ≠,310k +≥,(2410k ∆=-⨯>,据此求解即可 【详解】解:关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根, ①0k ≠,310k +≥且(2410k ∆=-⨯>, 解得:113k -≤<且0k ≠, 故答案是:113k -≤<且0k ≠.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.23.0x =,1,2【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:11x +,合并同类项得:2x ,故不等式的非负整数解是0x =,1,2.故答案为:x =0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.24.正【分析】根据函数值y 随着自变量x 的增大而减小,可得120a -<,从而得到103a ->,即可求解.【详解】解:①函数值y 随着自变量x 的增大而减小,①120a -<, 解得:12a >, ①103a ->, ①这个函数图像与y 轴的交点M 位于y 轴的正半轴.故答案为:正【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质以及一次函数图象上点的坐标特征是解题的关键.25.a <3.【分析】根据绝对值的几何意义,求得|x +1|+|x ﹣2|的最小值为3,从而得到实数a 的取值范围.【详解】解:①|x +1|+|x ﹣2|表示数轴上的x 对应点到﹣1、2对应点的距离之和, ①它的最小值为3,①不等式|x +1|+|x ﹣2|>a 对任意的实数x 恒成立,①a <3,故答案为:a <3.【点睛】本题主要考查了绝对值的意义,以及绝对值不等式的解法.解题的关键是利用绝对值不等式的几何意义,体现了数形结合的思想.26.513x -≤< 【分析】分别求出两个不等式的解集,再进行求解即可.【详解】解:解314x -<得53x <, 解32x +≥得1x ≥-,①不等式组的解集为:513x -≤<,故答案为:513x -≤<. 【点睛】本题考查了不等式组的求解,正确的计算是解决本题的关键.27.6-.【分析】先求出不等式的解集,找出不等式的负整数解即可.【详解】解:2132x x -≤+,①233x x -≤,①3x -≤,①3x ≥-;①负整数解有:3-,2-,1-;①负整数解的和是:3(2)(1)6-+-+-=-;故答案为:6-.【点睛】本题主要考查一元一次不等式的整数解,不等式的性质,解一元一次不等式等知识点的理解和掌握,能求出不等式的解集是解此题的关键.28.x <﹣1【分析】根据点P 在第二象限得出a >1,据此知a ﹣1>0,再将不等式两边都除以a ﹣1即可得答案.【详解】解:①点P (1﹣a ,1)在第二象限,①1﹣a <0,则a >1,①a ﹣1>0,①不等式(a ﹣1)x <1﹣a 的解集为x <﹣1,故答案为:x <﹣1.【点睛】本题考查了第二象限内点的坐标特征,不等式的性质,解不等式,系数化为1的过程中,在解不等式时,一定要先判断两边所除的式子的符号.29.x >-3【分析】先移项、然后按不等式的基本性质进行解答即可.【详解】解:7x+21>07x >-21x >-3故答案为x>-3.【点睛】本题主要考查了解一元一次不等式,掌握不等式的基本性质是解答本题的关键.30.32 a<【分析】据已知不等式的解集,结合x的系数确定出2a-3为负数,求出a的范围即可.【详解】解:①不等式(2a-3)x<1的解集是123xa>-,①2a-3<0,①32a<,即a的取值范围是32a<,故答案为32a<.【点睛】本题考查了解一元一次不等式和不等式的性质,能根据不等式的性质得出关于a 的不等式是解此题的关键.31.x<2【分析】利用不等式的基本性质解出不等式的解集即可【详解】根据不等式的基本性质将2﹣x>0变形为2>x,故不等式2﹣x>0的解集是x<2【点睛】主要考查一元一次不等式的解法32.19【分析】设共有x名同学分书,则这批书共有(4x+3)本,根据“如果前面的每名同学分6本,那么最后一人就分得不超过2本”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【详解】解:设共有x名同学分书,则这批书共有(4x+3)本,依题意,得436(1) 436(1)2x xx x+>-⎧⎨+≤-+⎩,解得:7292x≤<,又①x为正整数,①x=4,①4x+3=19.故答案为:19.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.33.m≥3【分析】化简不等式组得3x x m <⎧⎨≤⎩,根据不等式组的解集为x<3,即可得出m 的取值范围. 【详解】解:解不等式组得3x x m <⎧⎨≤⎩, ①不等式组解集为x<3,①m≥3.故答案为:m≥3.【点睛】本题主要考查的是不等式组的解集,掌握不等式组的解集是解题的关键.34.52k <- 【分析】解出方程的解为522k x --=,再根据题意得到5202k -->,转化为解一元一次不等式即可解答.【详解】解:325x k x +=- 解得522k x --= 关于x 的方程325x k x +=-的解是正数,5202k --∴> 520k ∴-->52k ∴<- 故答案为:52k <-. 【点睛】本题考查方程的解、解一元一次方程、解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.35.3x ≥【分析】先求出每一个不等式的解集,后确定不等式组的解集.【详解】①2421x x -<⎧⎨-≥⎩①②①解不等式①,得x >-2,解不等式,①,得x ≥3,①不等式组的解集为x ≥3,故答案为:x ≥3.【点睛】本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键. 36. 43x -≤≤ 7【分析】根据题意以及绝对值的非负性,再利用分类讨论的数学思想可以解答本题.【详解】当x >3时,34x x -++=34217x x x -++=+>;当43x -≤≤时,34x x -++34x x =-++=7;当x <-4时,34x x -++=34=217x x x ----->.∴当43x -≤≤时,34x x -++有最小值7.故答案为:43x -≤≤;7.【点睛】本题考查了绝对值相关最值的求解,涉及不等式运算,解答本题的关键是明确绝对值的定义,利用分类讨论的数学思想解答.37.1【分析】利用一元一次不等式的定义判断即可确定出m 的值.【详解】①(1)20m m x +-<是关于x 的一元一次不等式,①1m +≠0且|m|=1,①m =1.故答案是:1.【点睛】考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.38.11【分析】根据不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立确定出m 的范围,再由m 是整数得到m 的值,分式方程去分母后将m 的值代入检验,使分式方程的解为整数即可.【详解】①3x <6,①x <2,①不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,①不等式(m-1)x <m+5的解集是51m x m +<-, ① 521m m +≥-, 解之得1<m≤7,①m 是整数,①m=2,3,4,5,6,7, ①6mx x -=436x x +-, ①mx=3x-18+4x , ①187x m=- , ①分式方程6mx x -=436x x +- 有整数解, ①m=2, 185x =,舍去;m=3, 92x =,舍去;m=4, 6x =,是增根,舍去;m=5, 9x =;m=6, 18x =;m=7,x 无解,舍去;①5+6=11.故答案为11.【点睛】本题主要考查的是分式方程的解法,一元一次不等式组的解法的有关知识,熟练掌握分式方程的解法是解答本题的关键.39.2880【分析】设第一周A 、B 、C 三种橙子的采摘重量分别为4m 斤、3m 斤、5m 斤,第一周A 、B 单价分别为x 元,y 元;设第二周A 、C 三种橙子的采摘重量分别为2m 斤、3m 斤;则第一周C 品种橙子的单价为3(x +y )元,第二周A 、B 、C 三种橙子的单价分别为x 元,2y 元;12(x +y )元,通过第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额。

吉林省长春市2020年中考数学试题(Word版,含答案与解析)

吉林省长春市2020年中考数学试题(Word版,含答案与解析)

吉林省长春市2020年中考数学试卷一、单选题(共8题;共16分)1.如图,数轴上被墨水遮盖的数可能为()A. =1B. -1.5C. -3D. -4.2【答案】C【考点】数轴及有理数在数轴上的表示【解析】【解答】解:根据题意可知,墨水遮盖区域的数在-4和-2之间∴数字可能为-3.故答案为:C.【分析】根据数轴上有理数的大小和顺序进行判断即可。

2.为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A. 79×103B. 7.9×104C. 0.79×105D. 4ab【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:79000用科学记数法表示为7.9×104故答案为:B.【分析】根据科学记数法的含义,表示得到数字即可。

3.下列图形是四棱柱的侧面展开图的是()A. B.C. D.【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.4.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.【答案】 D【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【解答】解:∵x+2≥3∴x≥1∴在数轴上表示正确的为D.故答案为:D.【分析】根据题意,解出不等式的解集,在数轴上进行表示即可。

5.比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A. sinA=BDAB B. cosA=ABADC. tanA=ADBDD. sinA=ADAB【答案】A【考点】锐角三角函数的定义【解析】【解答】解:根据题意可知,在直角三角形ABD中,求∠A可由以下方法求得①sinA=BDAB②cosA=ADAB③tanA=BDAD故答案为:A.【分析】根据题意,结合锐角三角函数的定义,表示得到∠A的式子,进行判断即可得到答案。

6.7一元一次不等式组的常考题(含数轴答案解析)

6.7一元一次不等式组的常考题(含数轴答案解析)

6.7一元一次不等式组的常考题(含数轴答案解析)6.7不等式组的常考题一、选择题(共17小题)1、关于x的方程|x|=2x+a只有一个解而且这个解是负数,则a的取值范围()A、a<0B、a>0C、a≥0D、a≤02、(2010•崇左)不等式组的解集是()A、x>1B、x<2C、1<x<2D、无解3、(2010•安顺)不等式组的解集在数轴上表示为()A、B、C、D、4、(2009•莆田)不等式组:的解集在数轴上表示正确的是()A、B、C、D、5、(2009•荆门)若不等式组有解,则a的取值范围是()A、a>﹣1B、a≥﹣1C、a≤1D、a<16、(2009•恩施州)如果一元一次不等式组的解集为x>3.则a的取值范围是()A、a>3B、a≥3C、a≤3D、a<37、(2008•黄石)若不等式组有实数解,则实数m的取值范围是()A、m≤B、m<C、m>D、m≥8、(2006•聊城)已知,且﹣1<x﹣y<0,则k的取值范围为()A、﹣1<k<﹣B、0<k<C、0<k<1D、<k<19、(2005•天津)不等式组的解集为()A、2<x<8B、2≤x≤8C、x<8D、x≥210、(2005•台州)不等式组的解集在数轴上可以表示为()A、B、C、D、11、(2001•荆州)若不等式的解集是x>a,则a的取值范围是()A、a<3B、a=3C、a>3D、a≥312、如果不等式组的解集为x>3,那么m的取值范围为()A、m≥3B、m≤3C、m=3D、m<313、(2000•杭州)一次不等式组的解是()A、x>﹣3B、x<2C、2<x<3D、﹣3<x<214、不等式组的解集在数轴上表示为()A、B、C、D、15、如果不等式组的解集是x>4,则n的取值范围是()A、n≥4B、n≤4C、n=4D、n<416、若不等式组有解,则m的取值范围是()A、m<2B、m≥2C、m<1D、1≤m<217、若关于x的不等式组的解集为x>﹣1,则n的值为()A、3B、﹣3C、1D、﹣1二、解答题(共13小题)18、设关于x的不等式组无解,求m的取值范围.19、解不等式组,并把它的解集在数轴上表示出来.20、解不等式组,并把它的解集表示在数轴上.21、已知不等式组的解集为﹣1<x<1,求(a+1)(b ﹣1)的值.22、附加题:已知,x满足,化简|x﹣2|+|x+5|.23、解不等式组,并把解集在数轴上表示出来.24、(2001•北京)解不等式组:.25、解不等式组.26、解不等式组,并把解集在数轴上表示出来.27、解不等式组.28、解不等式组,并在数轴上表示它的解集.29、解下列不等式组,并把它们的解集在数轴上表示出来:(1)(2).30、解不等式组并把解集在数轴上表示出来.答案与评分标准一、选择题(共17小题)1、关于x的方程|x|=2x+a只有一个解而且这个解是负数,则a的取值范围()A、a<0B、a>0C、a≥0D、a≤0考点:含绝对值符号的一元一次方程;解一元一次方程;解一元一次不等式。

1.3 不等式的解集(含答案)

1.3 不等式的解集(含答案)

