2019年高考数学第一次模拟试题(及答案)
上海市2019年高考数学一模试卷(解析版)

2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。
2019届江西省高三第一次模拟考试数学(文)试卷(解析版)【含答案及解析】

2019届江西省高三第一次模拟考试数学(文)试卷(解析版)【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,则集合中元素的个数为()A. 5B. 4C. 3D. 22. 已知 (其中为的共轭复数,为虚数单位),则复数的虚部为()A. B. C. D.3. 若,则等于()A. B. C. D.4. 已知双曲线的渐近线方程为,若顶点到渐近线的距离为,则双曲线的方程为()A. B. C. D.5. 某篮球运动员在最近5场比赛中所得分数分别为12,,8,15,23,其中,若该运动员在这5场比赛中得分的中位数为12,则得分的平均数不可能为() A. B. C. D. 146. 函数的图象可能是()A. B. C. D.7. 已知为不同的平面,为不同的直线,则的一个充分条件是()A. B.C. D.8. 已知变量满足则的最大值是()A. B. 3 C. D.9. 如图给出的是计算的值的一个程序框图,则判断框内可以填入的条件是()A. B. C. D.10. 设函数,把的图象向左平移个单位后,得到的部分图象如图所示,则的值等于()A. B. C. D. 111. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.12. 设函数 (其中为自然对数的底数,若函数至少存在一个零点,则实数的取值范围是()A. B. C. D.二、填空题13. 已知两个单位向量互相垂直,且向量,则__________ .14. 我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得的截面积相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个不规则的封闭图形,图2是一个上底为1的梯形,且当实数取上的任意值时,直线被图1和图2所截得的两线段长始终相等,则图1的面积为__________ .15. 已知椭圆的左、右焦点分别为,过且与轴垂直的直线交椭圆于两点,直线与椭圆的另一个交点为,若,则椭圆的离心率为 __________ .16. 已知的内角的对边分别为,若,则的取值范围为 __________ .三、解答题17. 已知数列,是其前项和,且满足 . (1)求证:数列是等比数列;(2)设,且为数列的前项和,求数列的前项和 .18. 某市为评选“全国卫生城市”,从200名志愿者中随机抽取40名志愿者参加街道卫生监督活动,经过统计这些志愿者的年龄介于25岁和55岁之间,为方便安排任务,将所有志愿者按年龄从小到大分成六组,依次为,如图是按照上述分组方法得到的频率分布直方图的一部分,已知第四组的人数为4人.(1)求第五组的频率并估计200名志愿者中年龄在40岁以上(含40岁)的人数;(2)若从年龄位于第四组和第六组的志愿者中随机抽取两名,记他们的年龄分别为,事件,求 .19. 如图,三棱柱中,是正三角形,四边形是矩形,且 .(1)求证:平面平面;(2)若点在线段上,且,当三棱锥的体积为时,求实数的值.20. 已知抛物线,焦点为,点在抛物线上,且到的距离比到直线的距离小1.(1)求抛物线的方程;(2)若点为直线上的任意一点,过点作抛物线的切线与,切点分别为,求证:直线恒过某一定点.21. 已知函数 .(1)试确定的取值范围,使得函数在上为单调函数;(2)若为自然数,则当取哪些值时,方程在上有三个不相等的实数根,并求出相应的实数的取值范围.22. 在直角坐标系中,曲线的参数方程为(为参数,),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.(1)求曲线的普通方程,并将的方程化为极坐标方程;(2)直线的极坐标方程为,若曲线与的公共点都在上,求的值.23. 已知函数的最大值为 .(1)求的值;(2)若 , ,求的最大值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第5题【答案】第6题【答案】第7题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
2019届山东省莱西一中高三第一次模拟考试数学(文)试题(解析版)

2019届山东省莱西一中高三第一次模拟考试数学(文)试题一、单选题1.已知集合,,则()A.B.C.D.【答案】B【解析】,即,得,所以,又,故.故选B.2.已知复数满足,则()A.B.C.D.【答案】C【解析】设(),则由题意可得,即,所以,即,解得,所以.故选C.3.已知命题:,;命题:,,则下列命题为真命题的是()A.B.C.D.【答案】D【解析】因为时,,,故不成立,所以命题为假命题;当时,,故命题为真命题,所以为真命题.故选D.4.已知角的终边经过点,将角的终边顺时针旋转后得到角,则()A.B.5C.D.【答案】A【解析】由三角函数的定义可得,又,所以.故选A.5.已知向量,,且,则()A.B.C.D.【答案】D【解析】由题意得,由可得,即,所以,所以.故选D.6.已知,,,则()A.B.C.D.【答案】B【解析】因为,,,所以,,所以.故选B.7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个组合体,上方是一个半径为的半球,其体积.下方是一个圆柱(底面半径,高)中间挖掉一个正四棱柱(底面边长,高).其中圆柱的体积;正四棱柱的体积.所以该几何体的体积.故选A.8.函数的大致图象为A .B .C .D .【答案】C【解析】由,得,解得,.故函数的图象与轴的两个交点坐标为,,排除B 、D .又,排除A ,故选C .9.某程序框图如图所示,则该程序运行后输出的结果为A.B.C.D.【答案】A【解析】初始值,,第一次循环:,,不成立;第二次循环:,,不成立;第三次循环:,,不成立;第四次循环:,,成立,此时结束循环,故输出的值为.故选A.10.已知圆:与轴相切,抛物线:过圆心,其焦点为,则直线被抛物线所截得的弦长等于()A.B.C.D.【答案】C【解析】圆的方程可化为:,故圆心,半径.由题意,圆与轴相切,所以,解得.若,则圆心为,显然抛物线不经过该点,不合题意;故,此时圆心为,由点在抛物线:上,可得,解得.所以抛物线E的方程为,故.设直线的倾斜角为,则直线的斜率,所以.故直线被抛物线所截得的弦长为.故选C.11.已知函数(,)的最小正周期为,且图象过点,要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度【答案】B【解析】由函数的最小正周期为,得,解得.由点在函数的图象上可得,所以(),解得().因为,所以,,所以,故要得到函数的图象,只需将函数的图象向左平移个单位长度即可.故选B.12.若函数与满足:存在实数,使得,则称函数为的“友导”函数.已知函数为函数的“友导”函数,则的取值范围是()A.B.C.D.【答案】D【解析】由题意得,,函数为函数的“友导”函数,即方程在上有解,所以方程在上有解,记,则,当时,,,所以,函数单调递增;当时,,,所以,函数单调递减.所以.故由方程有解可得.故选D.二、填空题13.已知双曲线经过点,则其离心率____.【答案】【解析】由点在双曲线上可得,解得,所以双曲线的方程为.故,,所以.14.已知实数满足约束条件,则的最大值为_____.【答案】12【解析】作出约束条件所表示的可行域如下图中阴影部分所示,目标函数可化为,的几何意义是直线在轴上的截距,故当直线在轴上的截距取得最大值时,目标函数取得最大值.由图可知,目标函数对应的直线经过点时,取得最大值.由,解得,即.故.15.刘徽是中国古代最杰出的数学家之一,他在中国算术史上最重要的贡献就是注释《九章算术》,刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,体现了无限与有限之间转化的思想方法,这种思想方法应用广泛.如数式是一个确定值(数式中的省略号表示按此规律无限重复),该数式的值可以用如下方法求得:令原式,则,即,解得,取正数得.用类似的方法可得_____.【答案】3【解析】记,则,整理得,解得或.取正数得.16.如图,中,,,的面积为,点在内,且,则的面积的最大值为____.【答案】【解析】由,,,得,解得.由余弦定理可得,所以.在中,,设,则.由正弦定理得,故,.所以的面积,.所以时,的面积取得最大值,且最大值为.三、解答题17.已知数列的前项和为,点()是曲线上的点.数列是等比数列,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)记,求数列的前n项和.【答案】(1),;(2)见解析.【解析】(Ⅰ)由已知.当时,;当时,.显然,当时,上式也成立,所以.故,.所以等比数列的公比.故.(Ⅱ)数列的前项和.数列的前项和记为.当为奇数时,.当为偶数时,.所以数列的前项和.18.如图,多面体中,平面平面,且,,,为的中点,且,,且,.(Ⅰ)求证:平面;(Ⅱ)求该多面体的体积.【答案】(1)见解析;(2)10.【解析】(Ⅰ)连接PE,在中,,,所以.又因为平面平面,平面平面,所以平面.因为,且,所以四边形为平行四边形,所以.故平面,所以.在四边形中,易知,且,所以四边形为平行四边形,又因为,,所以四边形为正方形,故,又,所以平面.(Ⅱ)由(Ⅰ)知,四边形为正方形,所以,又,,所以平面.所以易知多面体是由四棱锥和直三棱柱构成的.又矩形的面积,所以四棱锥的体积;直三棱柱的体积.所以多面体的体积.19.2018年的政府工作报告强调,要树立绿水青山就是金山银山理念,以前所未有的决心和力度加强生态环境保护.某地科技园积极检查督导园区内企业的环保落实情况,并计划采取激励措施引导企业主动落实环保措施,下图给出的是甲、乙两企业2012年至2017年在环保方面投入金额(单位:万元)的柱状图.(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.【答案】(1)见解析;(2)(ⅰ)190万元,110万元;(ⅱ).【解析】(Ⅰ)由柱状图可知,甲企业这六年在环保方面的投入金额分别为,其平均数为(万元);乙企业这六年在环保方面的投入金额分别为,其平均数为(万元).(Ⅱ)(ⅰ)根据题意可知,企业每年所获得的环保奖励(单位:万元)是关于该年环保投入(单位:万元)的分段函数,即;所以甲企业这六年获得的奖励之和为:(万元);乙企业这六年获得的奖励之和为:(万元).(ⅱ)由(ⅰ)知甲企业这六年获得的奖金数如下表:年份2012年2013年2014年2015年2016年2017年奖励(单位:万元)020********奖励共分三个等级,其中奖励0万元的只有2012年,记为;奖励20万元的有2013年,2016年,记为;奖励50万元的有2014年,2015年和2017年,记为.故从这六年中任意选取两年,所有的情况为:,,,,,,,,,,,,,,,共15种.其中奖励之和不低于70万元的取法为:,,,,,,,,,共9种.故所求事件的概率为.20.在平面直角坐标系中,直线过点且与直线垂直,直线与轴交于点,点与点关于轴对称,动点满足.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹相交于两点,设点,直线的斜率分别为,问是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1);(2).【解析】(Ⅰ)由已知设直线的方程为,因为点在直线上,所以,解得.所以直线的方程为.令,解得,所以,故.因为,由椭圆的定义可得,动点的轨迹是以为焦点的椭圆,长轴长为4.所以,,所以轨迹的方程为.(Ⅱ)①当直线的斜率不存在时,由,解得.不妨设,,则.②当直线的斜率存在时,设直线的方程为,由,消去,得,依题意,直线与轨迹必相交于两点,设,,则,,又,,所以.综上可得,为定值.21.已知函数.(Ⅰ)当时,判断函数的单调性;(Ⅱ)当时,证明:.(为自然对数的底数)【答案】(1)见解析;(2)见解析【解析】(1)函数的定义域为..①当时,.当时,,函数单调递增;当时,,函数单调递减.②当时,.当时,,函数单调递增;当时,,函数单调递减;当时,,函数单调递增.③当时,.易知恒成立,函数在上单调递增;④当时,.当时,,函数单调递增;当时,,函数单调递减;当时,,函数单调递增.综上,当时,函数在和上单调递增,在上单调递减;当时,函数在上单调递增;当时,函数在和上单调递增,在上单调递减;当时,函数在上单调递增,在上单调递减.(2)当时,不等式化为.记,则.显然在上单调递增,且,.所以在上有唯一的零点,且.所以当时,,函数单调递减;当时,,函数单调递增.由,即,得,所以,而易知函数在上单调递减,所以,所以.所以,即.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知圆的极坐标方程为.(Ⅰ)求直线的普通方程以及圆的直角坐标方程;(Ⅱ)若点在直线上,过点作圆的切线,求的最小值.【答案】(1),;(2).【解析】(1)由直线的参数方程消去参数,得,即.所以直线的普通方程为.圆的极坐标方程为,即,将极坐标方程与直角坐标方程的转化公式代入上式可得,即,此为圆的直角坐标方程.(2)由(1)可知圆的圆心为,半径,所以,而的最小值为圆心到直线的距离.所以的最小值为.23.选修4-5:不等式选讲已知函数.(Ⅰ)解关于的不等式;(Ⅱ)若对于任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)①当时,不等式可化为,解得,故;②当时,不等式可化为,解得,故;③当时,不等式可化为,解得.显然与矛盾,故此时不等式无解.综上,不等式的解集为.(2)由(1)知,.作出函数的图象,如图,显然.故由不等式恒成立可得,解得.所以的取值范围为.。
2019年数学高考第一次模拟试题(含答案)

