微波技术与天线部分课后答案讲解学习
《微波技术与天线》傅文斌-习题标准答案-第4章
《微波技术与天线》傅文斌-习题答案-第4章————————————————————————————————作者:————————————————————————————————日期:238第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z 122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S39得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。
微波技术与天线课后习题答案(西电版)
★了解同轴线的特性阻抗及分类。
1.4习题及参考解答[I. 1]设一特性阻抗为50 Q的均匀传输线终端接负4k/<=100 Q.求负我反对系数巧・在离负裁0.2入・0.25入及0.5入处的输入阳抗及反对系数分别为多少?解终端反射系数为=& - Z。
= 100 — 50 =丄11 _ K _ 100 + 50 _ T根拥传输线上任怠一恵的反肘糸数和输入阳抗的公贰r(z)= r lC ^和= z。
;兰::二在离负载0.2入.0. 25A> 0.5入反射系数和输入阻抗分别为r(0.2A)= Y“初忌• r(0.25A)MZ.(0.2入)=29.43Z -23.79° Q・ Z in(0.25A) = 25 Q> Z lft(0.5A) = 100 Q[1.2]求内外导体直径分别为0.25 cm和0.75 cm的空气同轴线的持性阻抗。
若在两导体何塡充介电常数匕= 2.25的介质.求其特性阻抗及300 MHz时的波长。
解空气同轴线的持性阻抗为乙=60 In — = 65. 9 Qa塡充相对介电常数为€,=2.25的介质后.英持件阳抗为/=300 MHz时的波长为[1.3]设特性阻抗为乙的无耗传输线的址波比为"滾一个电爪波"•点离负我的距离为人讪.试证明此时终端负我应为r(0.5A) = Y证明根据输入阳抗公式Z: + jZ, tan" 乂Z o + jZ| tan/3 z在距负栈第一个波节点处的阻抗Z /(/“)=—P y Zl— j 乙I "1,3】Z.P将匕式整理即得17I318[I. 4] 何 持性阻抗为Z =50 Q 的无耗均匀传输线•导体间的媒质参敌为 £.=2.25 ・“, = 】,终瑞接仃&=】Q 的负我"/- 100 MHz 时•兀线长度为A/40试求: ①传输线实际长度'②负载终瑞反射系敌;③ 输入端反射系数'④ 输入瑞阻抗.解传输线上的波长= 2 m因而.传输线的实际长度/ = * = 0. 5 m4终瑞反射系数为…R]—Z 。
2023年大学_微波技术与天线(王新稳著)课后答案下载
2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。
微波技术与天线部分课后答案
微波技术与天线
* 1、1设一特性阻抗为得均匀传输线终端接负载,求负载反射系数,在离负载,及处得输入阻抗及反射系数分别为多少?
解:
1、3设特性阻抗为得无耗传输线得驻波比,第一个电压波节点离负载得距离为,试证明此时得终端负载应为
证明:
* 1、5试证明无耗传输线上任意相距λ/4得两点处得阻抗得乘积等于传输线特性阻抗得平方。
证明:令传输线上任意一点瞧进去得输入阻抗为,与其相距λ/4处瞧进去得输入阻抗为,则有:
=
所以有:
故可证得传输线上相距得二点处阻抗得乘积等于传输线得特性阻抗。
1、6 设某一均匀无耗传输线特性阻抗为Z0=50Ω,终端接有未知负载Z1。
现在传输线上测得电压最大值与最小值分别为100mV与20mV,第一个电压波节得位置离负载l min1=λ/3,试求该负载阻抗Z1。
解: 根据驻波比得定义: ρ=|U max|/|U min|=100/20=5
反射系数得模值 |Г1|=ρ-1/ρ+1=2/3
由 l min1=λФ1/4(pai)+λ/4=λ/3
求得反射系数得相位Ф1=(pai)/3,因而复反射系数Г1=2e j(pai)/3/3
负载阻抗为 Z1=Z0(1+Г1)/(1-Г1)=82、4 64、30
*
*例2-1 设某矩形波导得尺寸为a=8cm,b=4cm,试求工作频率在3GHz时该波导能传输得模式。
解: 由f=3GHz,得λ=c/f=0、1m
λcTE10=2a=0、16m>λλcTE01=2b=0、08m<λλcTM11=2ab/ a2+b2=0、0715m<λ
可见,该波导在工作频率为3GHz时只能传输TE10模。
*。
微波技术与天线课后习题答案(西电版刘学观、郭辉萍).docx
反射系数的模值
I rd- T
p~I 3
由.二叙+令=牛
求紂反豺条数的相位0」予•因向圮反射•条数
乙=乙= 82. 4/64.3°
1一几
[1.7]求无耗传榆线上冋波损耗为3(IB和10dB时的庇波比"
I?根抿回波揽耗的定义$
/.