1.3 不等式的解集A卷:基础题一、选择题1.下面说法正确的是()A.x=3是不等式2x>3的一个解B.x=3是不等式2x>3的解集C.x=3是不等式2x>3的唯一解D.x=3不是不等式2x>3的解2.在数轴上表示x<-3的解集,下图中表示正确的是()3.如图,数轴上表示的数的范围是()A.-2<x<4 B.-2<x≤4C.-2≤x<4 D.-2≤x≤44.如图,在数轴上表示不等式2x-6≥0的解集,正确的是()A B C D二、填空题5.a≥1的最小值是m,b≤8的最大值是n,则m+n=_____.6.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,•已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔_____支.7.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是______.8.不等式2x+3>9的解集是_____.三、解答题9.在数轴上表示下列不等式的解集:(1)x>12;(2)x≤-110.三个连续奇数之和不大于70,那么这三个奇数中最大奇数可能取的最大值是多少?11.如果方程组523,52m n am n a+=+⎧⎨+=-⎩的解满足m+n≤6,求a的取值范围.12.已知不等式3(x+5)-6>5与不等式5x+6a>4的解集相同,求a的值.B 卷:提高题一、七彩题1.(一题多解)当x 取哪些整数时,不等式x+2<12(x+5)与不等式3(x -2)+9>2x 同时成立?2.(一题多变题)已知│2x -24│+(3x -y -k )2=0,若y<0,求k 的取值范围.(1)一变:y>0,求k 的取值范围;(2)二变:k>0,求y 的取值范围;(3)三变:k<0,求y 的取值范围.二、知识交叉题3.(科内交叉题)已知x=3是方程x=2x a -1的解,求不等式(10-a )x<53的解集.三、实际应用题4.朱妞家计划用40000元装修新房,新房的使用面积为100平方米,卫生间和厨房共10平方米,厨房和卫生间装修的工料费为每平方米200元,•卫生间和厨房配套的卫生洁具和厨房厨具还要用去2000元,这种情况下,居室和客厅装修工料费x(元/•平方米)应满足什么样的条件,才不会超过预算.四、经典中考题5.(2007,青海,2分)不等式8-3x≥0的最大整数解是______.6.(2008,上海,4分)不等式x-3<0的解集是____.C卷:课标新型题1.(结论开放题)写出四个满足不等式3x-2≤5x+8的负整数解.2.(说理题)在一次“人与自然”知识竞赛中,竞赛试题共有25道,•每道题都给出4个选项,其中只有一个选项是对的,要求学生把正确选项写出来,每题选对得4分,不选或错选扣2分,如果一个学生在本次竞赛中,得分不低于60分,•那么他至少选对多少道题?3.请同学们讨论下列各题的说法对不对?如果不对,请说明理由.(1)x=3是不等式3x<11的一个解;(2)x=3是不等式3x<11的一个解集;(3)不等式3x<11的解集是x<3;(4)不等式3x<11的解集是x<11 3.参考答案A卷一、1.A 2.B 3.B4.B 点拨:不等式两边都加上6,得2x≥6,不等式两边都除以2,得x≥3.二、5.9 点拨:因为a≥1的最小值是m,所以m=1,因为b≤8的最大值是n,所以n=8,所以m+n=1+8=9.6.13 点拨:设能买钢笔x支,则买笔记本(30-x)本,依题意5x+2(30-x)≤100,解得x≤403,故最多可买钢笔13支.7.15 点拨:第三边的取值范围是4<x<10,所以第三边长的最小整数值为5,故这样的三角形的周长最小值是3+7+5=15.8.x>3 点拨:不等式2x+3>9的两边都减去3,得2x>6,不等式两边都除以2,得x>3.三、9.解:(1)如图1所示,(2)如图2所示.图1 图2点拨:在数轴上表示不等式的解集时应牢记:边界点含于解集用实心圆点,•不含于解集用空心圆圈;方向遵循“大于向右走,小于向左走”的原则.10.解:设这三个连续奇数分别为n-2,n,n+2,依题意,得n-2+n+n+2≤70,3n≤70,n≤2313,n的最大值为23,当n=23时,n+2=23+2=25.这三个奇数中最大奇数可能取的最大值是25.点拨:根据题意列出关于n的不等式,求出n的解集,当n取最大值时,求最大奇数的值.11.解:523(1)52(2)m n am n a+=+⎧⎨+=-⎩(1)+(2)得6(m+n)=4+2a,所以m+n=426a +=23a +,因为m+n≤6,所以23a +≤6,a≤16. 12.解:由3(x+5)-6>5得x>-43,由5x+6a>4得x>465a -, 由题意知-43=465a -,a=169. 点拨:本题是不等式与方程的综合综合,先解两个不等式,•根据两个不等式的解集相同得到方程,解这个方程求出a 的值.B 卷一、1.解法一:解不等式x+2<12(x+5)得2x+4<x+5,2x -x<5-4, 所以x<1.解不等式3(x -2)+9>2x 得3x -6+9>2x ,3x -2x>-3,所以x>-3.用数轴表示以上两个不等式的解集如图所示.所以x 取-2,-1,0时,两个不等式同时成立.解法二:解不等式x+2<12(x+5)得x+2<12x+52,x -12x<52-2,12x<12,x<1.解不等式3(x -2)+9>2x 得x>-3.用数轴表示以上两个不等式的解集如图所示,所以x 取-2,-1,0时,两个不等式同时成立.2.解:由非负数的性质,得2240,30,x x y k -=⎧⎨--=⎩,所以12,36.x y k =⎧⎨=-⎩, 因为y<0,所以36-k<0,所以k>36.(1)当y>0时,36-k>0,所以k<36.(2)由y=36-k 得k=36-y ,若k>0,则36-y>0,所以y<36.(3)若k<0,则36-y<0,所以y>36.点拨:本题考查非负数的性质及解简单的不等式.二、3.解:由x=2x a --1得2x=x -a -2,因为x=3,所以a=-x -2=-3-2=-5,所以不等式(10-•a)x<53为(10+5)x<53,15x<53,x<19.点拨:本题是方程与不等式的综合运用,通过解方程求出a的值,把a•的值代入到不等式,然后求不等式的解集.三、4.解:由题意得(100-10x)+10×200+2000≤40000,所以x≤400,即每平方米最多用400元才不会超过预算.四、5.2 点拨:解这个不等式,得x≤223,所以不等式8-3x≥0的最大整数解是2.6.x<3C卷1.解:-1,-2,-3,-4.点拨:解不等式3x-2≤5x+8,得x≥-5,•所有满足题意的负整数解有-1,-2,-3,-4,-5.此题答案不唯一,任意写出四个即可.2.解:设该学生选对了x道题,则不选或错选(25-x)道题,由题意,得4x-2(25-x) ≥60,解得x≥1813,所以,该生至少选对19道题.点拨:此类题目必须算清得分与失分两层意思,并用含未知数的式子表示出来方能利用不等式的邻界点和题目实际求得结果.x不能取18,理由是18不在x≥1813的范围内.3.解:(1)这句话是正确的;(2)不正确,•因为不等式的解集是所有符合条件的解的集合,3只是其中之一;(3)不等式的解集是所有符合条件的解的集合,而x<3却丢掉了其中的一部分,所以说法(3)不正确,而(4)正确.。

最新中考数学真题解析汇编:不等式(组)

最新中考数学真题解析汇编:不等式(组)

不等式(组)一、选择题1.(•湖南衡阳,第7题3分)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.2. (•随州,第12题3分)不等式组的解集是﹣1<x≤2.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得x≤1,由②得x>﹣1,故此不等式的解集为:﹣1<x≤2.故答案为:﹣1<x≤2.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、(衡阳,第7题3分)不等式组10840xx-⎧⎨-⎩>≤的解集在数轴上表示为【】A .B .C .D .4、(•江西,第4题3分)直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是().A.-1 B.0 C.1 D.2【答案】 D.【考点】两条直线相交问题,一次函数图像和性质、一元一次不等式组的解法,考生的直觉判断能力.【分析】解法一:一次函数y=kx+b,当k>0,b>0 时,直线经过一、三、二象限,截距在y的正半轴上当;k>0,b<0时,图解经过一、三、四象限,截距在y的负半轴上。

当k<0,b>0 时,直线经过二、四、一象限,截距在y的正半轴上;当 k<0,b<0时,直线经过二、四、三象限,截距在y的负半轴上。

可以根据一次函数图象的特点,逐一代入a的值,画出图形进行判断。

解法二:两直线相交,说明由这两条直线的解析式组成的二元一次方程组有解,解出关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【解答】解法一:直线y=x+1经过一、三、四象限,截距1,在y的正半轴;直线y=-2x+a经过二、四象限,如果a=1,则经过第一象限,与前面直线交于y的正半轴上。

2024福建省三明市中考数学试题及答案(Word解析版)

2024福建省三明市中考数学试题及答案(Word解析版)