2019年数学高考第一次模拟试题(含答案)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.设向量a ,b 满足2a =,||||3b a b =+=,则2a b +=( ) A .6B .32C .10D .42 4.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2B .3C .4D .55.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30C .45︒D .15︒6.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .47.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f xB .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确8.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>9.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .2722011.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .012.sin 47sin17cos30cos17-A .32-B .12-C .12D .32二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.16.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 17.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.19.已知1OA =,3OB =0OA OB •=,点C 在AOB ∠内,且AOC 30∠=,设OC mOA nOB =+,(,)m n R ∈,则mn=__________. 20.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ______ .三、解答题21.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.22.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-的定义域;(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.23.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.24.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 25.已知椭圆22221(0)x y a b a b +=>>62个焦点与1个短轴端点为顶点的三角形的面积为22 (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =5,求直线l 的方程.26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.D解析:D 【解析】 【分析】3=,求得2a b ⋅=-,再根据向量模的运算,即可求解. 【详解】∵向量a ,b 满足2a =,3b a b =+=3=,解得2a b ⋅=-.则22224424a b a b a b +=++⋅=+.故选D . 【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.5.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.6.C解析:C 【解析】 【分析】由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.7.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .8.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题9.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.10.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.11.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA == 可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-, 由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12.C解析:C 【解析】 【分析】由()sin 473017sin θ=+,利用两角和的正弦公式以及特殊角的三角函数,化简即可. 【详解】0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒ sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C .【点睛】三角函数式的化简要遵循“三看”原则: (1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.15.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3. 【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.16.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.17.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.18.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定解析:16【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解. 【详解】2b =,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin 4B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 84A B C B C B C ∴=+=+=+=,11sin 2322S bc A ∴==⨯⨯=.故答案为:16. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3 【解析】因为30AOC ∠=,所以3cos cos30OC OA AOC OC OA⋅∠===⋅,从而有222223||2m OA n OB mn OA OB OA=++⋅⋅⋅.因为1,3,0OA OB OA OB ==⋅=,所以2233m n=+,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3mn= 20.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模 解析:23【解析】 【分析】 【详解】∵平面向量a 与b 的夹角为060,21a b ==,∴021cos601a b ⋅=⨯⨯=. ∴2222(2)4(2)44423a b a b a a b b +=+=+⋅+=++=故答案为23.点睛:(1)求向量的夹角主要是应用向量的数量积公式. (2) a a a =⋅ 常用来求向量的模.三、解答题21.(Ⅰ)为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)【解析】 【分析】 【详解】 (1)为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆. (2)当时,,故的普通方程为,到的距离所以当时,取得最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.22.(Ⅰ)59[,]22;(Ⅱ)1(,2[,)2-∞-⋃+∞).【解析】【分析】【详解】试题分析:(Ⅰ)先用零点分段法将()f x表示分段函数的形式,然后再求定义域;(Ⅱ)利用函数图象求解.试题解析:(Ⅰ)72,3()34{1,3427,4x xf x x x xx x-<=-+-=->,它与直线2y=交点的横坐标为52和92,∴不等式()2()g x f x=-的定义域为59[,]22.(Ⅱ)函数1y ax=-的图象是过点(0,1)-的直线,结合图象可知,a取值范围为1(,2)[,)2-∞-⋃+∞.考点:1、分段函数;2、函数的定义域;3、函数的图象.23.(1)2214xy+= (2)3.2【解析】【分析】(1)设出A、P点坐标,用P点坐标表示A点坐标,然后代入圆方程,从而求出P点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值. 【详解】解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =,可得点A 是BP 的中点, 故102x x +=, 所以12x x =, 又因为点A 在圆上,所以得2214x y +=,故动点P 的轨迹方程为2214x y +=.(2)设()11,P x y ,则10y ≠,且221114x y +=,当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x = 因为OP OQ ⊥, 即11,OQ x k y =-故1133,x Q y ⎛⎫-⎪⎝⎭,OP ∴=OQ ==,221111322POQx y S OP OQ y ∆+==⋅①, 221114x y +=代入①2111143334322POQy S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭()101y <≤设()()4301f x x x x=-<≤ 因为()24f x 30x'=--<恒成立, ()f x ∴在(]0,1上是减函数, 当11y =时有最小值,即32POQ S ∆≥, 综上:POQ S ∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值.24.(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2ADC π∠=,所以BD = 又因为4,4CD BDC π=∠=.根据余弦定理得BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE,因为PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD ,平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.25.(1)22162x y +=;(2)2y x =-或2y x =-+.【解析】 【分析】(1)根据椭圆的离心率,三角形的面积建立方程,结合a 2=b 2+c 2,即可求椭圆C 的方程;(2)联立直线方程与椭圆联立,利用韦达定理表示出12x x +及12x x ⋅,结合弦的长度为5即可求斜率k 的值,从而求得直线方程.【详解】解:(1)由椭圆()222210x y a b a b +=>>的离心率为3,得c =,b =.由2122S c b =⋅⋅==a =b =22162x y +=. (2)解:设直线():2AB l y k x =-,()11,A x y ,()22,B x y ,AB 中点()00,M x y .联立方程()222360y k x x y ⎧=-⎨+-=⎩得()222213121260k x k x k +-+-=, 2212122212126,1313k k x x x x k k -+==++.()2122113k AB x x k +=-=+. 所以202613k x k=+, 点M 到直线1x =的距离为22022316111313k k d x k k-=-=-=++. 由以线段AB 为直径的圆截直线1x =22222AB d ⎛⎛⎫-= ⎪ ⎝⎭⎝⎭,所以()22222221311313k k k k ⎤+⎛⎫-⎥-= ⎪++⎢⎥⎝⎭⎝⎭⎣⎦, 解得1k =±,所以直线l 的方程为2y x =-或2y x =-+.【点睛】本题考查椭圆的标准方程与几何性质,考查直线与椭圆的位置关系,联立直线与椭圆方程,利用韦达定理,整理出12x x +及12x x ⋅,代入弦长公式AB =,考查学生的计算能力,属于中档题. 26.(1)222x y +=;(2)见解析. 【解析】 【分析】 【详解】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=,先设 P (m ,n ),则需证330+-=m tn ,即根据条件1OP PQ ⋅=可得2231--+-=m m tn n ,而222m n +=,代入即得330+-=m tn .试题解析:解:(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),MN 0,x y y =-=()由NP 2NM =得000x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=.因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,,OP m n PQ 3m t n ==---,,(,). 由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.。
2019年东北三省三校(哈尔滨师大附中、东北师大附中、 辽宁省实验中学)高考数学一模试卷(文科)-解析版

2019年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分) 1. 复数(1-i )(3+i )的虚部是( )A. 4B. −4C. 2D. −2 2. 若集合A ={x |-1≤x ≤2},B ={x |log 3x ≤1},则A ∩B =( )A. {x|−1≤x ≤2}B. {x|0<x ≤2}C. {x|1≤x ≤2}D. {x|x ≤−1或x >2}3. 已知向量a ⃗ ,b ⃗ 的夹角为60°,|a⃗ |=1,|b ⃗ |=2,则|3a ⃗ +b ⃗ |=( ) A. √5 B. √17 C. √19 D. √214. 设直线y =x -√2与圆O :x 2+y 2=a 2相交于A ,B 两点,且|AB |=2√3,则圆O 的面积为( )A. πB. 2πC. 4πD. 8π 5. 等差数列{a n }的前n 项和为S n ,且a 2+a 10=16,a 8=11,则S 7=( )A. 30B. 35C. 42D. 566. 已知α∈(0,π2),tan (α+π4)=-3,则sinα=( )A. 2√55B. √55C. 45D. 357. 执行两次如图所示的程序框图,若第一次输入的x 的值为4,第二次输入的x 的值为5,记第一次输出的a 的值为a 1,第二次输出的a 的值为a 2,则a 1-a 2=( )A. 0B. −1C. 1D. 28. 设a =(57)37,b =(37)57,c =(37)37,则a ,b ,c 的大小关系为( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b9. 已知α,β是不重合的平面,m ,n 是不重合的直线,则m ⊥α的一个充分条件是( )A. m ⊥n ,n ⊂αB. m//β,α⊥βC. n ⊥α,n ⊥β,m ⊥βD. α∩β=n ,α⊥β,m ⊥n10. 圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y >√1−x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A. 7825B. 7225C. 257D. 22711. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点为F (-√5,0),点A 的坐标为(0,2),点P 为双曲线右支上的动点,且△APF 周长的最小值为8,则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √512. 若函数f (x )=e x -ax 2在区间(0,+∞)上有两个极值点x 1,x 2(0<x 1<x 2),则实数a 的取值范围是( ) A. a ≤e2B. a >eC. a ≤eD. a >e2二、填空题(本大题共4小题,共20.0分)13. 已知x ,y 满足约束条件:{x +2y −1≤0x −y −2≤0x ≥−1,则z =2x +y 的最大值是______.14. 甲、乙、丙三人中,只有一个会弹钢琴.甲说:“我会”,乙说:“我不会”,丙说:“甲不会”.如果这三句话只有一句是真的,那么会弹钢琴的是______.15. 等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=______.16. 四面体A -BCD 中,AB ⊥底面BCD ,AB =BD =√2,CB =CD =1,则四面体A -BCD 的外接球的表面积为______.三、解答题(本大题共7小题,共82.0分) 17. 设函数f (x )=sin (2x -π6)+2cos 2x .(Ⅰ)当x ∈[0,π2]时,求函数f (x )的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且f (A )=32,a =√6,b =2,求△ABC 的面积.18. 世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据: 每周累计户外暴露时间 (单位:小时) [0,7) [7,14) [14,21) [21,28) 不少于28小时 近视人数 21 39 37 2 1 不近视人数3375253(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?近视 不近视足够的户外暴露时间 不足够的户外暴露时间附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d) P (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.82819. 如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,P 在平面ABCD 上的射影为G ,且G 在AD 上,且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(Ⅰ)求异面直线GE 与PC 所成的角余弦值; (Ⅱ)求点D 到平面PBG 的距离;(Ⅲ)若F 点是棱PC 上一点,且DF ⊥GC ,求PFFC 的值.20. 已知F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,点P (-1,√22)在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.21. 已知函数f (x )=e x (e 为自然对数的底数),g (x )=ax (a ∈R ).(Ⅰ)当a =e 时,求函数t (x )=f (x )-g (x )的极小值;(Ⅱ)若当x ≥1时,关于x 的方程f (x )+ln x -e =g (x )-a 有且只有一个实数解,求实数a 的取值范围. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的方程为y =kx ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)曲线C 与直线l 交于A ,B 两点,若|OA |+|OB |=2√3,求k 的值.23. 已知函数f (x )=|x -4a |+|x |,a ∈R .(Ⅰ)若不等式f (x )≥a 2对∀x ∈R 恒成立,求实数a 的取值范围;(Ⅱ)设实数m 为(Ⅰ)中a 的最大值,若实数x ,y ,z 满足4x +2y +z =m ,求(x +y )2+y 2+z 2的最小值.答案和解析1.【答案】D【解析】解:∵(1-i)(3+i)=4-2i.∴复数(1-i)(3+i)的虚部是-2.故选:D.再利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.【答案】B【解析】解:B={x|0<x≤3};∴A∩B={x|0<x≤2}.故选:B.可解出集合B,然后进行交集的运算即可.考查描述法的定义,对数函数的单调性,以及交集的运算.3.【答案】C【解析】解:∵向量,的夹角为60°,||=1,||=2,∴==1,则|3+|====,故选:C.由已知结合向量数量积的定义可求,然后根据向量数量积的性质|3+|=,展开后可求.本题主要考查了向量数量积的定义及性质的简单应用,属于基础试题.4.【答案】C【解析】解:根据题意,圆O:x2+y2=a2的圆心为(0,0),半径r=|a|,圆心到直线y=x-的距离d==1,又由弦长|AB|=2,则有a2=1+()2=4,则圆O的面积S=πa2=4π;故选:C.根据题意,求出圆O的圆心与半径,求出圆心O到直线的距离,由直线与圆的位置关系可得a2=1+()2=4,结合圆的面积公式计算可得答案.本题考查直线与圆的位置关系,涉及弦长的计算,属于基础题.5.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,∴,解得a1=,d=,∴S7=7a1+==35.故选:B.利用等差数列通项公式列方程组,能求出a1=,d=,由此再利用等差数列前n项和公式能求出S7.本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6.【答案】A【解析】解:∵利用两角和的正切公式得tan ()==-3,∴tanα=2.∵α∈(0,),∴.再根据sin2α+cos2α=1,解得.故选:A.利用两角和的正切公式求出tanα,再结合角的范围及同角三角函数基本关系即可求出sinα.本题考查两角和的正切公式,考查同角三角函数基本关系式的应用,是基础题.7.【答案】B【解析】解:当输入的x值为4时,b=2,第一次,不满足b2>x,不满足x能被b整数,故输出a=0;当输入的x值为5时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;即第一次输出的a的值为a1的值为0,第二次输出的a的值为a2的值为1,则a1-a2=0-1=-1.故选:B.根据已知中的程序框图,模拟程序的执行过程,可得答案.本题考查的知识点是程序框图,难度不大,属于基础题.8.【答案】B【解析】解:由函数y=()x为减函数,可知b<c,由函数y=x为增函数,可知a>c,即b<c<a,故选:B.根据指数函数和幂函数的单调性即可求出.本题考查了指数函数和幂函数的单调性,属于基础题.9.【答案】C【解析】解:当n⊥β,m⊥β时,m∥n,当n⊥α时,m⊥α,即充分性成立,即m⊥α的一个充分条件是C,故选:C.根据空间直线和平面垂直的判定定理以及性质结合充分条件和必要条件的定义进行求解即可.本题主要考查充分条件和必要条件的判断,结合空间直线和平面垂直的位置关系是解决本题的关键.10.【答案】A【解析】解:从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y >的数对(x,y)共有11个,即从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y≤的数对(x,y)共有100-2×11=78个,由几何概型中的面积型可得:=,所以π==,故选:A.由不等式表示的平面区域得:不等式y >的平面区域为正方形内位于第一,二象限圆x2+y2=1外的区域,由几何概型中的面积型得:=,即π==,得解本题考查了几何概型中的面积型,及不等式表示的平面区域,属中档题11.【答案】D【解析】解:由|AF|==3,三角形APF的周长的最小值为8,可得|PA|+|PF|的最小值为5,又F'为双曲线的右焦点,可得|PF|=|PF'|+2a,当A,P,F'三点共线时,|PA|+|PF'|取得最小值,且为|AF'|=3,即有3+2a=5,即a=1,c=,可得e==.故选:D.由题意可得|AF|=3,可得|PA|+|PF|的最小值为5,由双曲线的定义可得|PA|+|PF'|+2a的最小值为5,当A,P,F'三点共线时,取得最小值,可得a=1,由离心率公式可得所求值.本题考查双曲线的定义、方程和性质,主要是离心率的求法,考查三点共线取得最小值的性质,考查方程思想和运算能力,属于中档题.12.【答案】D【解析】解:f′(x)=e x-2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y-e m=e m(x-m),即y=e m x+(1-m)e m=2ax,故(1-m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a >,故选:D.求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.本题考查了切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,是一道综合题.13.【答案】3【解析】解:作出x,y满足约束条件:对应的平面区域如图:(阴影部分),由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,此时z最大.由,解得A (,),代入目标函数z=2x+y得z=3.即目标函数z=2x+y的最大值为3.故答案为:3.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.【答案】乙【解析】解:①设会弹钢琴的是甲,则甲、乙说的是真话,与题设矛盾,故会弹钢琴的不是甲,②设会弹钢琴的是乙,则丙说的是真话,与题设相符,故会弹钢琴的是乙,③设会弹钢琴的是丙,则乙、丙说的时真话,与题设矛盾,故会弹钢琴的不是丙,综合①②③得:会弹钢琴的是乙,故答案为:乙先理解题意,再进行简单的合情推理,逐一进行检验即可得解.本题考查了进行简单的合情推理,属简单题.15.【答案】30【解析】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q ),=16,解得a1=q=2.则S4==30.故答案为:30.利用等比数列的通项公式与求和公式即可得出.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.【答案】4π【解析】解:如图,在四面体A-BCD中,AB⊥底面BCD,AB=BD=,CB=CD=1,可得∠BCD=90°,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥A-BCD的外接球的半径为1.其表面积为4π×12=4π.故答案为:4π.由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.本题考查多面体外接球表面积的求法,补形是关键,是中档题.17.【答案】(本题满分为12分)解:(Ⅰ)f(x)=sin(2x-π6)+2cos2x=√32sin2x+12cos2x+1=sin(2x+π6)+1,…………………(2分)∵x∈[0,π2],∴π6≤2x +π6≤7π6,…………………(4分)∴1 2≤sin(2x+π6)+1≤2,∴函数f(x)的值域为[12,2];…………………(6分)(Ⅱ)∵f(A)=sin(2A+π6)+1=32,∴sin(2A+π6)=12,∵0<A<π,∴π6<2A+π6<13π6,∴2A+π6=5π6,即A=π3,…………………(8分)由余弦定理,a2=b2+c2-2bc cos A,∴6=4+c2-2c,即c2-2c-2=0,又c>0,∴c=1+√3,…………………(10分)∴S△ABC=12bc sin A=12×2×(1+√3)×√32=32+√32.…………………(12分)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+)+1,由已知可求范围≤2x+≤,利用正弦函数的性质可求其值域.(Ⅱ)由已知可求sin(2A+)=,可求范围<2A+<,从而可求A=,由余弦定理解得c的值,即可根据三角形的面积公式计算得解.本题主要考查了三角函数恒等变换的应用,正弦函数的性质,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A,则P(A)=C31C11C42=12故随机抽取2名,其中恰有一名学生不近视的概率为12.(Ⅱ)根据以上数据得到列联表:近视不近视足够的户外暴露时间4060不足够的户外暴露时间6040所以K2的观测值k2=200×(40×40−60×60)2(40+60)×(60+40)×(40+60)×(60+40)=8.000>6.635,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【解析】(Ⅰ)根据古典概型概率公式计算可得;(Ⅱ)先得2×2列联表,再根据表格中数据计算k2,再根据临界值表作答.本题考查了独立性检验,属中档题.19.【答案】解:(I )由已知V P−BGC =13S △BCG ⋅PG =13⋅12BG ⋅GC ⋅PG =83,∴PG =4.在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角.在△PCH 中,CH =√2,PC =√20,PH =√18,由余弦定理得,cos ∠PCH =√1010,∴异面直线GE 与PC 所成的角的余弦值为√1010.(II )∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ,在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ∴DK 的长就是点D 到平面PBG 的距离.∵BC =2√2∴GD =34AD =34BC =32√2.在△DKG ,DK =DG sin45°=32,∴点D 到平面PBG 的距离为32.(III )在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF , 又因为DF ⊥GC ,∴GC ⊥平面MFD ,∴GC ⊥FM .由平面PGC ⊥平面ABCD ,∴FM ⊥平面ABCD ∴FM ∥PG ; 由GM ⊥MD 得:GM =GD •cos45°=32. ∵PFFC =GMMC =3212=3,∴由DF ⊥GC 可得PFFC =3.【解析】(1)先利用等体积法求出PG 的长,在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角,在△PCH 中利用余弦定理求出此角即可; (2)在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ,DK 的长就是点D 到平面PBG 的距离,在△DKG 利用边角关系求出DK 长;(3)在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF ,先证明FM ∥PG ,然后利用三角形相似对应边成比例建立等量关系即可.本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.20.【答案】解:(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|=2√2解得a =√2,c =1,b =1,所以椭圆E 的标准方程为x 22+y 2=1,(Ⅱ)由已知,可设直线l 方程为x =ty +1,设A (x 1,y 1),B (x 2,y 2), 联立{x 2+y 2=3x=ty+1得(t 2+1)y 2+2ty -2=0 易知△>0, 则y 1+y 2=-2t t 2+1,y 1y 2=-2t 2+1,所以F 1A ⃗⃗⃗⃗⃗⃗⃗ •F 1B ⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2=(t 2+1)y 1y 2+2t (y 1+y 2)+4=2−2t 2t 2+1 因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2−2t 2t 2+1=1,解得t 2=13.联立{x =ty +1x 22+y 2=1,得(t 2+2)y 2+2ty -1=0 易知△=8(t 2+1)>0,设C (x 3,y 3),B (x 4,y 4),则y 3+y 4=-2t t 2+2,y 1y 2=-1t 2+2,∴|y 3-y 4|=√(y 3+y 4)2−4y 3y 4=√8(1+t 2)t 2+2∴△F 1CD 的面积S =12|F 1F 2|•|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67 【解析】(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a=|PF 1|+|PF 2|=2,求解a ,b 即可得到椭圆方程.(Ⅱ)设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2),利用联立 可得(t 2+1)y 2+2ty-2=0,通过韦达定理以及向量的数量积推出解得t 2=.联立,得(t 2+2)y 2+2ty-1=0.设C (x 3,y 3),D (x 4,y 4),利用韦达定理,求解三角形的面积.本题考查椭圆的简单性质,考查直线与椭圆的位置关系的应用,考查三角形的面积计算公式,把面积比转化为长度比是解题的关键,考查了运算求解能力,转化与化归能力,属于中档题.21.【答案】解:(Ⅰ)当a =e 时,t (x )=e x -ex ,t ′(x )=e x -e ,………(1分)令t ′(x )=0,则x =1,x ,t ′(x ),t (x )的变化列表如下: x (-∞,1) 1 (1,+∞) t ′(x ) - 0 + t (x )单调递减极小值单调递增………(3分)所以t(x)极小值=t(1)=e-e=0……………(5分)(Ⅱ)设F(x)=f(x)-g(x)+ln x-e+a=e x-ax+ln x-e+a,(x≥1),F′(x)=e x-a+1x,(x≥1),设h(x)=e x-a+1x ,h′(x)=x2⋅e x−1x2,………(7分)由x≥1得,x2≥1,x2e x-1>0,h′(x)>0,h(x)在(1,+∞)单调递增,即F′(x)在(1,+∞)单调递增,F′(1)=e+1-a,①当e+1-a≥0,即a≤e+1时,x∈(1,+∞)时,F′(x)>0,F(x)在(1,+∞)单调递增,又F(1)=0,故当x≥1时,关于x的方程f(x)+ln x-e=g(x)-a有且只有一个实数解…(9分)②当e+1-a<0,即a>e+1时,由(Ⅰ)可知e x≥ex,所以F′(x)=e x+1x -a≥ex+1x-a,F′(ae)≥e•ae+ea-a=ea>0,又ae>1e=1,故∃x0∈(1,ae),F′(x0)=0,当x∈(1,x0)时,F′(x)<0,F(x)单调递减,又F(1)=0,故当x∈(1,x0]时,F(x)<0,在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.又x∈(x0,+∞)时,F′(x)>0,F(x)单调递增,且F(a)=e a+ln a-a2+a-e>e a-a2+1,令k(x)=e x-x2+1(x≥1),s(x)=k′(x)=e x-2x,s′(x)=e x-2≥e-2>0,故k′(x)在(1,+∞)单调递增,又k′(1)>0,故x>1时,k′(x)>0,k(x)在(1,+∞)单调递增,故k(a)>k(1)>0,故F(a)>0,又a>ae>x0,由零点存在定理可知,∃x1∈(x0,a),F(x1)=0,故在(x0,a)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解x1,又在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.综上,a≤e+1…(12分)【解析】(Ⅰ)代入a的值,解关于导函数的不等式,求出函数的单调区间,求出函数的极小值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合方程的解的个数确定a 的范围即可.本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(Ⅰ)∵{x=√3cosα+2y=√3sinα,∴x2-4x+y2+1=0所以曲线C的极坐标方程为ρ2-4ρcosθ+1=0.(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入曲线C得ρ2-4ρcosθ1+1=0,设A,B所对应的极径分别为ρ1,ρ2.ρ1+ρ2=4cosθ1,ρ1ρ2=1>0,△=16cosθ12-4>0 ∴|QA|+|QB|=|ρ1|+|ρ2|=|ρ1+ρ2|=2√3∴cosθ1=±√32满足△>0∴θ1=π6或5π6∴l的倾斜角为π6或5π6,则k=tanθ1=√33或-√33.【解析】(Ⅰ)先消去α得C的普通方程,再化成极坐标方程;(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入C的极坐标方程,利用韦达定理可求得.本题考查了参数方程化成普通方程,属基础题.23.【答案】解:(Ⅰ)因为f(x)=|x-4a|+|x|≥|x-4a-x|=4|a|,所以a2≤4|a|,解得:-4≤a≤4.故实数a的取值范围为[-4,4];(Ⅱ)由(1)知,m=4,即4x+2y+z=4,根据柯西不等式(x+y)2+y2+z2=121[(x+y)2+y2+z2]•[42+4+1]≥121[4(x+y)-2y+z]2=1621等号在x+y4=y−2=z即x=87,y=-821,z=421时取得.所以(x+y)2+y2+z2的最小值为1621.【解析】(Ⅰ)根据基本不等式的性质得到关于a的不等式,解出即可;(Ⅱ)根据柯西不等式的性质求出代数式的最小值即可.本题考查了解绝对值不等式,考查基本不等式以及柯西不等式的性质,是一道常规题.。
[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析
![[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析](https://img.taocdn.com/s3/m/cff36bd81ed9ad51f11df281.png)
-2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A ={1,3},B ={0,1},则集合A ∪B =.2.(5分)已知复数(i 为虚数单位),则复数z 的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b 的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm ,侧面的对角线长是3cm ,则这个正四棱柱的体积是cm 3.7.(5分)若实数x ,y 满足x ≤y ≤2x+3,则x+y 的最小值为.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有个.11.(5分)已知函数f (x )是定义在R 上的奇函数,且f (x+2)=f (x ).当0<x ≤1时,f (x )=x 3﹣ax+1,则实数a 的值为.12.(5分)在平面四边形ABCD 中,AB =1,DA =DB ,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围.14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P ﹣ABCD 中,M ,N 分别为棱PA ,PD 的中点.已知侧面P AD⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ;(2)MD ⊥平面PAB .16.(14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,,.(1)求角B 的值;(2)若,求△ABC 的面积.17.(14分)如图,在平面直角坐标系xOy 中,椭圆(a >b >0)的左焦点为F ,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.【解答】解:抛物线y 2=2px (p >0)的准线为l :x =﹣,双曲线的两条渐近线方程为y =±x ,可得A (﹣,﹣),B ((﹣,),|AB|==,可得p =2.故答案为:2.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为4.【解答】解:根据题意得,t =1y ′=acosx ﹣bsinx ∴k =acos0﹣bsin0=a ∴a =3,bcos0=1∴a =3,b =1故答案为4.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x 3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为?=3,AB=1,所以可设C(3,n),又?=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围﹣4<m.【解答】解:显然直线l 有斜率,设直线l :y =k (x ﹣m ),即kx ﹣y ﹣km =0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m >0且3m 2+8m ﹣16<0解得﹣4<m <,故答案为:﹣4<m .14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f (x )关于点对称,所以,解得:a =﹣673,f (x )=(2x ﹣673)(|x+673|+|x ﹣2×673|)=2019,显然有:0<2x ﹣673<2019,即,所以,f (x )=(2x ﹣673)(x+673+2×673﹣x )=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面PAB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC?平面PBC,MN?平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB?底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD?侧面PAD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面PAB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cosB=sinB.…………………………………………………………………4分若cosB=0,则sinB=0,与sin2B+cos2B=1矛盾,故cosB≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n ﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3?2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为ξ012P所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:?,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。
2019年高考数学一模试卷(附答案)