2024福建省三明市中考数学试卷一、单项选择题(共10题,每题4分,满分40分)1.(4分)(2024•三明)的相反数是()C. 3 D.-3A.B.-分析:依据只有符号不同的两个数互为相反数求解后选择即可.解答:解:-的相反数是.故选A.点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(4分)(2024•三明)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2考点:幂的乘方与积的乘方;同底数幂的除法;完全平方公式.分析:依据幂的乘方,可推断A,依据同底数幂的除法,可推断B,依据积的乘方,可推断C,依据完全平方公式,可推断D.解答:解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.点评:本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.(4分)(2024•三明)下列正方形中由阴影部分组成的图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:依据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、是中心对称图形,是轴对称图形,故本选项正确;C、是中心对称图形,不是轴对称图形,故本选项错误;D、是中心对称图形不是轴对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.4.(4分)(2024•三明)PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.0.25×10-5B.2.5×10-5C.2.5×10-6D.2.5×10-7考点:科学记数法—表示较小的数.分析:肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定.解答:解:0.000 002 5=2.5×10-6;故选:C.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所确定.5.(4分)(2024•三明)不等式组的解集是()A.x≥-1 B.x≤2 C.1≤x≤2 D.-1≤x≤2考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x≥-1,解②得:x≤2,则不等式组的解集是:-1≤x≤2.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目经常要结合数轴来推断.还可以视察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.6.(4分)(2024•三明)如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图推断几何体;简洁组合体的三视图.分析:先细心视察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.解答:解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列.故选B.点评:本题考查了由三视图推断几何体及简洁组合体的三视图,重点考查几何体的三视图及空间想象实力.7.(4分)(2024•三明)小亮和其他5个同学参与百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.B.C.D.1考点:概率公式.分析:由赛场共设1,2,3,4,5,6六个跑道,干脆利用概率公式求解即可求得答案.解答:解:∵赛场共设1,2,3,4,5,6六个跑道,∴小亮首先抽签,则小亮抽到1号跑道的概率是:.故选A.点评:此题考查了概率公式的应用.用到的学问点为:概率=所求状况数与总状况数之比.8.(4分)(2024•三明)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n-2)•180°.9.(4分)(2024•三明)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.D E=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形考点:垂径定理.分析:依据垂径定理推断即可.解答:解:∵AB⊥CD,AB过O,∴DE=CE,弧BD=弧BC,依据已知不能推出DE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选B.点评:本题考查了垂径定理的应用,主要考查学生的推理实力和辨析实力.10.(4分)(2024•三明)已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1 C.b≥1 D.b≤1考点:二次函数的性质.专题:数形结合.分析:先依据抛物线的性质得到其对称轴为直线x=b,且当x>b时,y随x的增大而减小,由于已知当x>1时,y的值随x值的增大而减小,则可得推断b≤1.解答:解:∵抛物线y=-x2+2bx+c的对称轴为直线x=-=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x-)2+,的顶点坐标是(-,),对称轴直线x=-b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小,二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2024•三明)计算:×=6.考点:二次根式的乘除法.分析:先将二次根式化为最简,然后再进行二次根式的乘法运算即可.解答:解:原式=2×=6.故答案为:6.点评:本题考查了二次根式的乘法运算,属于基础题,驾驭运算法则是关键.12.(4分)(2024•三明)甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是甲(填“甲”或“乙”).考点:方差.分析:依据方差的意义可作出推断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S2=0.9,S2乙=1.1,甲∴S2甲<S2乙,∴甲、乙两支仪仗队的队员身高更整齐的是甲;故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(4分)(2024•三明)如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是AB=AD(答案不唯一)(写出一个即可).考点:菱形的判定.分析:利用菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.解答:解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵邻边相等的平行四边形是菱形,∴添加的条件是AB=AD(答案不唯一),故答案为:AB=AD(答案不唯一).点评:本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键.14.(4分)(2024•三明)如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,依据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是驾驭圆的面积公式.15.(4分)(2024•三明)有两块面积相同的蔬菜试验田,第一块运用原品种,其次块运用新品种,分别收获蔬菜1500千克和2100千克.已知其次块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则依据题意列出的方程是=.考点:由实际问题抽象出分式方程.分析:设第一块试验田每亩的产量为x千克,则其次块试验田每亩的产量为(x+200)千克,依据两块地的面积相同,列出分式方程.解答:解:设第一块试验田每亩的产量为x千克,则其次块试验田每亩的产量为(x+200)千克,由题意得,=.故答案为;=.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出分式方程.16.(4分)(2024•三明)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB 于D,P是上的一个动点,连接AP,则AP的最小值是-1.考点:勾股定理;线段的性质:两点之间线段最短;等腰直角三角形.分析:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,再依据勾股定理求出AE的长,然后减掉半径即可.解答:解:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,∵AE==,P2E=1,∴AP2=-1.故答案为-1.点评:本题考查了勾股定理、最短路径问题,利用两点之间线段最短是解题的关键.三、解答题(共9小题,满分86分)17.(7分)(2024•三明)解不等式2(x-2)<1-3x,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:去括号得,2x-4<1-3x,移项得,2x+3x<1+4,合并同类项得,5x<5,系数化为1得,x<1.在数轴上表示为:.点评:本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.18.(7分)(2024•三明)先化简,再求值:(1+)•,其中x=+1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=,当x=+1时,原式==.点评:此题考查了分式的化简求值,娴熟驾驭运算法则是解本题的关键.19.(8分)(2024•三明)如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.(1)求k和b的值;(2)连接OA,求△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)分别把A点坐标代入y=x+b和y=中即可计算出b和k的值;(2)先确定B点坐标,然后依据三角形面积公式求解.解答:解:(1)把A(2,1)代入y=x+b得2+b=1,解得b=-1;把A(2,1)代入y=(x>0)得k=2×1=2;(2)一次函数解析式为y=x-1,把y=0代入y=x-1得x-1=0,解得x=1,则B点坐标为(1,0),所以△AOB的面积=×1×1=.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满意两函数解析式.20.(8分)(2024•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)考点:解直角三角形的应用-坡度坡角问题.分析:在直角三角形中利用20°角和AB的长求得线段AC的长后看是否在5.3-5.7范围内即可.解答:解:由题意得:Rt△ACB中,AB=6米,∠A=20°,∴AC=AB•cos∠A≈6×0.94=5.64,∴在5.3~5.7米范围内,∴符合要求.点评:本题考查了解直角三角形的应用,解题的关键是弄清题意,并整理出直角三角形.21.(10分)(2024•三明)某学校在开展“书香校内”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,依据图中的信息,解答下列问题:(1)这次调查的学生人数为200人,扇形统计图中m的值为15;(2)补全条形统计图;(3)假如这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用文学的人数和所占的百分比求出总人数,用整体1减去文学、科普、军事所占的百分比,即可求出m的值;(2)用200乘以科普所占的百分比,求出科普的人数,再补全统计图几即可;(3)用课外阅读的书籍的册数乘以科普所占的百分比,即可得出答案.解答:解:(1)这次调查的学生人数为=200(人),扇形统计图中军事所占的百分比是:1-35%-20%-30%=15%,则m=15;故答案为:200,15;(2)科普的人数是:200×30%=60(人),补图如下:(3)依据题意得:1500×=450(册),答:“科普”类书籍应添置450册比较合适.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个项目的数据;扇形统计图干脆反映部分占总体的百分比大小.22.(10分)(2024•三明)为了激励居民节约用水,某市采纳“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?考点:一次函数的应用.分析:(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y与x的函数表达式是y =2x;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x>20时,y与x的函数表达式是y=2×20+2.8(x-20),即y=2.6x-12;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x计算用水量;四月份缴费金额超过40元,所以用y=2.8x-16计算用水量,进一步得出结果即可.解答:解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.点评:此题考查一次函数的实际运用,依据题目蕴含的数量关系解决问题.23.(10分)(2024•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.考点:直线与圆的位置关系;平行线的性质;全等三角形的判定与性质.分析:(1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.(2)连接OE,①证明△AOE≌△OCD,即可得AE=OD;②利用等腰三角形及平行线的性质,可求得∠ODC的度数.解答:解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.点评:本题考查了切线性质,全等三角形,等腰三角形的性质以及平行线的性质等,作出协助线是解题的关键.24.(12分)(2024•三明)如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相像?考点:圆的综合题;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理;相像三角形的判定与性质.专题:综合题;分类探讨.分析:(1)易证∠OCB=∠B,由条件∠DOE=∠B可得∠OCB=∠DOE,从而得到△COF是等腰三角形,过点F作FH⊥OC,垂足为H,如图1,由等腰三角形的三线合一可求出CH,易证△CHF∽△BCA,从而可求出CF长.(2)题中要求“△OMN与△BCO相像”,并没有指明对应关系,故需分状况探讨,由于∠DOE=∠B,因此△OMN中的点O与△BCO中的点B对应,因而只需分两种状况探讨:①△OMN∽△BCO,②△OMN∽△BOC.当△OMN∽△BCO时,可证到△AOM∽△ACB,从而求出AM长,进而求出CM长;当△OMN∽△BOC时,可证到△CON∽△ACB,从而求出ON,CN长.然后过点M作MG⊥ON,垂足为G,如图3,可以求出NG.并可以证到△MGN∽△ACB,从而求出MN长,进而求出CM长.解答:解:(1)∵∠ACB=90°,点O是AB的中点,∴OC=0B=OA=5.∴∠OCB=∠B,∠ACO=∠A.∵∠DOE=∠B,∴∠FOC=∠OCF.∴FC=FO.∴△COF是等腰三角形.过点F作FH⊥OC,垂足为H,如图1,∵FC=FO,FH⊥OC,∴CH=OH=,∠CHF=90°.∵∠HCF=∠B,∠CHF=∠BCA=90°,∴△CHF∽△BCA.∴=.∵CH=,AB=10,BC=6,∴CF=.∴CF的长为.(2)①若△OMN∽△BCO,如图2,则有∠NMO=∠OCB.∵∠OCB=∠B,∴∠NMO=∠B.∵∠A=∠A,∴△AOM∽△ACB.∴=.∵∠ACB=90°,AB=10,BC=6,∴AC=8.∵AO=5,AC=8,AB=10,∴AM=.∴CM=AC-AM=.②若△OMN∽△BOC,如图3,则有∠MNO=∠OCB.∵∠OCB=∠B,∴∠MNO=∠B.∵∠ACO=∠A,∴△CON∽△ACB.∴==.∵BC=6,AB=10,AC=8,CO=5,∴ON=,CN=.过点M作MG⊥ON,垂足为G,如图3,∵∠MNO=∠B,∠MON=∠B,∴∠MNO=∠MON.∴MN=MO.∵MG⊥ON,即∠MGN=90°,∴NG=OG=.∵∠MNG=∠B,∠MGN=∠ACB=90°,∴△MGN∽△ACB.∴=.∵GN=,BC=6,AB=10,∴MN=.∴CM=CN-MN=-=.∴当CM的长是或时,△OMN与△BCO相像.点评:本题考查了直角三角形斜边上的中线等于斜边的一半、等腰三角形的判定与性质、相像三角形的判定与性质、勾股定理等学问,考查了分类探讨的思想,而将等腰三角形的三线合一与三角形相像相结合是解决本题的关键.25.(14分)(2024•三明)如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,干脆写出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)解析式已存在,y=ax2+bx+4,我们只须要依据特点描述求出a,b即可.由对称轴为-,又过点A(-2,0),所以函数表达式易得.(2)四边形为平行四边形,则必定对边平行且相等.因为已知MN∥BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平行4个单位,向右2个单位与N重合;②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.因为M在抛物线,可设坐标为(x,-x2+x+4),易得N坐标.由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.(3)使△PBD≌△PBC,易考虑∠CBD的平分线与抛物线的交点.确定平分线可因为BC=BD,可作等腰△BCD,利用三线合一,求其中线所在方程,进而与抛物线联立得方程组,解出P即可.解答:解:(1)∵抛物线y=ax2+bx+4交x轴于A(-2,0),∴0=4a-2b+4,∵对称轴是x=3,∴-=3,即6a+b=0,两关于a、b的方程联立解得a=-,b=,∴抛物线为y=-x2+x+4.(2)∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点右下方,即M向下平移4个单位,向右平移2个单位与N重合.设M(x,-x2+x+4),则N(x+2,-x2+x),∵N在x轴上,∴-x2+x=0,解得x=0(M与C重合,舍去),或x=6,∴x M=6,∴M(6,4).②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.设M(x,-x2+x+4),则N(x-2,-x2+x+8),∵N在x轴上,∴-x2+x+8=0,解得x=3-,或x=3+,∴x M=3-,或3+.∴M(3-,-4)或(3+,-4)综上所述,M的坐标为(6,4)或(3-,-4)或(3+,-4).(3)∵OC=4,OB=3,∴BC=5.假如△PBD≌△PBC,那么BD=BC=5,∵D在x轴上,∴D为(-2,0)或(8,0).①当D为(-2,0)时,连接CD,过B作直线BE平分∠DBC交CD于E,交抛物线于P1,P2,此时△P1BC≌△P1BD,△P2BC≌△P2BD,∵BC=BD,∴E为CD的中点,即E(-1,2),设过E(-1,2),B(3,0)的直线为y=kx+b,则,解得,∴BE:y=-x+.设P(x,y),则有,解得,或,则P1(4+,),P2(4-,).②当D为(8,0)时,连接CD,过B作直线BF平分∠DBC交CD于F,交抛物线于P3,P4,此时△P3BC≌△P3BD,△P4BC≌△P4BD,∵BC=BD,∴F为CD的中点,即E(4,2),设过E(4,2),B(3,0)的直线为y=kx+b,则,解得,∴BF:y=2x-6.设P(x,y),则有,解得或,则P3(-1+,-8+2),P4(-1-,-8-2).综上所述,点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).点评:本题考查了一次函数、二次函数的图象与性质,函数的意义,平移及二元一次方程求解等学问,本题难度适中,但想做全答案并不简洁,是道特别值得学生练习的题目.2024福建省三明市中考数学试题满分:150分,考试时间:120分钟。

初一数学不等式及其解集检测试题及答案

初一数学不等式及其解集检测试题及答案

初一数学不等式及其解集检测试题及答案9.1.1 不等式及其解集(二)典型例题【例1】在数轴上表示下列不等式的解集:(1).x(2)x(3)x2.【解析】在数轴上比-3大的数应该在-3的右边,x-3说明-3也是解集中的一个元素,应该为实心点;x0,x2分别表示0,2不是x0,x2的解,应该为空心.【解答】如图9-2所示:图9-2【例2】求出适合下列不等式的x的整数解,并在数轴上表示出来.(1)2【解析】 22;13以几何上解释,就是表示未知x对应的点离开原点的距离不大于3,不小于1.【解答】 (1)图9-3由图9-3知,适合2(2)图9-4由图9-4知,适合-4(3)图9-5由图9-5知,适合13的整数解为-3,-2,-1,1,2,3. 【例3】某次数学测验中,共有20道选择题.评分办法是:每答对1道题得5分,答错1道题扣1分,不答不给分.若某学生只有1道题未答,那么他至少要答对多少道题,成绩才不会低于80分.请根据题意列出正确的不等式(不求解). 【解析】运用不等式解决实际问题时,关键是像列方程应用题那样,找出题中的不等关系,列出正确的不等式.本题可设至少答对x道题,可得5x分,由于有1道题未答,那么他答错的题的个数应为19-x,扣(19-x)分.由此他共得分5x-(19-x),不低于80分,即5x-(19-x)80.【解答】设至少答对x道题,由题意可列不等式得5x-(19-x)80总分100分时间40分钟成绩评定__________一、填空题(每题5分,共50分)课前热身1.如图9-6所示,表示该不等式的解集__________,x__________.图9-6答案:-12.正方形的边长为xcm,它的周长不超过160 cm,则用不等式表示为__________.课上作业3.已知-1答案:4.直接想出下列不等式的解集:(1)x-36的解集是__________;(2)2x12的解集是__________;(3)x-50的解集是__________;(4) x5的解集是__________.答案:(1)x9 (2)x6 (3)x5 (4)x105.不等式的解集在数轴上表示如图9-7所示,则该不等式可能是__________.图9-7答案:x16.ag糖水中含bg糖(a0),则糖的质量与糖水质量的比为__________,若再添加cg糖(c0),则糖的质量与糖水质量的比为__________,生活常识告诉我们:添加的糖完全溶解后,糖水会更甜,请根据所列的式子及生活常识提炼出一个不等式__________.答案:课下作业7.写出不等式x-50的一个整数解:__________.答案:答案不唯一,只要小于5均可8.一个不等式的解集如图9-8所示,则这个不等式的正整数解是__________.9.如果a+b0,且b0,那么a、b、-a、-b的大小关系为__________.答案:a-b10.用计算器探索:按一定规律排列的一组数: ,如果从中选出若干个数,使它们的和大于0.5,那么至少要选__________个数.答案:7二、选择题(每题5分,共10分)模拟在线11.(乌鲁木齐)图9-9表示了某个不等式的解集,该解集中所含的自然数解的个数是( )图9-9A.4B.5C.6D.7答案:C12.(2019广西)如图9-10所示,图中阴影部分表示x的取值范围,则下列表示中正确的是( )图9-10A.x2B.-3C.-32D.-3答案:B三、解答题(每题20分,共40分)13.用语言叙述下列各式:(1) x+51. (2)x-69.(3)2(8+y)0. (4)3a-70.答案:(1)x的与5的和大于1.(2).x与6的差不大于9.(3)y 与8的和的2倍不小于0.(4)a的3倍与7的差不大于0 14.若方程(m+2)x=2的解为x=2,想一想,不等式(m-2)x-3的解集是多少?试探究-2,-1,0,1,2这五个数中哪些数是该不等式的解.答案:m=-1,x-2,-1,0是该不等式的解。