的渐近线的
距离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
12.在如图的平面图形中,已知
D. y 2x
OM 1,ON 2, MON 120 , BM 2MA,CN 2NA, 则 BC·OM 的值为
A. 15
C. 6 二、填空题
B. 9
D.0
D. b a c
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
D. cos tan sin
4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
2019 年高考数学一模试卷(附答案)
一、选择题
1.若 tan 3 ,则 cos2 2sin 2 (
)
4
A. 64
B. 48
C.1
25
25
2.设 a sin 5 , b cos 2 , c tan 2 ,则( )
7
7
7
A. a b c
B. a c b
C. b c a
D. 16 25
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消
去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
23.如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB//CD , AC BD ,垂足为 H , PH 是四棱锥的高.
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。
2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。
2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。
已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。
6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。
设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。
若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。
e)。
11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。
现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。
北京专家2019届 高考模拟试卷(一)理科数学ppt

故 A 为锐角, A ,故 bc 8 3,S 1 bc sin A 2 3.………………6 分
6
2
18. (本小题满分 12 分)如图表格为过去五年(2013—2017)国内旅游总花费折线图. (I)由折线图可知,国内旅游总花费
y (单位:万亿元)与年份代码
(年份代码 1—5 分别对应年份 20
an1
an
an
a1
an
1 an
n
1 ,bn
n an
n2 n n,
由 {bn } 是单调递减数列,
bn1
bn
2n 1
0
(
1 2n )min
1 2
,故选
A.
11. 已知 a, b 是平面内的单位向量,夹角为 ,若向量 c 满足 (c a) (c 2b) 0 ,
北京专家2019届高考模拟试卷(一) 理科数学·试卷讲评
选择题部分(60分)
1. 已知集合 A {y | y sin x} ,集合 B {x | y x},则 AI B D
A. (0,1)
B. [0,1)
C. (0,1]
D. [0,1]
【解析】集合 A [1,1] ,集合 B [0, ) , AI B [0,1] .
,
F2 F
的中点为
(
c 2
,
a)
,将
(c 2
,
a)
带入双曲线的方程,得: c2 a2 1, 4a2 b2
由 c2
a2
b2 得:
a2 b2 4a2
2019年高考数学(理科)模拟试卷(一)

2019年高考数学(理科)模拟试卷(一) 2019年高考数学(理科)模拟试卷(一)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=lg(3-2x)},B={x|x²≤4},则A∪B=()A。
{x|-2≤x<2}B。
{x|x<2}C。
{x|-2<x<2}D。
{x|x≤2}2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A。
(-∞,1)B。
(-∞,-1)C。
(1,+∞)D。
(-1,+∞)3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A。
6斤B。
9斤C。
9.5斤D。
12斤4.某三棱锥的三视图如图M1-1,则该三棱锥的体积为()A。
60B。
30C。
20D。
105.设x∈R,[x]表示不超过x的最大整数。
若存在实数t,使得[t]=1,[t²]=2,…,[tn]=n同时成立,则正整数n的最大值是()A。
3B。
4C。
5D。
66.执行两次如图M1-2所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次、第二次输出的a 值分别为()A。
0,0B。
1,1C。
0,1D。
1,07.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A。
10B。
11C。
12D。
138.若x,y满足约束条件x+y-3≥0,x-2y≤0,则x≥()A。
[0,6]B。
[0,4]C。
[6,+∞)D。
[4,+∞)13.首先求出向量a和b的夹角,由向量点乘公式可得cosθ = (a·b)/(|a||b|) = 9/√20,其中θ为夹角。
2019届浙江省杭州市高考命题比赛模拟考试(一)数学试卷及答案

第1页(共4页)
2019届杭州市高考命题比赛模拟考试(一)
数学试卷
本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题卷规定的位置上。
2.答题前,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:
若事件,A B 互斥,则()()()P A B P A P B +=+ 棱柱的体积公式V Sh =
若事件,A B 相互独立,则()()()P A B P A P B ⋅=⋅
其中S 表示棱柱的底面积,h 表示棱柱的
高
若事件A 在一次试验中发生的概率是p ,则n 次 棱锥的体积公式 13V Sh = 独立重复试验中事件A 恰好发生k 次的概率
其中S 表示棱锥的底面积,h 表示棱锥的高
()(1),(0,1,2,,)k k n k n n P k C p p k n -=-= 球的表面积公式
台体的体积公式 24S R π=
)(3
12211S S S S h V ++= 球的体积公式 其中S 1,S 2分别表示棱台的上、下底面积,h 表示 334R V π=
棱台的高 其中R 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(原创)已知集合}2
15412{≤-=x x M ,}1{x y x N -==,那么=N M ( )。
大庆市2019届高三第一次模拟考试数学(理科)含答案解析

【分析】利用两角和的正弦公式化简f(x),然后由f(x0)=0求得[0, ]内的x0的值.
【解答】解:∵曲线f(x)=sin(wx)+ cos(wx)=2sin(wx+ )的两条相邻的对称轴之间的距离为 ,
∴ =π,
∴w=2
∴f(x)=2sin(2x+ ).
∵f(x)的图象关于点(x0,0)成中心对称,
【解答】解:函数f(x)=x3﹣x2﹣x+a的导数为f′(x)=3x2﹣2x﹣1,
当x>1或x<﹣ 时,f′(x)>0,f(x)递增;
当﹣ <x<1时,f′(x)<0,f(x)递减.
即有f(1)为极小值,f(﹣ )为极大值.
∵f(x)在(﹣∞,﹣ )上单调递增,
∴当x→﹣∞时,f(x)→﹣∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞,
构造函数g(x)=x3+2x﹣ ,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,
求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,
由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.
故选:A.
【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.
因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;
因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;
由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.
2019年高考数学模拟考试题含答案解析

FDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A .1x =-B .2x =-C .3x =- D .x =12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。
2019年宁夏银川一中高考数学一模试卷(理科)含答案解析