人教版七年级数学下册9章 不等式与不等组(在数轴上表示解集)+答案

人教版七年级数学下册9章 不等式与不等组(在数轴上表示解集)+答案

9章不等式与不等组(在数轴上表示解集)象湖学校数学教研组专用1. 不等式组的解集在数轴上表示为( )A. B.C. D.2. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.3. 下列用数轴表示不等式组解集正确的是A. B.C. D.4. 如果点在平面直角坐标系的第四象限内,那么的取值范围在数轴上可表示为A. B.C. D.5. 不等式组’的解集在数轴上表示正确的是()A. B.C. D.6. 不等式组的解集在数轴上表示为A. B.C. D.7. 不等式的解集在数轴上表示正确的是A. B.C. D.8. 把不等式组的解集表示在数轴上,正确的是A. B.C. D.9. 在方程组中,若未知数,满足,则的取值范围在数轴上的表示应是如图所示的A. B.C. D.10. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.二、填空题11. 若关于的不等式组的解集在数轴上的表示如图所示,则________.12. 解不等式组,请结合题意填空,完成本题的解答:解不等式①,得________;Ⅱ解不等式②,得________;Ⅲ把不等式①和②的解集在数轴上表示出来:Ⅳ原不等式组的解集为:________.13. 如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①;②;③;④中的________(只填写序号)14. 已知不等式组解集如图所示,则________,________.三、解答题15. 已知关于的方程的解为非负数,求的取值范围,并在数轴上表示出来.16. 解不等式组,并把解集在数轴上表示出来.17. 若不等式组的解集为.(1)试求,的值;(2)把不等式的解集在数轴上表示出来.18. (1)解不等式,并把它的解集在数轴上表示出来; 18. (2)若关于的一元一次不等式只有个负整数解,则的取值范围是________.参考答案9章不等式与不等组(在数轴上表示解集)一、选择题1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】B8.【答案】B9.【答案】B10.【答案】C二、填空题11.【答案】12.【答案】,,13.【答案】④14.【答案】,三、解答题15.【答案】解:,去分母得,移项得,解得,因为方程的解为非负数,所以,解得.的取值范围在数轴上表示如图:16.【答案】不等式组的解集为.不等式组的解集在数轴上表示为17.【答案】解不等式组得,,∴,即=.=.由(1)可知=,解得,在数轴上表示为:.18.【答案】∵,∴,解得,这个不等式的解集在数轴上表示如下:.。

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。

不等式的概念及解集练习题5套(含答案)

不等式的概念及解集练习题5套(含答案)

不等式的概念及解集同步练习题5套(含答案)同步练习题(1)知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.用 连接的式子叫做不等式;2.当x = 3时,下列不等式成立的是 ( )A 、x +3>5B 、x +3>6C 、x +3>7D 、x +3>8 3.下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个4.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥-2 B 、x <1 C 、x ≠、x <05.下列说法中,正确的是 ( )A 、x=3是不等式2x>5的一个解B 、x=3是不等式2x>5的解集C 、x=3是不等式2x>5的唯一解D 、x=2是不等式2x>5的解6.x 与3的差的2倍小于x 的2倍与3倍的差,用不等式表示为 ( ) A 、2(x-3)<(x-3) B 、2x-3<2(x-3) C 、2(x-3)<2x-3 D 、2x-3<1/2(x-3)7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A 、13cm B 、6cm C 、5cm D 、4cm 9.1.1《不等式及其解集》同步练习题(1)答案: 1.符号“<、>、≥、≤、≠” 2-7 ABDACB0-1-2知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1、在下列式子中:①x-1>3x;②x+1>y;③1/3x - 1/2y;④4<7;⑤x ≠2;⑥x=0;⑦2x-1≥y;⑧x ≠y 是不等式的是 。