2019年宁夏省银川一中高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2019•银川校级一模)已知全集U=R,设集合A={x|y=ln(x﹣1)},集合B={x|x≥2},则A∩(C U B)=()A.[1,2] B.(1,2)C.(1,2] D.[1,2)【考点】:交、并、补集的混合运算.【专题】:计算题.【分析】:由题意求出A,求出C U B,然后求出A∩(C U B).【解析】:解:集合A={x|y=ln(x﹣1)}={x|x>1},C U B={x|x<2},A∩(C U B)=)}={x|x>1}∩{x|x<2}={x|1<x<2},故选B.【点评】:本题是基础题,考查集合的基本运算,注意补集的运算,是解题的关键.2.(5分)(2019•银川校级一模)已知直线m、n和平面α,则m∥n的必要非充分条件是()A.m、n与α成等角B.m⊥α且n⊥α C.m∥α且n⊂α D.m∥α且n∥α【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据充分条件和必要条件的定义结合直线平行的等价条件进行判断即可.【解析】:解:A.若m∥n,则m、n与α成等角,当m、n与α成等角是,m∥n不一定成立,故m、n与α成等角是m∥n的必要非充分条件,B.若m∥n,则m⊥α且n⊥α,反之也成立,故m⊥α且n⊥α是充要条件.C.若m∥n,则m∥α且n⊂α不一定成立,D.若m∥n,则m∥α且n∥α不一定成立,故选:A【点评】:本题主要考查充分条件和必要条件的判断,根据线面平行的性质和判定是解决本题的关键.3.(5分)(2019•银川校级一模)若等比数列{a n}的前n项和,则a2=()A. 4 B.12 C.24 D.36【考点】:等比数列的前n项和.【专题】:计算题;等差数列与等比数列.【分析】:由,和{a n}为等比数列,解得a=2,由此能求出a2.【解析】:解:∵,∴,a2=S2﹣S1=(9a﹣2)﹣(3a﹣2)=6a,a3=S3﹣S2=(27a﹣2)﹣(9a﹣2)=18a,∵{a n}为等比数列,∴(6a)2=(3a﹣2)×18a,解得a=2,或a=0(舍),∴a=2,∴a2=S2﹣S1=6a=12,故选B.【点评】:本题考查等差数列的前n项和公式的简单应用,数列版块在新课标的背景下要求降低,只强调等差、等比数列通项、前n项和,题干比较新鲜.4.(5分)(2019•银川校级一模)已知复数(1+i)(a+bi)=2+4i(a,b∈R),函数f(x)=2sin(ax+)+b图象的一个对称中心是()A.(﹣,1)B.(﹣,0)C.(﹣,3)D.(,1)【考点】:正弦函数的图象;复数代数形式的乘除运算.【专题】:三角函数的图像与性质.【分析】:由(1+i)(a+bi)=2+4i可得(a﹣b)+(a+b)i=2+4i,即可解得a,b的值,从而可得函数f(x)的解析式,从而得到答案.【解析】:解:∵复数2+4i=(1+i)(a+bi)=(a﹣b)+(a+b)i,∴,解得a=3,b=1.故函数f(x)=2sin(ax+)+b=2sin(3x+)+1,∵3x=kπ,k∈Z,∴x=,k∈Z,当k=1时,x=,故函数f(x)=2sin(ax+)+b图象的一个对称中心是().故选:D.【点评】:本题考查复数相等的充要条件的应用,是基础题.解题时要认真审题,注意正弦函数图象的性质和应用.5.(5分)(2019•许昌二模)如图,给出的是计算的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A.i>100,n=n+1 B.i>100,n=n+2 C.i>50,n=n+2 D.i≤50,n=n+2【考点】:循环结构.【专题】:图表型.【分析】:写出前三次循环的结果,观察归纳出和的最后一项的分母i的关系,得到判断框中的条件.【解析】:解:此时,经第一次循环得到的结果是,经第二次循环得到的结果是经第三次循环得到的结果是据观察S中最后一项的分母与i的关系是分母=2(i﹣1)令2(i﹣1)=100解得i=51即需要i=51时输出故图中判断框内(1)处和执行框中的(2)处应填的语句是分别是i>50,n=n+2故选C【点评】:本题考查解决程序框图中的循环结构的有关的题目,常采用写出前几次循环的结果,找规律.6.(5分)(2019•漳州二模)设a=,则二项式展开式中的x3项的系数为()A.﹣20 B.20 C.﹣160 D.160【考点】:二项式定理;微积分基本定理.【专题】:计算题.【分析】:计算定积分求得a的值,在二项式展开式的通项公式中,令x的幂指数等于3,求得r的值,即可求得展开式中的x3项的系数.【解析】:解:由于a==(sinx+cosx)=﹣2,则二项式展开式的通项公式为T r+1=•x12﹣2r•=(﹣2)r••x12﹣3r,令12﹣3r=3,解得r=3,故展开式中的x3项的系数为﹣8×20=﹣160,故选C.【点评】:本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.7.(5分)(2019•银川校级一模)给出下列四个结论:(1)如图Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是;(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;(4)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤﹣2)=0.21;其中正确结论的个数为()A. 1 B. 2 C. 3 D.4【考点】:两个变量的线性相关;正态分布曲线的特点及曲线所表示的意义.【专题】:综合题;概率与统计.【分析】:对四个命题分别进行判断,即可得出结论.【解析】:解:(1)由题意,|CD|=|CB|,∠C=30°,所以∠CBD=75°,所以E点落在线段CD上的概率是=,故不正确;(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力,正确;(4)已知随机变量ξ服从正态分布N(1,σ2),图象关于x=1对称,因为P(ξ≤4)=0.79,则P(ξ≤﹣2)=0.21,正确;故正确结论的个数为3,故选:C.【点评】:本题考查命题的真假的判断,考查学生分析解决问题的能力,综合性强.8.(5分)(2019•银川校级一模)一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是右图.图中圆内有一个以圆心为中心边长为1的正方形.则这个四面体的外接球的表面积是()A.π B.3π C.4π D.6π【考点】:球的体积和表面积.【专题】:计算题;空间位置关系与距离.【分析】:由三视图可知:该四面体是正方体的一个内接正四面体.此四面体的外接球的半径为正方体的对角线长为.利用球的表面积计算公式即可得出.【解析】:解:由三视图可知:该四面体是正方体的一个内接正四面体.∴此四面体的外接球的直径为正方体的对角线长为.∴此四面体的外接球的表面积为表面积为=3π.故选:B.【点评】:本题考查了三棱锥的三视图、正方体与外接球的性质、球的表面积的计算公式,考查了推理能力与空间想象能力、计算能力,属于中档题.9.(5分)(2019•合肥一模)已知z=2x+y,x,y满足,且z的最大值是最小值的4倍,则a的值是()A.B.C.D.【考点】:简单线性规划.【专题】:数形结合.【分析】:我们可以画出满足条件,的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数a的方程,即可得到a的取值.【解析】:解:画出x,y满足的可行域如下图:由,得A(1,1),由,得B(a,a),当直线z=2x+y过点A(1,1)时,目标函数z=2x+y取得最大值,最大值为3;当直线z=2x+y过点B(a,a)时,目标函数z=2x+y取得最小值,最小值为3a;由条件得3=4×3a,∴a=,故选B.【点评】:如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),即可求出参数的值.10.(5分)(2019•北海四模)对于函数y=f(x),部分x与y的对应关系如下表:x 1 2 3 4 5 6 7 8 9y 3 7 5 9 6 1 8 2 4数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2019+x2019的值为()A.7549 B.7545 C.7539 D.7535【考点】:数列的求和;函数解析式的求解及常用方法.【专题】:等差数列与等比数列.【分析】:由题意知数列是周期数列,周期为4,一个周期内的和为1+3+5+6=15,所以x1+x2+x3+x4+…+x2019+x2019=503×(x1+x2+x3+x4)+x1+x2.【解析】:解:∵数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,∴x n+1=f(x n)∴x1=1,x2=3,x3=5,x4=6,x5=1,x6=3,x7=5,x8=6,…∴数列是周期数列,周期为4,一个周期内的和为1+3+5+6=15,∴x1+x2+x3+x4+…+x2019+x2019=503×(x1+x2+x3+x4)+x1+x2=503×15+1+3=7549.故选:A.【点评】:本题考查数列的前2019项的和的求法,是中档题,解题时要认真审题,注意数列的周期性的合理运用.11.(5分)(2019•甘肃一模)已知F2、F1是双曲线﹣=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为()A. 3 B.C. 2 D.【考点】:双曲线的简单性质.【专题】:计算题;直线与圆;圆锥曲线的定义、性质与方程.【分析】:首先求出F2到渐近线的距离,利用F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,可得直角三角形MF1F2,运用勾股定理,即可求出双曲线的离心率.【解析】:解:由题意,F1(0,﹣c),F2(0,c),一条渐近线方程为y=x,则F2到渐近线的距离为=b.设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选C.【点评】:本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题.12.(5分)(2019•湖北校级模拟)已知函数f(x)=a(x﹣)﹣2lnx(a∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,则实数a的范围为()A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)【考点】:特称命题.【专题】:函数的性质及应用.【分析】:将不等式进行转化,利用不等式有解,利用导数求函数的最值即可得到结论.【解析】:解:若若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,即f(x)﹣g(x)>0在x∈[1,e],时有解,设F(x)=f(x)﹣g(x)=a(x﹣)﹣2lnx+=ax﹣2lnx>0有解,x∈[1,e],即a,则F′(x)=,当x∈[1,e]时,F′(x)=≥0,∴F(x)在[1,e]上单调递增,即F min(x)=F(1)=0,因此a>0即可.故选:D.【点评】:本题主要考查不等式有解的问题,将不等式进行转化为函数,利用函数的单调性是解决本题的关键.二、填空题:本大题共4小题,每小题5分.13.(5分)(2019•银川校级一模)等差数列{a n}中,a4+a8+a12=6,则a9﹣a11=.【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:由已知求得a8=2,再由a9﹣a11=(3a9﹣a11)转化为含有a8的代数式得答案.【解析】:解:在等差数列{a n}中,由a4+a8+a12=6,得3a8=6,a8=2.则a9﹣a11=(3a9﹣a11)=(a9+a7+a11﹣a11)=(a9+a7)=a8=.故答案为:.【点评】:本题考查了等差数列的性质,考查了学生的灵活变形能力,是基础题.14.(5分)(2019•银川校级一模)若α∈(0,π),且3cos2α=sin(﹣α),则sin2α的值为1,或﹣.【考点】:二倍角的正弦.【专题】:三角函数的求值.【分析】:由题意可得3cos2α﹣3sin2α=cosα﹣sinα,求得cosα﹣sinα=0,或3(cosα+sinα)=,分类讨论求得sin2α 的值.【解析】:解:∵α∈(0,π),且3cos2α=sin(﹣α),∴3cos2α﹣3sin2α=cosα﹣sinα,∴cosα﹣sinα=0,或3(cosα+sinα)=.若cosα﹣sinα=0,则α=,sin2α=1;若3(cosα+sinα)=,平方求得sin2α=﹣,故答案为:1,或﹣.【点评】:本题主要考查二倍角公式、两角和差的正弦公式的应用,属于中档题.15.(5分)(2019•银川校级一模)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为.【考点】:古典概型及其概率计算公式.【专题】:概率与统计.【分析】:基本事件总数为=17×16×3,选出火炬编号为a n=a1+3(n﹣1),根据分类计算原理可得共有12种选法,由经能求出所求概率.【解析】:解:基本事件总数m==17×16×3,选出火炬编号为a n=a1+3(n﹣1),当n=1时,由1,4,7,10,13,16可得4种选法,当n=2时,由2,5,8,11,14,17可得4种选法,当n=3时,由3,6,9,12,15,18可得4种选法,根据分类计算原理可得共有12种选法,∴所求概率为P===.故答案为:.【点评】:本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.16.(5分)(2019•河南模拟)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.则抛物线C的方程为x2=2y.【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:由已知条件推导出点Q到抛物线C的准线的距离为=,由此能求出抛物线C 的方程.【解析】:解:抛物线C:x2=2py(p>0)的焦点F(0,),设M(x0,),x0>0,Q(a,b),由题意知b=,则点Q到抛物线C的准线的距离为b+===,解得p=1,∴抛物线C的方程为x2=2y.故答案为:x2=2y.【点评】:本题考查抛物线的方程的求法,是中档题,解题时要认真审题,注意抛物线的简单性质的灵活运用.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2019•银川校级一模)△ABC中内角A,B,C的对边分别为a,b,c,向量=(2sinB,﹣),=(cos2B,2cos2﹣1)且∥.(Ⅰ)求锐角B的大小;(Ⅱ)如果b=2,求△ABC的面积S△ABC的最大值.【考点】:解三角形;平面向量共线(平行)的坐标表示;三角函数中的恒等变换应用.【专题】:计算题.【分析】:(Ⅰ)由两向量的坐标及两向量平行,利用平面向量平行时满足的条件列出关系式,利用二倍角的正弦、余弦函数公式及同角三角函数间的基本关系化简,求出tan2B的值,由B为锐角,得到2B的范围,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)由B的度数求出sinB及cosB的值,进而由b及cosB的值,利用余弦定理列出关系式,再利用基本不等式化简求出ac的最大值,再由ac的最大值及sinB的值,利用三角形的面积公式即可求出三角形ABC面积的最大值.【解析】:解:(Ⅰ)∵=(2sinB,﹣),=(cos2B,2cos2﹣1)且∥,∴2sinB(2cos2﹣1)=﹣cos2B,∴2sinBcosB=﹣cos2B,即sin2B=﹣cos2B,∴tan2B=﹣,又B为锐角,∴2B∈(0,π),∴2B=,则B=;…(6分)(Ⅱ)当B=,b=2,由余弦定理cosB=得:a2+c2﹣ac﹣4=0,当B=,b=2,由余弦定理cosB=得:a2+c2+ac﹣4=0,又a2+c2≥2ac,代入上式得:ac≤4(当且仅当a=c=2时等号成立),∴S△ABC=acsinB=ac≤(当且仅当a=c=2时等号成立),则S△ABC的最大值为.…(12分)【点评】:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,余弦定理,基本不等式的运用,以及三角形的面积公式,熟练掌握公式及定理是解本题的关键.18.(12分)(2019•银川校级一模)如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C﹣ADE体积最大时,求二面角D﹣AE﹣B的余弦值.【考点】:与二面角有关的立体几何综合题;平面与平面垂直的判定.【专题】:空间角.【分析】:(Ⅰ)由已知条件推导出BC⊥平面ACD,BC∥DE,由此证明DE⊥平面ACD,从而得到平面ADE⊥平面ACD.(Ⅱ)依题意推导出当且仅当时三棱锥C﹣ADE体积最大,建立空间直角坐标系,利用向量法能求出二面角D﹣AE﹣B的余弦值.【解析】:(Ⅰ)证明:∵AB是直径,∴BC⊥AC…(1分),∵CD⊥平面ABC,∴CD⊥BC…(2分),∵CD∩AC=C,∴BC⊥平面ACD…(3分)∵CD∥BE,CD=BE,∴BCDE是平行四边形,BC∥DE,∴DE⊥平面ACD…(4分),∵DE⊂平面ADE,∴平面ADE⊥平面ACD…(5分)(Ⅱ)依题意,…(6分),由(Ⅰ)知==,当且仅当时等号成立…(8分)如图所示,建立空间直角坐标系,则D(0,0,1),,,∴,,,…(9分)设面DAE的法向量为,,即,∴,…(10分)设面ABE的法向量为,,即,∴,∴…(12分)∵与二面角D﹣AE﹣B的平面角互补,∴二面角D﹣AE﹣B的余弦值为.…(13分)【点评】:本题考查平面与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.19.(12分)(2019•安徽模拟)前不久,省社科院发布了2019年度“安徽城市居民幸福排行榜”,芜湖市成为本年度安徽最“幸福城”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(Ⅲ)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.【考点】:离散型随机变量的期望与方差;茎叶图.【专题】:概率与统计.【分析】:(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.(2)由题意知本题是一个古典概型,至多有1人是“极幸福”包括有一个人是极幸福和有零个人是极幸福,根据古典概型公式得到结果.(3)由于从该社区任选3人,记ξ表示抽到“极幸福”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.【解析】:解:(Ⅰ)众数:8.6;中位数:8.75;(Ⅱ)设A i表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为事件A,则;(Ⅲ)ξ的可能取值为0,1,2,3.;;;.则ξ的分布列为:ξ 0 1 2 3P所以Eξ=.另解:ξ的可能取值为0,1,2,3.则ξ~B(3,),.所以Eξ=.【点评】:本题是一个统计综合题,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,这样的问题可以出现在选择题或填空题,考查最基本的知识点.20.(12分)(2009•河北区二模)已知A,B,C是椭圆m:+=1(a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆m的中心,且,且||=2||.(1)求椭圆m的方程;(2)过点M(0,t)的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且||=||.求实数t的取值范围.【考点】:直线与圆锥曲线的综合问题;向量在几何中的应用.【分析】:(1)如图,点A是椭圆m的右顶点,∴a=2;由•=0,得AC⊥BC;由=2和椭圆的对称性,得=;这样,可以得出点C的坐标,把C点的坐标代入椭圆标准方程,可求得.(2)如图,过点M的直线l,与椭圆m交于两点P,Q;当斜率k=0时,点M在椭圆内,则﹣2<t<2;当k≠0时,设过M点的直线l:y=kx+t与椭圆方程组成方程组,消去y,可得关于x的一元二次方程,由判别式△>0,得不等式①,由x1+x2的值可得PQ的中点H坐标,由=,得DH⊥PQ,所以斜率,这样得等式②;由①②可得t的范围.【解析】:解(1)如图所示,∵=2,且BC过点O(0,0),则;又•=0,∴∠OCA=90°,且A(2,0),则点C,由a=,可设椭圆的方程m:;将C点坐标代入方程m,得,解得c2=8,b2=4;∴椭圆m的方程为:;(2)如图所示,由题意,知D(0,﹣2),∵M(0,t),∴1°当k=0时,显然﹣2<t<2,2°当k≠0时,设l:y=kx+t,则,消去y,得(1+3k2)x2+6ktx+3t2﹣12=0;由△>0,可得t2<4+12k2 ①设点P(x1,y1),Q(x2,y2),且PQ的中点为H(x0,y0);则x0==﹣,y0=kx0+t=,∴H;由,∴DH⊥PQ,则k DH=﹣,∴=﹣;∴t=1+3k2 ②∴t>1,将①代入②,得1<t<4,∴t的范围是(1,4);综上,得t∈(﹣2,4).【点评】:本题考查了直线与椭圆知识的综合应用,以及向量在解析几何中的应用;用数形结合的方法比较容易理清思路,解得结果.21.(12分)(2019•宿州一模)已知函数f(x)=lnx﹣kx+1(k∈R)(Ⅰ)当k=1时,求函数f(x)的单调区间;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围;(Ⅲ)证明:+++…+<(n∈N*且n>1)【考点】:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】:导数的综合应用.【分析】:(Ⅰ)由函数f(x)的定义域为(0,+∞),f′(x)=.能求出函数f(x)的单调区间.(Ⅱ)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(),由此能确定实数k的取值范围.(Ⅲ)由(2)知,当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x﹣1在x∈[2,+∞)上恒成立,由此能够证明+++…+<(n∈N*且n>1)【解析】:解:(Ⅰ)易知f(x)的定义域为(0,+∞),又f′(x)=当0<x<1时,f′(x)>0;当x>1时,f′(x)<0∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.(Ⅱ)当k≤0时,f(1)=1﹣k>0,不成立,故只考虑k>0的情况又f′(x)=当k>0时,当0<x<时,f′(x)>0;当时,f′(x)<0在上是增函数,在时减函数,此时要使f(x)≤0恒成立,只要﹣lnk≤0 即可解得:k≥1.(Ⅲ)当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x﹣1在x∈(1,+∞)上恒成立,令x=n2,则lnn2<n2﹣1,即2lnn<(n﹣1)(n+1),∴(n∈N*且n>1)∴+++…+<=即:+++…+<(n∈N*且n>1)成立.【点评】:本题考查函数单调区间的求法,确定实数的取值范围,不等式的证明.考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.选修4-1;几何证明选讲.22.(10分)(2019•葫芦岛二模)如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.【考点】:与圆有关的比例线段.【专题】:选作题;立体几何.【分析】:(1)证明P、B、C、E四点共圆、A、B、C、D四点共圆,利用四点共圆的性质,即可证明:∠PEC=∠PDF;(2)证明D,C,E,F四点共圆,利用割线定理,即可求得PE•PF的值.【解析】:(1)证明:连结BC,∵AB是圆O的直径,∴∠ACB=∠APE=90°,∴P、B、C、E四点共圆.∴∠PEC=∠CBA.又∵A、B、C、D四点共圆,∴∠CBA=∠PDF,∴∠PEC=∠PDF﹣﹣﹣﹣(5分)(2)解:∵∠PEC=∠PDF,∴F、E、C、D四点共圆.∴PE•PF=PC•PD=PA•PB=2×12=24.﹣﹣﹣﹣(10分)【点评】:本题考查圆的性质,考查四点共圆的判定,考查割线的性质,属于中档题.选修4-4:坐标系与参数方程.23.(2019•洛阳模拟)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【考点】:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.【专题】:计算题.【分析】:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P 到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d 的最小值即可.【解析】:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.【点评】:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.选修4-5;不等式选讲.24.(2019•包头一模)选修4﹣5;不等式选讲.设不等式|2x﹣1|<1的解集是M,a,b∈M.(I)试比较ab+1与a+b的大小;(II)设max表示数集A的最大数.h=max,求证:h≥2.【考点】:平均值不等式;不等式比较大小;绝对值不等式的解法.【专题】:压轴题;不等式的解法及应用.【分析】:(I)解绝对值不等式求出M=(0,1),可得0<a<1,0<b<1,再由(ab+1)﹣(a+b)=(a﹣1)(b﹣1)>0可得ab+1与a+b的大小.(II)由题意可得h≥,h≥,h≥,可得h3≥=≥8,从而证得h≥2.【解析】:解:(I)由不等式|2x﹣1|<1 可得﹣1<2x﹣1<1,解得0<x<1,从而求得M=(0,1).由a,b∈M,可得0<a<1,0<b<1.∴(ab+1)﹣(a+b)=(a﹣1)(b﹣1)>0,∴(ab+1)>(a+b).(II)设max表示数集A的最大数,∵h=max,∴h≥,h≥,h≥,∴h3≥=≥8,故h≥2.【点评】:本题主要考查绝对值不等式的解法,不等式的性质以及基本不等式的应用,属于中档题.。
浙江省2019届高考模拟卷(一)数学试题(解析版)