29 在数轴上表示不等式的解集(解析版)初中数学

29 在数轴上表示不等式的解集(解析版)初中数学

专题29 在数轴上表示不等式的解集一、单选题1.一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是()A.-1≤x<3B.-1<x≤3C.-1<x<3D.-1≤x≤3【答案】A【分析】根据在数轴上表示不等式解集的方法进行解答即可.【详解】解:∵-1处是实心圆点且折线向右,3处是空心圆点且折线向左,∵-1≤x<3.故选:A.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.2.不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式∵,得2x,解不等式∵,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.3.不等式组5031xx+⎧⎨->⎩的解集在数轴上表示为()A.B.C.D.【答案】C【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【详解】解:50,1xx+≥⎧⎨⎩3-②>,①,解不等式∵得:x≥﹣5,解不等式∵得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∵不等式50,1xx+≥⎧⎨⎩3->,的解集在数轴上表示为:故选:C.【点睛】本题考查了不等式组的解集在数轴上表示,不等式组解集的表示方法:大小小大中间找,大大小小无处找,同大取大,同小取小.4.不等式3x﹣1>5的解集在数轴上表示正确的是()A.B.C.D.【答案】A【分析】依次移项、合并同类项、系数化为1即可得.【详解】解:3x ﹣1>5,3x >5+1,3x >6,x >2,故选A .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.5.不等式3x -2>4的解集在数轴上表示正确的是∵ ∵A .B .C .D .【答案】B【解析】不等式移项得:3x >6∵解得:x >2∵表示在数轴上得:∵故选B∵6.把不等式组12239x x +≥⎧⎨--≥-⎩的解用数轴上的点表示出来,则其解集构成的图形为( )A .射线B .线段C .直线D .长方形【答案】B【分析】先求出不等式组的解集,并在数轴上表示出来,观察数轴即可得出结论【详解】解:12239x x +≥⎧⎨--≥-⎩①②解不等式∵得:1≥x解不等式∵得:3x ≤不等式组的解集是:13x ≤≤其解集构成的图形为:线段故选:B【点睛】本题考查了不等式组的解法,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.7.如图,是关于x 的不等式2x -m< -1的解集,则m 的值为( )A .2m ≤-B .1m ≤-C .2m =-D .1m =- 【答案】D【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【详解】解不等式2x -m< -1得:12m x -< , 因为由图可得不等式的解集为1x <-, 所以112m -=-, 所以m=-1.故选:D .【点睛】考查了不等式的解集,解题关键是当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.8.把不等式2x ﹣1>﹣5的解集在数轴上表示,正确的是( )A .B .C .D .【答案】C【分析】 按照移项,合并,系数化为1的方法计算即可.【详解】移项得:2x >1﹣5,合并得:2x >﹣4,解得:x >﹣2,故选:C .【点睛】本题考查解不等式,熟练掌握解不等式的一般步骤是解决本题的关键.9.如图,数轴上表示一个不等式的解集是( )A .2x ≥-B .2x -≤C .2x >-D .2x <-【答案】C【分析】根据在数轴上表示不等式解集的方法解答即可.【详解】∵-2处是空心圆圈,且折线向右,∵这个不等式的解集是x >-2.故选C .【点睛】考查的是在数轴上表示不等式的解集.在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.10.不等式213x +≥的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】 解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.【详解】解:不等式213x +≥的解集为:1≥x ,故选:D .【点睛】本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.11.用不等式表示如图所示的解集正确的是( )A .x >2B .x ≥2C .x <2D .x ≤2【答案】C【分析】根据不等式组解集在数轴上的表示方法可知不等式的解集.【详解】解:观察数轴可知:向左画又是空心圆,即表示小于2的数.故选:C .【点睛】本题考查了不等式解集的数轴表示法,明确“>”、“<”、“实心圆点”、“空心圆”的含义是解答本题的关键. 12.不等式组21512x x ->⎧⎪⎨+⎪⎩①②中,不等式∵和∵的解集在数轴上表示正确的是( ) A . B .C .D . 【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集.【详解】解:解不等式∵,得:1x <,解不等式∵,得:3x -,则不等式组的解集为31x -<≦,将两不等式解集表示在数轴上如下:故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.不等式x +2≥3的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【详解】解:∵23x +≥,∵32x ≥-,∵1x ≥,故选:C .【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.不等式组()2160.510.5x x ⎧+<⎨+≥⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】准确求解不等式组,在进行判断即可.【详解】()2160.510.5x x ⎧+<⎨+≥⎩①②解不等式∵得:x <2,解不等式∵得:x≥﹣1,则不等式组的解集为﹣1≤x <2,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组,熟练掌握一元一次不等式组的解法是解题的关键.15.在数轴上表示不等式240x -的解集,正确的是( )A .B .C .D .【答案】B【分析】先根据不等式的解法求出解,然后在数轴上表示,选出正确答案即可.【详解】x-,解:240x,24x2x,∵不等式的解集为:2在数轴上表示为:,故选:B.【点睛】本题考查求一元一次不等式解集及在数轴上表示不等式的解集,熟练掌握不等式的解法及在数轴上表示解集是解题关键.x-≤的解集在数轴上表示正确的是()16.不等式2A.B.C.D.【答案】C【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】把x的系数化为1得,x≥−2.在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.17.不等式x-1>0的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】 先求出不等式的解集,然后在数轴上表示即可.【详解】∵x -1>0,∵x>1,在数轴上表示为:故选A.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.18.在数轴上表示不等式组20260x x +>⎧⎨-⎩的解集,正确的是( ) A .B .C .D .【答案】A【解析】 20260x x +>⎧⎨-≤⎩①② 解∵得,2x >- ;解∵得,3x ≤ ;∵不等式组的解集是:23x -<≤ .故选A.点睛:不等式组的解法是,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.在数轴上的表示时注意, 空心圈表示不包含该点,实心点表示包含该点.19.若关于x 的不等式(1)1a x a -+>-的解集如图所示,则a 必满足( )A .0a <B .1a >C .1a <-D .1a <【答案】B【分析】由不等式的解集可知1-a <0,由此得a 的范围.【详解】解:由图可知:不等式(1)1a x a -+>-的解集为:x <-1,即()11a x a ->-,则1-a <0,∵a >1,故选B .【点睛】本题考查了运用数轴表示不等式的解集.关键是由不等式解集的结果得出不等式,求字母a 的值. 20.不等式组1021x x +≥⎧⎨-≤⎩的解集在数轴上表示正确的( )A .B .C .D .【答案】D【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解:1021x x +≥⎧⎨-≤⎩①②由∵得x ≥﹣1,由∵得x ≤3,根据“小大大小中间找”的原则可知不等式组的解集为﹣1≤x ≤3.故选:D .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.21.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x +>⎧⎨+≤⎩C .1020x x +>⎧⎨-≤⎩D .1020x x -≤⎧⎨+<⎩ 【答案】C【分析】由数轴可得表示的解集为12x -<≤,把各个选项求出解集,即可解答.【详解】数轴表示的解集为12x -<≤.解不等式组1020x x ->⎧⎨+≤⎩,得:12x x >⎧⎨≤-⎩,解集为空集,故A 不符合题意. 解不等式组1020x x +>⎧⎨+≤⎩,得:12x x >-⎧⎨≤-⎩,解集为空集,故B 不符合题意.解不等式组1020xx+>⎧⎨-≤⎩,得:12xx>-⎧⎨≤⎩,解集为12x-<≤,故C符合题意.解不等式组1020xx-≤⎧⎨+<⎩,得:12xx≤⎧⎨<-⎩,解集为2x<-,故D不符合题意.故选C.【点睛】本题考查在数轴上表示不等式的解集以及解不等式组,解决本题的关键是求出不等式组的解集.22.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.【答案】A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式∵得,1x>,解不等式∵得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.23.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D.【答案】B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.24.不等式-3<a≤1的解集在数轴上表示正确的是()A.B.C.D.【答案】A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∵1处是实心原点,且折线向左.故选:A .【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.25.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D . 【答案】B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】111x x -<⎧⎨-⎩①② 由不等式∵组得,x<2∵不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26.不等式x <2的解集在数轴上表示为( )A.B.C.D.【答案】B【分析】根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x<2的解集表示在数轴上2左边的数构成的集合,在数轴上表示为:故选:B【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式2x+1≤5的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先移项得到2x≤4,再把系数化为1得到不等式的解集,然后利用数轴表示出解集即可得答案.【详解】2x+1≤5移项得:2x≤5﹣1,系数化为1得:x≤2.故选:C.【点睛】本题考查了一元一次不等式的解法和在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥、≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键.28.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .≥-1B .>1C .-3<≤-1D .>-3【答案】A【解析】>-3 ,≥-1,大大取大,所以选A29.在平面直角坐标系中,点P (2x+4,x ﹣3)在第四象限,则x 的取值范围表示在数轴上,正确的是( ) A . B .C .D .【答案】A【解析】根据题意,得:24030x x +>⎧⎨-<⎩①②∵解不等式∵,得:x>−2∵解不等式∵,得:x<3∵则不等式组的解集为−2<x<3∵故选A.二、填空题30.不等式0ax b +>的解集在数轴上表示如图所示,则该不等式的解集为 ___________________.【答案】x >-3【分析】根据不等式解集的数轴表示法可以得到解答.【详解】解:阅读数轴,折线向右且表示3的点为空心,所以不等式的解集为x>-3.故答案为x>-3.【点睛】本题考查不等式的解集,熟练掌握解集的数轴表示法是解题关键.31.一个一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是_______.【答案】13x -≤<【分析】根据一元一次不等式的解集在数轴上的表示方法即可得.【详解】由数轴图可知,该不等式组的解集是13x -≤<,故答案为:13x -≤<.【点睛】本题考查了一元一次不等式的解集在数轴上的表示,掌握理解不等式的解集在数轴上的表示方法是解题关键.32.某个关于x 的不等式的解集在数轴上的表示如图所示,这个不等式的解集是_____.【答案】x ≥﹣2【分析】根据不等式的解集在数轴上的表示方法解答即可.【详解】解:∵﹣2处是实心圆点,且折线向右,∵x ≥﹣2.故答案为:x ≥﹣2.【点睛】本题考查了不等式的解集在数轴上的表示方法,一般的,不等式的解集在数轴上遵循“小于向左,大于向右;边界含于解集为实心点,不含于解集为空心点”.33.若关于x 的不等式的解集在数轴上表示如图,请写出此解集为______.【答案】21x -<≤【分析】根据不等式的解集与数轴的关系即可解答.【详解】由数轴知,此不等式的解集为21x -<,故答案为:21x -<.【点睛】本题考查了在数轴上表示不等式的解集,熟练掌握不等式的解集与数轴的关系是解答的关键.34.如图,张小雨把不等式3x >2x -3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【分析】先求出不等式的解,即可求出答案.【详解】由3x >2x -3∵解得:x∵-3∵∵阴影部分盖住的数字是:-3.故答案是:-3.【点睛】本题主要考查解一元一次不等式以及不等式的解在数轴上的表示,掌握一元一次不等式的解在数轴上的表示方法,是解题的关键.35.关于x 的某个不等式组的解集在数轴上表示如图所示,则这个不等式组的解集为______________.【答案】﹣1≤x ≤4【解析】【分析】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵【详解】∵∵∵−1∵∵∵∵∵∵∵∵∵∵∵∵∵∵x1≥﹣∵∵4∵∵∵∵∵∵∵∵∵∵∵∵x4≤∵∵∵∵∵∵∵∵∵∵1x4-≤≤∵∵∵∵∵∵1x4-≤≤∵∵【点睛】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵36.如图∵∵,表示的不等式的解集是________.【答案】x∵2【解析】由数轴得不等式的解集是x∵2∵故答案为x∵2.37.关于x的不等式﹣2x+a≥4的解集如图所示,则a的值是__.【答案】2.【分析】由不等式﹣2x+a≥4可得x≤42a-,然后由数轴可得x≤﹣1,进而问题可求解.【详解】解:∵﹣2x+a≥4,∵x≤42a-,∵x≤﹣1,∵41 2a-=-,∵a=2,故答案为2.【点睛】本题主要考查含参数的不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.38.根据如图所示,用不等式表示公共部分x 的范围______.【答案】32x -≤<【分析】根据实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左,公共部分即是解集;【详解】由图示可以看出,从-3出发向右画出的折线且表示-3的点是实心圆,表示3x ≥-;从2出发向左画出的折线且表示2的点是空心圆,表示2x <,∵这个不等式组的解集为:32x -≤<.故答案是32x -≤<.【点睛】本题主要考查了数轴上不等式的解集,准确分析判断是解题的关键.39.一个关于 x 的一元一次不等式组的解在数轴上的表示如图所示,则该不等式组的解是__________.【答案】3x >【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从1出发向右画出的线且1处是实心圆,表示x ≥1;从3出发向右画出的线且3处是空心圆,表示x >3,不等式组的解集是指它们的公共部分,所以这个不等式组的解为:3x >,故答案为: 3x >.【点睛】等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.40.不等式3x+2>2(x-1)的解集为_____,在数轴上表示为.【答案】x>-4,数轴上表示见解析【解析】【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【详解】3x+2>2(x-1),3x-2x>-2-2,x>-4,把解集表示在数轴上为.故答案是:x>-4,数轴上表示见解析.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.41.如果关于x的不等式x≥12a-的解集在数轴上表示如图所示,那么a的值为_____.【答案】-3【分析】根据不等式的解集及其在数轴上的表示得出关于a的方程,解之可得答案.【详解】解:根据题意知:12a-=﹣2,∵a﹣1=﹣4,则a=﹣3,故答案为:﹣3.【点睛】本题主要考查解一元一次不等式及不等式解集在数轴上的表示,解题的关键是根据解集在数轴上的表示得出关于a的方程.42.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的值是_____.【答案】-1【分析】首先解不等式2x﹣a≤﹣1可得x≤12a-,根据数轴可得x≤﹣1,进而得到12a-=﹣1,再解方程即可.【详解】∵2x﹣a≤﹣1,∵x≤1 2a-,∵x≤﹣1,∵12a-=﹣1,解得:a=﹣1,故答案为:﹣1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解出不等式的解集.43.将数轴上x的范围用不等式表示:__________.【答案】x>2【解析】【分析】根据在数轴上表示不等式解集的方法得出该不等式的解集即可.【详解】解:数轴上表示不等式解集的方法可知,该不等式的解集为:x>2.故答案为:x>2.【点睛】本题考查了在数轴上表示不等式的解集,熟知实心圆点与空心原点的区别是解题的关键.44.若不等式(a -3)x <3-a 的解集在数轴上表示如图所示,则a 的取值范围是______.【答案】a <3【解析】【分析】由图示可知:不等式的解集为:x >-1,根据不等式的性质可知:a -3<0,解之即可.【详解】解:由图示可知:不等式的解集为:x >-1,根据题意得:a -3<0,解得:a <3,故答案为:a <3.【点睛】本题考查解一元一次不等式和在数轴上表示不等式的解集,正确掌握不等式的性质是解题的关键.三、解答题45.解不等式,并把解集表示在数轴上:23x->72x+.【答案】x <-33,数轴表示见解析【分析】先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】 解:23x->72x+,去分母得:2x -12>21+3x ,移项得:2x -3x >12+21,合并同类项得:-x >33系数化为1得:x <-33,在数轴上表示为:【点睛】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.46.解不等式并把不等式的解集在数轴上表示出来.5(x-2)+8<6(x-1)+7【答案】3x>-【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【详解】解:5(x−2)+8<6(x−1)+7,5x−10+8<6x−6+7,整理得:−x<3,解得:x>−3,画图如下:【点睛】此题考查了解一元一次不等式,掌握不等式的性质是本题的关键,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.47.解不等式:11126x x-+<-,并把它的解集表示在数轴上.【答案】2x<,表示在数轴上见解析【分析】先去分母,再去括号,移项、合并同类项,把x 的系数化为1即可.【详解】去分母,得:()()3161x x -<-+,去括号,得:3361x x -<--,移项,得:3613x x +<-+,合并同类项,得:48x <,系数化为1,得:2x <,将不等式的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.48.解不等式,并把解集表示在数轴上21132x x -+-< 【答案】x >-1,图详见解析【分析】先根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1得解集,再将解集表示在数轴上.【详解】 解:21132x x -+-< 6-2(2-x)<3(x+1)6-4+2x<3x+32x -3x<3+4-6-x<1x>-1故不等式的解集为x>-1表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.49.解不等式,并在数轴上表示解集:231232x x --≥-. 【答案】117x ≤,图详见解析 【分析】先去分母、移项合并,然后把系数化为1得到不等式的解集,然后用数轴表示其解集.【详解】去分母,得:()()2233112x x -≥--去括号,得:249312x x -≥--,移项,得:293124x x -≥--+,合并同类项,得:711x -≥-,系数化为1,得:117x ≤, 将解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.50.解不等式3185315x x +-->,并把解集在数轴上表示出来.【答案】3x <,见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解: 3185315x x +--> ()()33518x x +-->.39558x x +-+>3 5895x x ->--26x ->-.3x <.它在数轴上的表示如图所示:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.51.解不等式组()453142? 3x x x x ⎧-<-⎪⎨+-≥⎪⎩,并将解集在数轴上表示出来. 【答案】12x ≤,数轴上表示见解析 【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集,最后在数轴上表示出来即可.【详解】 ()453142?3x x x x ⎧-<-⎪⎨+-≥⎪⎩①②, 解不等式∵得:2x <,解∵得:12x ≤, ∵不等式组的解集为1 2x ≤在数轴上表示不等式组的解集为:【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.52.(1)解方程:(x +1)2=214; (2)解不等式:3136x x ->-,并把不等式的解集在数轴上表示出来. 【答案】(1)1215,22x x ==-;(2)3x >,数轴见解析. 【分析】(1)利用平方根定义进行求解可得答案;(2)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【详解】解:(1)∵(x +1)2=94, ∵x +1=±32, 则x =﹣1±32, ∵x 1=12,x 2=﹣52; (2)∵3136x x ->-, ∵2x >6﹣x +3,2x +x >6+3,3x >9,∵x >3,将解集表示在数轴上如下:【点睛】本题考查了利用平方根解方程、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.53.解不等式组:2(21)3(1)1132x x x x x -+⎧⎪+-⎨<-⎪⎩,并把不等式组的解集表示在数轴上.【答案】不等式组的的解集为15x -<,数轴见解析【分析】先分别求解不等式,再根据数轴表示不等式解集的方法准确画出图形即可.【详解】解:()()221311122x x x x x ⎧-+⎪⎨+-<-⎪⎩①②, 由∵得:5x ,由∵得:1x >-,∴不等式组的的解集为15x -<.【点睛】本题考查解不等式组及在数轴上表示不等式组的解集,准确求解不等式组并理解数轴表示解集的细节是解题关键.54.解不等式,并把不等式(2)的解集在数轴上表示出来.(1)46715x x -≥-;(2)235324x x +≥⎧⎨-≤⎩【答案】(1)3x ≤;(2)1≤x≤2,数轴表示见解析【分析】。