浙江省2019年高考全真模拟卷(一)数学试卷第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】因为,,所以.故选A.2.若复数满足,在复数的虚部为()A. B. 1 C. -1 D.【答案】C【解析】【分析】由复数的除法运算公式可得,从而可求出z的共轭复数,即可得出结果.【详解】由题意可知,,故,所以其虚部为-1.【点睛】本题主要考查复数的四则运算和共轭复数的概念,属于基础题型.3.已知是双曲线渐近线上的点,则双曲线的离心率是()A. 2B.C.D.【答案】A【解析】【分析】由在双曲线的渐近线上,得=,由e=计算可得.【详解】因为双曲线的渐近线方程为y=,在渐近线上,所以=,则e==2.故选:A.【点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.4.设,满足约束条件,则的最小值是()A. 1B.C.D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】满足约束条件的可行域如图:化为,平移直线,经过可行域的时,目标函数取得最小值,由,解得,则的最小值是,故选C .【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:圆C:(x−1)2+y2=r2(r>0).圆心(1,0)到直线的距离.由条件q:圆C上至多有2个点到直线x−y+3=0的距离为1,则0<r<3.则p是q的充要条件。
2019年新乡市数学高考第一次模拟试题(附答案)

2019年新乡市数学高考第一次模拟试题(附答案)一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对3.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2 B .3C .5D .74.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形5.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小6.函数()()2ln 1f x x x=+-的一个零点所在的区间是( ) A .()0,1 B .()1,2C .()2,3D .()3,47.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .48.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U9.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元10.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .0 11.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .212.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .2二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.15.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且22EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .18.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.19.锐角△ABC 中,若B =2A ,则ba的取值范围是__________. 20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.23.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 24.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N L 25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
2019届上海市高考仿真模拟卷(一)数学试题