初一数学在数轴上表示不等式(组)的解集(含答案)

初一数学在数轴上表示不等式(组)的解集(含答案)

初一数学在数轴上表示不等式(组)的解集一选择题1.如图,表示的不等式组的解集为()A.1<x≤2 B.x≤2 C.x<1 D.空集2.下列在数轴上表示x<﹣2的解集,正确的是()A.B.C.D.3.如图,数轴上表示的解集为()A.﹣3<x≤2 B.x≤2 C.x>﹣3 D.﹣3≤x<24.如图,该数轴表示的不等式的解集为()A.x<2 B.x>1 C.0<x<2 D.1<x<25.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.不等式x≥﹣2的解集在数轴上表示正确的是()A.B.C.D.7.不等式x﹣2<0的解集在数轴上表示出来正确的是()A.B.C.D.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.一个不等式组中两个不等式的解集在同一数轴上的表示如图所示,这个不等式组的解集为()A.x<﹣1 B.x≤1 C.﹣1<x≤1 D.x≥111.不等式x<1的解集在数轴上的表示,正确的是()A.B.C.D.12.已知不等式的解集在数轴上表示如图所示,则此不等式的解集是()A.B.C.D.13.把不等式x≥﹣1的解集表示在数轴上正确的是()A.B.C.D.14.在数轴上表示﹣2≤x<1正确的是()A. B.C. D.15.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.16.将不等式组的解集在数轴上表示,正确的是()A. B. C. D.17.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标志,这是限制车高的标志.则通过该桥洞的车高x(m)的范围在数轴上可表示为()A. B.C. D.二填空题18.如图,数轴上表示关于x的不等式组的解集是.19.关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是.20.现规定一种新运算,a※b=2a﹣b,其中a、b为常数.已知关于x的不等式k※x≤3的解集在数轴上表示如图,则k的值为.21.世界杯正如火如荼地进行着,其小组赛赛制为:每队胜一场得3分,平一场得1分,负一场得0分.若某强队想要在小组赛中确保出线,就必须在3场中保持不败并且积分不少于7分,则该队至少胜多少场?设该队胜x场,则列出的不等式为.22.关于x的不等式组恰有3个整数解,则实数a的取值范围是.23.清明将至,前去扫墓的人逐渐增多.某花店购进白菊,白百合,马蹄莲共计m捆.白菊每捆20支,白百合每捆12支,马蹄莲每捆10支.现取出白菊的,白百合的,马蹄莲的,全部用于扎成A、B两款花束销售.其中A款花束白菊2支,白百合3支,马蹄莲1支,B款花束白菊5支,马蹄莲2支.如此取出后剩下的白百合支数不多于马蹄莲支数,则购进的白菊捆数与白百合捆数之比至少为.24.已知关于x的一元一次不等式(m+2)x>4的解集是,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是.25.某公司决定采购整箱的苹果、脐橙和柚子来奖励员工以及回馈客户.其中每箱苹果40元,每箱脐橙120元,每箱柚子80元:公司采购的所有水果的箱数之和不超过120箱,购买的苹果不低于28箱,且购买脐橙的费用是购买苹果费用的4倍,购买柚子的费用是购买苹果费用的3倍.公司把采购的所有水果均用于奖励员工和回馈客户,最后发现奖励给员工与回馈给客户的同种类型的水果的数量之差不超过3箱,且奖励给员工的所有水果的总费用与回馈给客户的所有水果的总费用相同,则公司奖励员工的所有水果的箱数总和最多为箱.初一数学在数轴上表示不等式(组)的解集参考答案与解析1.分析:数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解:不等式组公共部分在1的左边.因而解集为:x<1.故选:C.2.分析:根据不等式的解集在数轴上表示出来的方法画数轴即可.解:在数轴上表示不等式x<2的解集,故选:B.3.分析:根据求不等式组的解集的表示方法,可得答案.解:由图可得,x>﹣3且x≤2,∴在数轴上表示的解集是﹣3<x≤2,故选:A.4.分析:根据“大小小大中间取”和不等式的解集在数轴上表示方法即可求出不等式的解集.解:该数轴表示的不等式的解集为1<x<2.故选:D.5.分析:先求出每一个不等式的解集,在数轴上表示出来,其公共部分即为不等式组的解集.解:由(1)得,x>﹣1,由(2)得,x≤2,故原不等式组的解集为:﹣1<x≤2.故选:D.6.分析:将已知解集表示在数轴上即可.解:不等式x≥﹣2的解集在数轴上表示正确的是.故选:D.7.分析:先解不等式,再在数轴上表示出不等式的解集.解:不等式x﹣2<0的解集为x<2,在数轴上表示为:故选:B.8.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解:,由①得,x>1;由②得,x<2,故此不等式组的解集为:1<x<2,在数轴上表示为:,故选:C.9.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:不等式组的解集为x<1,在数轴上表示为.故选:C.10.分析:本题可根据数轴的性质,实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右,小于向左.观察相交的部分即为不等式的解集.解:数轴上表示解集的线的条数与不等式的个数一样的部分是﹣1左边的部分,则不等式解集为:x<﹣1.故选:A.11.分析:将已知解集表示在数轴上即可.解:不等式x<1的解集在数轴上表示为,故选:C.12.分析:根据数轴上不等式解集的表示方法进行解答即可.解:∵表示﹣的数上的点是空心圆点,且曲线向右折,∴此不等式的解集是:x>﹣.故选:C.13.分析:根据比﹣1大的数在﹣1的右边,x≥﹣1包括界点﹣1,据此求解即可.解:把不等式x≥﹣1的解集表示在数轴上,正确的是,故选:B.14.分析:根据﹣2是实心点,方向向右,1是空心点,方向向左画出图形即可得到答案.解:﹣2是实心点,方向向右,1是空心点,方向向左,如图所示:,故选:D.15.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:由﹣x≤﹣1解得x≥1,由x+1>0解得x>﹣1,不等式的解集是x≥1,在数轴上表示如图,故选:A.16.分析:先求出不等式组的解集并在数轴上表示出来,找出符合条件的选项即可.解:由x≤1得x≤3,所以不等式组的解集为1<x≤3,在数轴上的表示为:,故选:A.17.分析:利用已知图表直接得出该桥洞的车高x(m)的取值范围.解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:,故选:D.18.分析:从数轴可得不等式组的解集为﹣1<x≤3.解:从图可知,不等式组的解集为﹣1<x≤3,故答案为﹣1<x≤3.19.分析:根据数轴得出不等式组的解集即可.解:根据数轴可知:不等式组的解集是﹣1≤x<3,故答案为:﹣1≤x<3.20.分析:根据k※x≤3得出2k﹣x≤3,求出不等式的解集是x≥﹣3+2k,根据数轴得出﹣3+2k =﹣1,再求出k即可.解:∵k※x≤3,∴2k﹣x≤3,∴﹣x≤3﹣2k,∴x≥﹣3+2k,从数轴可知:﹣3+2k=﹣1,解得:k=1,故答案为:1.21.分析:由该队胜x场,可得出该队平(3﹣x)场,利用积分=3×胜的场数+1×平的场数,结合积分不少于7分,即可得出关于x的一元一次不等式,此题得解.解:设该队胜x场,则平(3﹣x)场,根据题意得:3x+3﹣x≥7.故答案为:3x+3﹣x≥7.22.分析:先解出不等式组的解集,然后根据不等式组恰有3个整数解,即可得到a的取值范围.解:,解不等式①得:x>3.5,解不等式②,得:x≤a,∵关于x的不等式组恰有3个整数解,∴这三个整数解是4,5,6,∴6≤a<7,故答案为:6≤a<7.23.分析:根据题意线设出白菊和白百合的捆数,然后根据题中条件分别写出取去的白菊、白百合、马蹄莲的支数,再根据题意设出A款花束和B款花束的数量,根据花束中每个花的支数可列出方程组,解出方程组,再根据取出后剩下的白百合支数不多于马蹄莲支数列出不等式,解出不等式即可.解:设购进白菊有x捆,白百何有y捆,则马蹄莲有(m﹣x﹣y)捆,∵白菊每捆20支,白百合每捆12支,马蹄莲每捆10支,∴白菊有20x支,白百合有12y支,马蹄莲有10(m﹣x ﹣y)支,∵现取出白菊的,白百合的,马蹄莲的,全部用于扎成A、B两款花束销售,∴取出的白菊有10x支,白百合有4y支,马蹄莲有(m﹣x﹣y)支,设A款花束有a束,B款花束有b束,根据A款花束白菊2支,白百合3支,马蹄莲1支,B款花束白菊5支,马蹄莲2支可列方程组得:,由②得:a=④,把④代入①得:b=2x﹣y⑤,把④和⑤代入③得:m=,∵取出后剩下的白百合支数不多于马蹄莲支数,∴12y﹣4y≤10(m﹣x﹣y)﹣(m﹣x﹣y),即8y≤(﹣x﹣y),整理得:5x≥3y,∴,故答案为:3:5.24.分析:根据已知得出关于m的不等式,求出不等式的解集即可.解:(m+2)x>4,∵关于x的一元一次不等式(m+2)x>4的解集是,∴m+2<0,∴m的取值范围是m<﹣2,∵数轴上的A,B,C,D四个点中,只有点A表示的数小于﹣2,∴实数m对应的点可能是点A.故答案为:点A.25.分析:设该公司购买苹果x箱,脐橙y箱,柚子z箱,根据题意可知,,解得28≤x≤31,且y=x,z=x.由x是6的倍数可知,x=30,y=40,z=45.设回馈给客户的苹果a箱,脐橙b箱,柚子c箱,则奖励给员工的苹果(30﹣a)箱,脐橙(40﹣b)箱,柚子(45﹣z)箱,列出方程,整理得a+3b+2c=120.由同种类型的水果的数量之差不超过3箱,得出a,b,c的范围,再结合想要奖励给员工的水果箱数最多,可得出a,b,c的值,进而可得出结论.解:设该公司购买苹果x箱,脐橙y箱,柚子z箱,根据题意可知,,解得28≤x≤31,且y=x,z=x.∵y,z是整数,∴x一定为6的倍数.∴x=30,y=40,z=45.设回馈给客户的苹果a箱,脐橙b箱,柚子c箱,则奖励给员工的苹果(30﹣a)箱,脐橙(40﹣b)箱,柚子(45﹣z)箱,∴40a+120b+80c=40(30﹣a)+120(40﹣b)+80(45﹣c),整理得a+3b+2c=120.∵同种类型的水果的数量之差不超过3箱,∴,解得.∵a,b,c为整数,∴a=14或15或16,b=19或20或21,c=21或22或23或24.∵a+3b+2c=120,解得a=14,b=20,c=23.或a=16,b=20,c=22或a=15,b=c=21或a=15,b=19,c=24,若想奖励给员工最多,则回馈用户最少,∴a+b+c的最小值为:57.∴奖励给员工最多的为:30+40+45﹣57=58(箱).故答案为:58.。

七年级数学不等式与不等式组-有答案有解析

七年级数学不等式与不等式组-有答案有解析

分卷I分卷I 注释1、如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b-1)(a+1)>0 D.(b-1)(a-1)>0C解:a、b两点在数轴上的位置可知:-1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1<0故C正确,D错误.故选C.2、据扬子晚报报道,2012年5月7日南京市最高气温是33℃,最低气温是22℃,则当天南京市气温t (℃)的变化范围可用不等式表示为()A.t≥22 B.t≤22 C.22<t<33 D.22≤t≤33D用不等号可以将两个解析式连接起来所成的式子.解:∵2012年5月7日南京市最高气温是33℃,最低气温是22℃,∴22≤t≤33.故选:D.3、实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<B先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断��解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.4、四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()A.P>R>S>QB. Q>S>P>RC. S>P>Q>RD. S>P>R>QD由三个图分别可以得到,而Q+S>Q+P,代入第三个式子得到P+R>Q+P,所以R>Q.所以它们的大小关系为S>P>R>Q.解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q.故选D.5、下列不等式组的解集,在数轴上表示为如图所示的是()A.B.C.D.D分别解出各个不等式组,进行检验就可以.解:由A得,∴不等式组无解;由B得,∴不等式组的解集为x<﹣2;由C得,∴不等式组无解;由D得,∴不等式组的解集为﹣1<x≤2.故选D.6、若a<c<0<b,则abc与0的大小关系是()A. abc<0 B. abc=0 C.abc>0 D.无法确定C根据有理数乘法法则:两数相乘,同号得正可得ac>0.再根据不等式是性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,解答此题.解:∵a<c<0<b,∴ac>0(同号两数相乘得正),∴abc>0 (不等式两边乘以同一个正数,不等号的方向不变).故选C.7、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃B根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.解:设温度为x℃,根据题意可知解得3≤x≤5.故选B.8、下列数中是不等式x>50的解的有()76,73,79,80,74.9,75.1,90,60A.5个B.6C.7个D.8个A先求出不等式的解集,在取值范围内对76,73,79,80,74.9,75.1,90,60进行判断.解:不等式x>50的解集是x>75;所以76,79,80,75.1,90是不等式的解.故选A.9、某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.50+0.3x≤1200至多意思是小于或等于.本题满足的不等关系为:制版费+单张印刷费×数量≤1200.解:根据题意,得50+0.3x≤1200.10、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.10n﹣5(20﹣n)>90根据答对题的得分:10n;答错题的得分:﹣5(20﹣n),得出不等关系:得分要超过90分.解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.11、如图是测量一物体体积的过程:步骤一:将300ml的水装进一个容量为480ml的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没满;步骤三:将同样的玻璃球再加两颗放入水中,结果水满溢出.根据以上过程推测一颗玻璃球的体积范围____.36<x<60关键描述语:(1)将三个相同的玻璃球放入水中,结果水没满,即三个玻璃球的体积小于未装水的杯子的体积;(2)将同样的玻璃球再加两颗放入水中,结果水满溢出,即五个玻璃球的体积大于未装水的杯子的体积.解:设一个玻璃球的体积为x,依题意得:解得:36<x<60即一颗玻璃球的体积范围为:36<x<60.12、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金____元.3520若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,但有一辆不能坐满.只租甲种客车正好坐满,这种方式一定最贵.因而两种客车用共租8辆.两种客车的载客量大于360,根据这个��等关系,就可以求出两种客车各自的数量,进而求出租金.解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360解得:x≤4整数解为1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.13、某初级中学八年级(1)班若干名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,他们经过核算,买团体票比买单人票便宜,则他们至少有_____人.21本题可设至少有x人.则买团体票需要的钱数是:25×0.8×10,买单人票需要的钱数是:10x,根据买团体票比买单人票便宜,就可以列出不等式,解出x的取值.解:设至少有x人.则25×0.8×10<10xx>20因此他们至少有21人.14、为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.解:(1)根据题意得:a=22.5÷15=1.5;b=(50﹣20×1.5)÷(30﹣20)=2;(2)根据题意列不等式组得:60≤20×1.5+2(x﹣20)≤90,解得:35≤x≤50,即该用户六月份的用水量x的取值范围为35≤x≤50(1)根据某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元,分别求出a和b 即可;(2)根据“该用户六月份的水费支出不少于60元,但不超过90元”列一元一次不等式组求解即可.15、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解:(1)∵720÷6=120,∴光明厂平均毎天要生产120套单人课桌椅.(2)设x人生产桌子,则(84﹣x)人生产椅子,解得:60≤x≤60故x=60,∴84﹣x=24,∴60人生产桌子,则24人生产椅子.(1)用720套单人课桌椅÷6天完成这项生产任务=毎天要生产单人课桌椅的套数,(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.16、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?解:(1)设小明答对了x道题.依题意得5x﹣3(20﹣x)=68.解得x=16.答:小明答对了16道题.(2)设小亮答对了y道题.依题意得因此不等式组的解集为16≤y≤18.∵y是正整数,∴y=17或18.答:小亮答对了17道题或18道题.(1)设小明答对了x道题,则有20﹣x道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x的方程,解方程即可求解;(2)小亮答对了y道题,则有20﹣y道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于y的不等式组,从而求得y的范围,再根据y是非负整数即可求解.17、某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x>10,解②得:x>25,∴不等式组的解集是:x>25.答:某游客一年进入该公园至少超过25次时,购买A类年票合算.由于购买A年票首先要花100元,以后就不用再花钱了,那么可让另外两种种购票方式所花的费用大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算.18、上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如表所示.客房普通间(元/天)三人间 240二人间 200世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.(1)该旅游团人住的二人普通间有____间(用含x的代数式表示);(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?解:(1)由题意可得,住在二人间的人数为:(50﹣3x),又∵二人间也正好住满,故可得二人间有:;解得8<x≤l0,∵x为整数,∴x=9或x=10,当x=9时,=(不为整数,舍去);当x=10时,=10.答:客房部只有一种安排方案:三人普通间10间,二人普通间10间.(1)求出住在二人间的人数,然后即可得出二人间的个数;(2)根据要求一天的住宿费必须少于4500元,及入住的三人普通间不多于二人普通间,分别列出不等式,联立求解即可.19、已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:.(2)解:解不等式组①,得x>2,解不等式组②,得x≥﹣1,∴不等式组的解集为x>2,.(1)直接写出即可;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.20、某校科技小组为参加央视《百科探秘》栏目的我爱机器人论坛,设计制作了由四个机器人进行舞蹈表演的节目.如图是四个机器人A、B、C、D在6×8在网格(每个小正方形的边长为1米)中表演前的位置,每个机器人由1名小组成员操控,按如图所示的程序同时同样运动,每一步都踩在格点上,步距不小于1米,小于2米.(1)求机器人A完成一次程序走过的路程长;(2)若要使输入点A,输出的点是D点所在的位置,请修改程序;(3)由于机器人能量有限,每个机器人走过的路程长不超过100米,在已知程序下,若每跨一步用时0.5秒,机器人完成舞蹈节目最多要进行几次程序(可用计算器计算)?用时大约几分钟以内?解:(1)由程序可知,机器人A完成一次程序走过的路程为+1+1=2+;(2)程序可修改为(如右图)(3)设机器人完成舞蹈节目要进行x次程序,依题意得,(2+)x≤100,即3.4<100,解得x<29,∴机器人完成舞蹈节目最多要进行29次程序,∵每跨一步用时0.5秒,∴机器人完成舞蹈节目应在0.5×3×29×≈0.73分钟.(1)根据机器人的步距和输入的程序分别求得每一步所走的距离,然后相加即可得到A完成一次程序走过的路程是多少;(2)根据其步距和A与D之间的距离设计程序即可,但本题答案不唯一;(3)设机器人完成舞蹈节目要进行x次程序,然后根据其所走路程最长不能大于100米列出有关的不等式,从中找到最大的整数值即可.。

在数轴上表示不等式的解集_

在数轴上表示不等式的解集_

在数轴上表示不等式的解集一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 如图所示的不等式的解集是()A.a>1B.a<1C.a≥1D.a≤12. 关于x的不等式x−a≥−2的解集如图所示,则a的值等于( )A.0B.1C.−1D.−23. 不等式组{x<2x≥12的解集在数轴上应表示为()A. B. C. D.4. 下列不等式组的解集,在数轴上表示为如图所示的是()A.x>−1B.−1<x≤2C.−1≤x<2D.x≤25. 不等式8−4x≥0的解集在数轴上表示为()A. B.C. D.6. 不等式组{x −1>0,−3x +6≥0的解集在数轴上表示为( ) A. B.C.D.7. 不等式组{3x −1>2,8−4x ≤0的解集在数轴上表示为( ) A.B.C.D.8. 如图,在数轴上表示的是下列哪个不等式( )A.x >−2B.x <−2C.x ≥−2D.x ≤−29. 不等式组{x −2≤0−x +1>0的解集为( ) A.x <1B.x ≤2C.1<x ≤2D.无解10. 把不等式x ≥−2的解集在数轴上表示正确的是( ) A. B.C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 如图,张小雨把不等式3x>2x−3的解集表示在数轴上,则阴影部分盖住的数字是________.12. 已知两个不等式的解集在数轴上的表示如图所示,则这两个不等式组成的不等式组的解集是________.13. 写出如图所表示的某不等式组的解集________.14. 已知一个关于x的一元一次不等式组的解集在数轴上表示如图所示,则此不等式组的解集为________.15. 下图表示的不等式组的解集为________.16. 如图所示,数轴上所表示的不等式的解集分别是________.17. 关于x的不等式3x−2a≥−1的解集如图所示,则a=________.18. 关于x的不等式x−2a≤−3的解集如图所示,则a的值是________.19. 关于x 的不等式x −a ≥−2的解集如图所示,那么a =________.20. 在数轴上表示不等式组{x >3x >−1的解集如图,则不等式组{x <−1x ≤3的解集为________. 三、 解答题 (本题共计 10 小题 ,每题 10 分 ,共计100分 , )21. 解不等式(组):(1),并把它的解集在数轴上表示出来.(2)22. 解不等式组并把它的解集在数轴上表示出来.23. 将不等式x >−2的解集表示在如图的数轴上.24. 解不等式组{x −1<1,x −5≥4x +1,并把解集在数轴上表示出来.25. 在数轴上表示下列不等式的解集.(1)x >2.5(2)x <−2.5(3)x ≥3.26. 解不等式组{3x +3≤2x +7①5(x −1)>3x −1②,并把它的解集在数轴上表示出来.27. (1)解不等式,并把解集在数轴上表示出来. 27.(2)解不等式组28. 解下列不等式(组),并在数轴上表示解集.(1)(2)29. 解不等式组,请结合题意填空,完成本题的解答:(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为 .30. 写出下列各数轴所表示的不等式的解集:(1)(2)参考答案与试题解析在数轴上表示不等式的解集一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】在数轴上表示不等式的解集【解析】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.【解答】解::数轴上1处是空心原点,且折线向右,∴不等式的解集是a>1.故选A.2.【答案】A【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:x−a≥−2,x≥a−2.a−2=−2,得a=0.故选A.3.【答案】B【考点】在数轴上表示不等式的解集【解析】根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】≤x<2,在数轴上可表示为:解:不等式组的解集是12故选:B.4.【答案】B【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:由数轴可看出,从−1出发向右画出的线且−1处是空心圆,表示x>−1;从2出发向左画出的线且2处是实心圆,表示x≤2,所以表示的解集为−1<x≤2.故选B.5.【答案】B【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:不等式8−4x≥0得,x≤2,所以不等式的解集在数轴上表示为选项B.故选B.6.【答案】C【考点】在数轴上表示不等式的解集【解析】先在数轴上表示不等式组的解集,再选出即可.【解答】解:由{x−1>0,−3x+6≥0,解得1<x≤2,在数轴上可表示为:故选C.7.【答案】A【考点】在数轴上表示不等式的解集【解析】先求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:{3x−1>2①,8−4x≤0②,由①得,x>1,由②得,x≥2,故此不等式组的解集为x≥2,在数轴上表示为:故选A.8.【答案】C【考点】在数轴上表示不等式的解集【解析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可得到|x≥−2故选C.本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键,注意实点和虚点的区别.【解答】此题暂无解答9.【答案】A【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:{x−2≤0①−x+1>0②由①,得:x≤2,由②,得:x<1,则不等式组的解集为:x<1,故选A.10.【答案】B【考点】在数轴上表示不等式的解集【解析】将已知解集表示在数轴上即可.【解答】解:不等式x≥−2的解集在数轴上表示为:.故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−3【考点】在数轴上表示不等式的解集【解析】先求出不等式的解,即可求出答案.【解答】由3x>2x−3,解得:x>−3…阴影部分盖住的数字是:−3.故答案是:−3.12.【答案】x>4【考点】在数轴上表示不等式的解集【解析】根据在数轴表示不等式组解集的方法得出不等式组的解集即可.【解答】解:由图可知,两不等式解集的公共部分是x>4.故答案为:x>4.13.【答案】x>2【考点】在数轴上表示不等式的解集【解析】两个不等式的公共部分就是不等式组的解集,据此即可确定.【解答】解:不等式组的解集是:x>2.故答案是:x>2.14.【答案】−2≤x<3【考点】在数轴上表示不等式的解集【解析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解:由图示可看出,从−2出发向右画出的线且−2处是实心圆,表示x≥−2;从3出发向左画出的线且3处是空心圆,表示x<3,不等式组的解集是指它们的公共部分.所以这个不等式组为−2≤x<3.15.【答案】−4≤x<1【考点】在数轴上表示不等式的解集【解析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.【解答】解:由图示可看出,从−4出发向右画出的线且−4处是实心圆,表示x≥−4;从1出发向左画出的线且1处是空心圆,表示x<1,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是−4≤x<116.【答案】x≥−2,x≥−1,x<1【考点】在数轴上表示不等式的解集【解析】根据利用数轴表示不等式的解集的方法,向右表示大于,向左表示小于,有等号用实心圆点,没有等号用空心圆圈表示,写出不等式的解集即可.【解答】解:观察图形可知,所表示的不等式的解集分别是,x≥−2,x≥−1,x<1.故答案为:x≥−2,x≥−1,x<1.17.【答案】−1【考点】在数轴上表示不等式的解集【解析】先把a当作已知条件表示出不等式的解集,再根据数轴上不等式的解集即可得出a的值.【解答】解:解不等式3x−2a≥−1得,x≥2a−1,3∵由数轴上不等式的解集可知x≥−1,∴2a−1=−1,3解得a=−1.故答案为:−1.18.1【考点】在数轴上表示不等式的解集【解析】先把a当作已知条件表示出x的取值范围,再与数轴上不等式的解集相比较即可得出结论.【解答】解:解不等式x−2a≤−3得,x≤−3+2a.∵数轴上不等式的解集为x≤−1,∴−3+2a=−1,解得a=1.故答案为:1.19.【答案】1【考点】在数轴上表示不等式的解集【解析】不等式x−a≥−2的解集是x≥a−2,数轴表示的解集是x≥−1.则a−2=−1,a=1.【解答】解:∵不等式x−a≥−2的解集为:x≥a−2,又不等式x−a≥−2的在数轴上的解集为x≥−1,∴a−2=−1,故a=1.20.【答案】x<−1【考点】在数轴上表示不等式的解集【解析】根据不等式的解集在数轴上表示方法画出图示求解即可.【解答】解:在数轴上表示如下:不等式组的解集是x<−1.故答案为:x<−1.三、解答题(本题共计 10 小题,每题 10 分,共计100分)21.【答案】(1)【答5(11>3,在数轴上表示见解析;(2)2≤x<4【考点】在数轴上表示不等式的解集(1)去括号、移项、合并同类项、系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】(1)2x −11≤4(x −5)+32x −11<4x −20+32x −4x <−20+3+1−2x <−6x >3在数轴上表示为:−2−1012345(2{3x −(x −2)≥6①x +1>4x −13…解不等式①得:x ≥2解不等式②得:x <4…不等式组的解集是2≤x <422.【答案】加加1−2≤x ≤3【考点】在数轴上表示不等式的解集【解析】分别解两个一元一次不等式,再取解得公共部分,即为一元一次不等式组的解集,将其解集在数轴上表示出来【解答】 原式:{3(x −1)<5x +1①x−12≥2x −42 由①可得,3x −3<5x +1移项得−2x <4,解得x >−2由②可得,x +1≥4x −8移项得3x ≤9,解得x ≤3故原不等式组的解集为−2<x ≤3,在数轴上表示如图所示:23.【答案】解:不等式x >−2的解集表示在数轴上,如图所示:【考点】在数轴上表示不等式的解集【解析】根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:不等式x>−2的解集表示在数轴上,如图所示:24.【答案】解:x−1<1,解得x<2;x−5≥4x+1,解得x≤−2.则不等式组的解集为:x≤−2.作图如下:【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:x−1<1,解得x<2;x−5≥4x+1,解得x≤−2.则不等式组的解集为:x≤−2.作图如下:25.【答案】解:(1);(2);(3)【考点】在数轴上表示不等式的解集【解析】将各自的解集表示在数轴上即可.【解答】解:(1);(2);(3)26.【答案】解:不等式组的解集为2<x≤4.解集在数轴上表示略.【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:不等式组的解集为2<x≤4.解集在数轴上表示略.27.【答案】(1)x\gt\dfrac{1}{4}}$ ,数轴表示见解析;(2))−1≤x<3【考点】在数轴上表示不等式的解集【解析】(1)根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解;(2)先求出两个不等式的解集,再求其公共解.【解答】(1)去分母得,6−(2x−1)<2(5x+2)去括号得,7−2x<10x+4移项得,−2x−10x<4−7合并同类项得,−12x<−3系数化为1得,x>14解集在数轴上表示如下:01 4①(2){2x+5≤3(x+2) x−12≤x3(2)解不等式①得x≥−1解不等式②得,x<3所以,不等式组的解集为−1≤x<328.【答案】(1)x≤4,数轴表示见解析;(2)x≥−1;数轴表示见解析【考点】在数轴上表示不等式的解集【解析】(1)先去分母、去括号,再移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】(1)3x−25≥2x+13−13(3x−2)≥5(2x+1)−159x−6≥10x+5−15−x≥−4x≤4在数轴表示不等式的解集:(2)解⑩得:x≥−1解①得:x>−2不等式组的解集为:x≥−1在数轴上表示为:29.【答案】(1)x≥−1(2)x<2(2)图形见解析(3)−1≤x<2【考点】在数轴上表示不等式的解集【解析】(1)试题分析:根据不等式的解法,分别求解两个不等式,然后把它们表示在同一数轴上,最后写出解集即可.①【解答】(1)解不等式①,得x≥−1(2)解不等式②,得x<2(3)把不等式①和②的解集在数轴上表示出来−3−21012345(Ⅳ)原不等式的解集为−1≤x<230.【答案】解:(1)∵−2处是实心原点且折线向右,∴不等式的解集为:x≥−2;(2)∵4处是空心原点且折线向左,∴x<4.【考点】在数轴上表示不等式的解集【解析】(1)根据−2处是实心原点且折线向右即可得出结论;(2)根据4处是空心原点且折线向左即可得出结论.【解答】解:(1)∵−2处是实心原点且折线向右,∴不等式的解集为:x≥−2;(2)∵4处是空心原点且折线向左,∴x<4.。