2019届上海市高考仿真模拟卷(一)数学试题一、单选题1.如图,水平放置的正三棱柱的俯视图是( )A. B. C. D.【答案】C【解析】由三视图及正三棱柱的几何特征可得解. 【详解】由正三棱柱的几何特征知,俯视图中间有条实线,故选C. 【点睛】本题主要考查了正三棱柱的几何特征和三视图的相关知识,属于基础题. 2.点()2,0P 到直线14,23,x t y t =+⎧⎨=+⎩(t 为参数,t R ∈)的距离为( )A .35 B .45C .65D .115【答案】D【解析】先把直线的参数方程化成普通方程,再根据点到直线的距离公式可得. 【详解】由1423x t y t =+⎧⎨=+⎩消去参数t 可得3x ﹣4y +5=0,根据点到直线的距离公式可得d 223204511534⨯-⨯+==+. 故选:D . 【点睛】本题考查了直线的参数方程化成普通方程,点到直线的距离公式,属基础题. 3.某公司对4月份员工的奖金情况统计如下: 奖金(单位:元) 8000 5000 4000 2000 1000 800 700 600 500 员工(单位:人)1 2461282052根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为( ) A.0 B.1C.2D.3【答案】C【解析】根据中位数,平均数,众数的概念,结合题中数据,逐个计算,即可得出结果. 【详解】对于①,中位数是指出现在中间位置的数字,由题中数据可知,该公司共60人,处在中间位置的应该是第29和第30,对于的奖金都是800,所以,中位数为800元;①正确;对于②,根据题中数据可得,平均数800010000160001200012000640014000300010004120603++++++++==,故②错;对于③,众数是指出现次数最多的数,由题中数据可得:众数为700元;故③正确. 故选:C 【点睛】本题主要考查求一组数据的中位数、平均数、众数,熟记概念即可,属于基础题型.4.设函数()sin 6f x x π⎛⎫=- ⎪⎝⎭,若对于任意5,62ππα⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为( )A.π6 B.π2C.7π6D.π【答案】B【解析】先求()[f α∈,再由存在唯一确定的β,使得()()f f βα=-∈,得2[,)633m πππ-∈,从而得解.【详解】当5,62ππα⎡⎤∈--⎢⎥⎣⎦时,有2,36ππαπ⎡⎤-∈--⎢⎥⎣⎦,所以()[2f α∈-. 在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()[0,2f f βα=-∈. []0,,[,]666m m πππββ∈-∈--,所以25[,),[,)63326m m πππππ-∈∈.故选B. 【点睛】本题主要考查了三角函数的图像和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.二、填空题5.函数lg y x =的定义域是{}110,,则该函数的值域是_______. 【答案】{}01,【解析】由题意,将x =1和x =10分别代入解析式即可求得结果. 【详解】依题意,当x =1时,y =lg1=0,当x =10时,y =lg10=1,则该函数的值域是{}01,. 故答案为:{}01,.【点睛】本题考查函数的概念和对数函数的基本知识,要求学生必须掌握已知函数定义域,求函数值域的基本题型,属基础题.6.二项式()61x +的展开式中的第三项为_________. 【答案】415x【解析】由二项式定理及二项式展开式的通项公式得:616r rr T C x -+=,令r +1=3,得r =2,从而由通项公式求得结果. 【详解】由二项式()61x +的展开式的通项公式得616r rr T C x -+=,令 r +1=3,得r =2,则二项式()61x +的展开式中的第三项为2626C x-,即415x ,故答案为:415x .本题考查二项式定理的应用,解题的关键在于正确写出二项式展开式的通项公式,属基础题.7.函数2()f x x =,(0,)x ∈+∞的反函数为1()y f x -=,则1(4)f -=________ 【答案】2【解析】求出原函数的反函数,取x =4即可求得f ﹣1(4). 【详解】由y =f (x )=x 2(x >0),得x =则函数f (x )=x 2(x >0)的反函数为y =f ﹣1(x )=∴f ﹣1(4)2==.故答案为:2. 【点睛】本题考查反函数的求法及函数值的求法,是基础题. 8.若复数z 满足2zi a i=+(i 为虚数单位),且实部和虚部相等,则实数a 的值为______. 【答案】2-【解析】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,即可求出a 的值. 【详解】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,所以a=-2. 故答案为:-2 【点睛】本题主要考查复数的计算,考查复数实部与虚部的概念,意在考查学生对这些知识的理解能力掌握水平.9.设函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】根据题意()f x 取最大值4f π⎛⎫⎪⎝⎭,根据余弦函数取最大值条件解得ω的表达式,进而确定其最小值.因为()4f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以()f x 取最大值4f π⎛⎫⎪⎝⎭, 所以22π()8()463k k Z k k Z ωωππ-=∈∴=+∈,,因为0>ω,所以当0k =时,ω取最小值为23.【点睛】函数cos()(0,0)y A x B A ωϕω=++>>的性质 (1)max min =+y A B y A B =-,. (2)周期2π.T ω=(3)由π()x k k Z ωϕ+=∈求对称轴,最大值对应自变量满足2π()x k k ωϕ+=∈Z ,最小值对应自变量满足+2()x k k ωϕππ+=∈Z , (4)由22()22k x k k πππωϕπ-+≤+≤+∈Z 求增区间;由322()22k x k k πππωϕπ+≤+≤+∈Z 求减区间. 10.如果已知极限1lim sin 1n n n →∞⎛⎫= ⎪⎝⎭,那么极限215sinlim 21n n n n →∞--=________. 【答案】12-【解析】在分式215sin21n n n --的分子和分母中同时除以n ,然后利用题中的极限可计算出所求极限的值. 【详解】21515sinsin011limlim 1212022n n n n n n n n n→∞→∞---===----. 故答案为:12-.【点睛】本题考查极限的计算,对代数式进行合理变形是解题的关键,考查计算能力,属于基础题.11.若函数3()log (91)xf x kx =++(k ∈R )为偶函数,则k 的值为________【答案】1-【解析】根据题意,由函数奇偶性的定义可得f (﹣x )=f (x ),即log 3(9x +1)+kx =log 3(9﹣x +1)+k (﹣x ),变形可得k 的值,即可得答案.【详解】根据题意,函数()()391xf x log kx =++(k ∈R )为偶函数,则有f (﹣x )=f (x ),即log 3(9x +1)+kx =log 3(9﹣x +1)+k (﹣x ), 变形可得:2kx =log 3(9﹣x +1)﹣log 3(9x +1)=﹣2x , 则有k =﹣1; 故答案为:﹣1 【点睛】本题考查函数的奇偶性的应用以及对数的运算性质,关键是掌握函数奇偶性的定义,属于基础题.12.一个几何体的三视图如图所示,则该几何体的体积为________.【答案】43【解析】将三视图还原出几何体,找到其底面和高,根据三视图的数据,求出其底面积和高,根据锥体的体积计算公式,得到答案. 【详解】根据三视图,还原出几何体,为三棱锥 根据三视图中的数据可得,三棱锥底面三角形边长为2,高为2,三棱锥的高为2 所以三棱锥的体积为114222=323⨯⨯⨯⨯. 故答案为:43.【点睛】本题考查根据三视图求几何体的体积,属于简单题.13.若函数221()lg 1x x f x x mx ⎧-≤⎪=⎨->⎪⎩在区间[0,)+∞上单调递增,则实数m 的取值范围为________ 【答案】910m ≤【解析】由函数()f x 在区间[)0,+∞上单调递增,得到()f x 在每一部分都单调递增,且212lg 1m -≤-,即可求出结果. 【详解】因为函数()221lg 1x x f x x mx ⎧-≤⎪=⎨->⎪⎩在区间[)0,+∞上单调递增,所以()f x 在每一部分都单调递增,且212lg 1m -≤-,即1121m lg m ≤⎧⎨-≤-⎩,解得910m ≤. 故答案为910m ≤ 【点睛】本题主要考查分段函数单调的问题,只需满足每一部分单调,并且特别主要结点位置的取值即可,属于常考题型. 14.设,若圆()与直线有交点,则的最小值为________ 【答案】【解析】根据直线与圆相交,可得圆心到直线的距离小于等于半径,列出不等式即可求出结果. 【详解】因为圆的圆心为,又圆()与直线有交点, 所以,使得圆心到直线的距离恒成立,即恒成立,其中,又,所以的最小值为.故答案为【点睛】本题主要考查直线与圆位置关系,直线与圆有交点,只需圆心到直线的距离小于等于半径即可,属于常考题型.15.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________ 【答案】12(,]23【解析】由f (x )=x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出. 【详解】f (x )=x 2﹣(a +2)x +2﹣a <0, 即x 2﹣2x +1<a (x +1)﹣1, 分别令y =x 2﹣2x +1,y =a (x +1)﹣1,易知过定点(﹣1,﹣1), 分别画出函数的图象,如图所示:∵集合A ={x ∈Z|f (x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为:(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题16.正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足2||OP =,若AP mAB nAD =+,其中m 、n ∈R ,则2122m n ++的最大值是________ 【答案】1【解析】建立合适的直角坐标系写出坐标表示AP AB ,,AD ,又AP mAB nAD =+,所以2212221m cos n sin θθ⎧=+⎪⎪⎨⎪=+⎪⎩,则21222232m cos n sin θθ++=++,其几何意义为过点E (﹣2,﹣2)与点P (sinθ,cosθ)的直线的斜率,由点到直线的距离得:设直线方程为y 2=k (x 2,点P 的轨迹方程为x 2+y 2=1,由点到直线的距离有:2322211k k -≤+,可得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学第一次模拟试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .23 2.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥3.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的 4.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A .10组B .9组C .8组D .7组 5.数列2,5,11,20,x ,47...中的x 等于( )A .28B .32C .33D .27 6.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43πB .83πC .163πD .203π 7.已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b =( ) A .3122⎛⎫ ⎪ ⎪⎝⎭ B .13,22⎛⎫ ⎪ ⎪⎝⎭ C .133,44⎛⎫ ⎪ ⎪⎝⎭ D .()1,08.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( ) x 34 5 6 y2.5 t4 4.5 A .产品的生产能耗与产量呈正相关 B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.15 10.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<<11.设F 为双曲线C :22221x ya b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .512.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( )A .32B .0.2C .40D .0.25二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m=_________ .14.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.15.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.16.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则y x 的取值范围为__________. 17.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.18.()sin 5013tan10+=________________. 19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积.22.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.23.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1-(1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 24.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证:(1)DE∥平面BCP ;(2)四边形DEFG 为矩形.25.已知(3cos ,cos )a x x =,(sin ,cos )b x x =,函数()f x a b =⋅.(1)求()f x 的最小正周期及对称轴方程;(2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A. 2.D解析:D【解析】【分析】【详解】 试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.3.D解析:D【解析】【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案.【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D.【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.5.B解析:B【解析】【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值.【详解】因为数列的前几项为2,5,11,20,,47x ,其中5213,11523,201133-=⨯-=⨯-=⨯,可得2043x -=⨯,解得32x =,故选B.【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.C解析:C【解析】【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式.【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB中,SM x =x =,解得x = ∴外接球的半径为R ==; ∴三棱锥外接球的表面积为2164(33S ππ=⨯=. 故选:C .【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.7.B解析:B【解析】【分析】设()(),0b x y y =≠,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b 的坐标.【详解】设(),b x y =,其中0y ≠,则3a x y b ⋅=+=由题意得2210x y y y ⎧+=+=≠⎪⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩13,22b ⎛= ⎝⎭. 故选:B.【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.8.D解析:D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.D解析:D【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .10.B解析:B【解析】【分析】根据导数的几何意义可对比切线斜率得到()()032f f ''<<,将()()32f f -看作过()()22f ,和()()3,3f 的割线的斜率,由图象可得斜率的大小关系,进而得到结果.【详解】由()f x 图象可知,()f x 在2x =处的切线斜率大于在3x =处的切线斜率,且斜率为正,()()032f f ''∴<<,()()()()323232f f f f --=-,()()32f f ∴-可看作过()()22f ,和()()3,3f 的割线的斜率,由图象可知()()()()3322f f f f ''<-<,()()()()03322f f f f ''∴<<-<.故选:B .【点睛】本题考查导数几何意义的应用,关键是能够将问题转化为切线和割线斜率大小关系的比较,进而根据图象得到结果.11.A解析:A【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==. 2e ∴=,故选A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.A解析:A【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S所以中间一组的频率为所以中间一组的频数为160×0.2=32故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3.故答案为3.14.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加 解析:1和3.【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.15.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解.【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.16.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单解析:1,22⎡⎤⎢⎥⎣⎦【解析】 【分析】 作出可行域,yx表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解. 【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以yx 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.17.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.18.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】 【分析】利用弦化切的运算技巧得出()cos103sin10sin 500sin 5013t an10++=⋅,然后利用辅助角、二倍角正弦以及诱导公式可计算出结果. 【详解】 原式()2sin 1030sin50cos103sin102sin 40cos 40sin50cos10cos10cos10++=⋅==()sin 9010sin80cos101cos10cos10cos10-====. 故答案为:1. 【点睛】 本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.19.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:【解析】试题分析:()f x 的定义域为()()10,,'f x ax b x+∞=--,由()'00f =,得1b a =-,所以()()()11'ax x f x x+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a=-.因为1x =是()f x 的极大值点,所以11a->,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即 解析:25+【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y yx c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由ce a =,可得2410e e --=,解得25e =+ 【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(Ⅰ)见解析(Ⅱ)111632132C A DE V -=⨯⨯⨯⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分 所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分 由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分 所以三菱锥C ﹣A 1DE 的体积为:==1. 12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积22.(1)见解析;(2)43 sin7α=【解析】试题分析:.(1)取AP中点M,易证PA⊥面DMB,所以PA BD⊥,(2)以,,MP MB MD所在直线分别为,,x y z轴建立空间直角坐标系,平面DPC的法向量()13,1,3n=--,设平面PCB的法向量2n=()3,1,3-,121212•1cos,7n nn nn n==,即43sinα=.试题解析:(1)证明:取AP中点M,连,DM BM,∵DA DP=,BA BP=∴PA DM⊥,PA BM⊥,∵DM BM M⋂=∴PA⊥面DMB,又∵BD⊂面DMB,∴PA BD⊥(2)∵DA DP=,BA BP=,DA DP⊥,060ABP∠=∴DAP∆是等腰三角形,ABP∆是等边三角形,∵2AB PB BD===,∴1DM=,3BM=.∴222BD MB MD=+,∴MD MB⊥以,,MP MB MD所在直线分别为,,x y z轴建立空间直角坐标系,则()1,0,0A-,()3,0B,()1,0,0P,()0,0,1D从而得()1,0,1DP=-,()1,3,0DC AB==,()1,3,0BP=-,()1,0,1BC AD==设平面DPC的法向量()1111,,n x y z=则11•0•0n DPn DC⎧=⎪⎨=⎪⎩,即111130x zx y-=⎧⎪⎨+=⎪⎩,∴()13,1,3n=--,设平面PCB的法向量()2212,,n x y z=,由22•0•0n BC n BP ⎧=⎪⎨=⎪⎩,得222200x z x +=⎧⎪⎨-=⎪⎩,∴(23,1,n =∴121212•1cos ,7n n n n n n==设二面角D PC B --为α,∴43sin α==点睛:利用法向量求解空间二面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 23.(1)1;(2)见解析 【解析】 【分析】(1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果. 【详解】(1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111123m a b c++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++⎪⎝⎭23321112233b c a c a b a a b b c c=++++++++ 233233692233b c a c a b a a b b c c =++++++≥+=, 当且仅当2332 12233b c a c a b aa b b c c======时,等号成立. 所以239a b c ++≥. 【点睛】本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题. 24.(1)见解析; (2)见解析. 【解析】 【分析】(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明. 【详解】证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC. 又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP. (2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE∥PC∥FG,DG∥AB∥EF. 所以四边形DEFG 为平行四边形. 又因为PC⊥AB,所以DE⊥DG. 所以四边形DEFG 为矩形. 【点睛】本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题. 25.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ 【解析】 【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】解:(1)()23sin cos cos f x a b xx x =⋅=+111sin2cos2sin 222262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+(k Z ∈)解得36k x k ππππ-≤≤+(k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时,得函数()f x 的单调递增区间为5,6ππ⎛⎤-- ⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。