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案)-
25.3<a≤3.5
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;

中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在数轴上表示不等式的解集常考题(详细的答案解析)6.5在数轴上表示不等式的解集常考题一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、2、(2008•重庆)不等式2x﹣4≥0的解集在数轴上表示正确的是()A、B、C、D、3、(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A、B、C、D、4、(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A、x<4B、x<2C、2<x<4D、x>25、(2007•内江)不等式2(x+1)<3x的解集在数轴上表示出来应为()A、B、C、D、6、(2007•金华)不等式2x﹣6>0的解集在数轴上表示正确的是()A、B、C、D、7、(2007•福州)解集在数轴上表示为如图所示的不等式组是()A、B、C、D、8、(2006•宿迁)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A、0B、1C、2D、39、(2006•泸州)不等式:2x+1≥3的解集在数轴上表示正确的是()A、B、C、D、10、(2006•柳州)如图,图中阴影部分表示x的取值范围,则下列表示中正确的是()A、x>﹣3<2B、﹣3<x≤2C、﹣3≤x≤2D、﹣3<x<211、(2006•衡阳)不等式组:的解集在数轴上可表示为()A、B、C、D、12、(2006•长春)在数轴上表示不等式2x﹣6≥0的解集,正确的是()A、B、C、D、13、(2005•盐城)将不等式组的解集在数轴上表示出来,应是()A、B、C、D、14、(2005•黄石)已知关于x的不等式2x+m>﹣5的解集如图所示,则m的值为()A、1B、0C、﹣1D、﹣215、(2003•桂林)不等式组的解集在数轴上表示,正确的是()A、B、C、D、16、(2003•常州)已知关于x的不等式2x﹣m>﹣3的解集如图,则m的值为()A、2B、1C、0D、﹣117、若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A、B、C、D、18、满足﹣1<x≤2的数在数轴上表示为()A、B、C、D、19、在数轴上表示不等式x>﹣2的解集,正确的是()A、B、C、D、20、如图,用不等式表示数轴上所示不等式组的解集,正确的是()A、x<﹣1或x≥﹣3B、x≤﹣1或x>3C、﹣1≤x<3D、﹣1<x≤321、不等式组的解集在数轴上可表示为()A、B、C、D、22、下图所表示的不等式组的解集为()A、x>3B、﹣2<x<3C、x>﹣2D、﹣2>x>323、关于x的不等式﹣2x+a≤2的解集如图所示,那么a的值是()A、﹣4B、﹣2C、0D、224、(2010•黔南州)已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是()A、B、C、D、二、填空题(共2小题)25、表示不等式组的解集如图所示,则不等式组的解集是_________.26、图中是表示以x为未知数的一元一次不等式组的解集,那么这个一元一次不等式组可以是_________.答案与评分标准一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、(2008•重庆)不等式2x﹣4≥0的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。

专题:图表型。

分析:本题比较容易,考查利用数轴表示不等式的解集,首先解不等式2x﹣4≥0,得x≥2,根据在数轴上表示不等式解集的方法,大于向右,小于向左,有等号是实心点,没有等号是空心圈.解答:解:不等式2x﹣4≥04的解集是x≥2,又知:大于应向右画,包括2时,应用实心的原点表示2这一点,故应选C.点评:本题考查解不等式的以及在数轴上表示不等式.3、(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解;B、解集是:﹣1≤x<4;C、解集是:x>4;D、解集是:﹣1<x≤4;故选B.点评:考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.4、(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A、x<4B、x<2C、2<x<4D、x>2考点:在数轴上表示不等式的解集。

分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、(2007•内江)不等式2(x+1)<3x的解集在数轴上表示出来应为()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:首先解不等式,把不等式的解集表示出来,再对照答案的表示法判定则可.解答:解:去括号得:2x+2<3x移项,合并同类项得:﹣x<﹣2即x>2.故选D.点评:解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.6、(2007•金华)不等式2x﹣6>0的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。

专题:图表型。

分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:不等式移项,得2x>6,系数化1,得x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选A.点评:在数轴上表示不等式的解集时,>向右,<向左,有等于号的画实心原点,没有等于号的画空心圆圈.7、(2007•福州)解集在数轴上表示为如图所示的不等式组是()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2.B、不等式组的解集是x<﹣3.C、不等式组无解.D、不等式组的解集是﹣3<x≤2.故选D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.8、(2006•宿迁)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A、0B、1C、2D、3考点:在数轴上表示不等式的解集。

专题:图表型。

分析:首先解得关于x的不等式x﹣m≥﹣1的解集即x≥m﹣1,然后观察数轴上表示的解集,求得m 的值.解答:解:关于x的不等式x﹣m≥﹣1,得x≥m﹣1,由题目中的数轴表示可知:不等式的解集是:x≥2,因而可得到,m﹣1=2,解得,m=3.故选D.点评:本题解决的关键是正确解出关于x的不等式,把不等式问题转化为方程问题.9、(2006•泸州)不等式:2x+1≥3的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:利用不等式的基本性质把不等式的解集解出来,然后根据解出的解集把正确的答案选出来.解答:解:移项2x≥2x≥1故选D点评:本题考查了一元一次不等式的解法和在数轴上表示不等式的解集,注意:大于或等于时要用实心表示.10、(2006•柳州)如图,图中阴影部分表示x的取值范围,则下列表示中正确的是()A、x>﹣3<2B、﹣3<x≤2C、﹣3≤x≤2D、﹣3<x<2考点:在数轴上表示不等式的解集。

分析:x表示﹣3右边的数,即大于﹣3,并且是2以及2左边的数,即小于或等于2的数.解答:解:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分.A、不等式的表示方法是错的,应该是﹣3<x<2,C、因为﹣3≤x≤2,在数轴上﹣3和2的点应该是实心的圆点;D、因为﹣3<x<2,在数轴上﹣3和2的点应该是空心的圆点;故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11、(2006•衡阳)不等式组:的解集在数轴上可表示为()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:在表示数轴时,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.而它们相交的地方加上阴影即为不等式的解集在数轴上的表示.解答:解:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选D.点评:注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.12、(2006•长春)在数轴上表示不等式2x﹣6≥0的解集,正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。

分析:首先解出不等式的解集,然后根据解集在数轴上的表示法就可以得到.解答:解:等式2x﹣6≥0的解集为x≥3,A、表示x>3;B、表示x≥3;C、表示x≥﹣3;D、表示x<﹣3;故选B.点评:此题较简单,解答此题的关键是求出不等式的解集,根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.13、(2005•盐城)将不等式组的解集在数轴上表示出来,应是()A、B、C、D、考点:在数轴上表示不等式的解集。

相关文档
最新文档