Lr=-20 lg厂|・UP/1 1= 10
因而驻波比
_1 +1几]
★了解同轴线的特性阴抗及分类。
1.4
[L1]设-特性殂抗为50Q的均匀传输线终璀接负^/< =ICO Q.求负戎反射系故
人・在离负我0.2入,0.25入及0.5入处的输入阳抗及反射系数分别为多少?
解终瑞反肘系教为
R-Z=100 —3D二丄
& +Z。一100 4- 50 —T
根加传输线上任恿心的反射系数和输入Ffl抗的公式
p~ I T「I
所以.当冋波损耗分别为3dk和10db时的驻波比分别为5.85和1.92。
【1・8】 设某传输系统如题1.8图戍爪.咖出八”段及BC段沿线4点电压、电流和B1
抗的振幅分巾图•并求出电压的J6人值和駁小值.(图中R-soon)
fi 1.8图
解 传输线AH段为行波状态•其匕电H1大小不变.幅值等于430 V;阳抗等于450 0・电流大小不变.幅值竽于1.
Z|=Z-1- =322.87 —)736.95Q
并联支节的W
/j — T"<«rvtiin世+0.13入一0.22入 加©
并联支廿的长度,
/» =-j- -*- y- arctan卩厂]0.12A
1
[1.13]一均匀无耗传输线的特性飢抗为70Q.负裁俎抗为乙=70+jMOQ・匸作波 长人20 cm。试设计串联支彷匹配器的位置和长度.
微波技术与天线答案
1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗 90101210 1.66510500.66610L L Z C C --⨯====Ω⨯ f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L L L Z Z -Γ+===Ω+Γ-由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=ΩBb) 002252033in Z jZ tgjZ tg j πλπλ=⨯=-ΩBc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-4短路线长度 0.182λ 0.25λ0.15λ 0.62λ 输入阻抗in Z j2.2 ∞j1.38 j0.94 输入导纳in Y-j0.46-j0.024-j1.061-14 解: 表1-5 开路线长度 0.1λ 0.19λ0.37λ 0.48λ 输入阻抗in Z -j1.38 -j0.4j0.94 j7.9 输入导纳in Yj0.73j2.5-j1.06-j0.131-15 解: 表1-6负载阻抗L Z0.3+j1.3 0.5-j1.6 30.25 0.45-j1.2 -j2.0驻波比ρ 9.16 1.86 3 4 5.7 ∞ 反射系数Γ0.80.30.50.60.711-16 解: 表1-7 负载阻抗L Z 0.8+j 0.3-j1.1 ∞ j1.0 1.0 6+j3输入阻抗in Z 0.488-j0.61 0.23+j0.85-j1 1 0.13-j0.067输入阻抗in Z (Ω) 24.4-j30.5 11.5+j42.3-j50 50 6.67-j3.331-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗 0010000010010316L Z Z Z ''===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1))(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》习题集规范标准答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线习题包括答案.docx
《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为 50 的均匀传输线终端接负载 R 1100 ,求负载反射系数1 ,在离负载 0.2 , 0.25 及 0.5处的输入阻抗及反射系数分别为多少解: 1 ( Z 1Z 0 ) (Z 1 Z 0 ) 1 3(0.2) 1e j 2 z1 e j 0 .813(0.5)(二分之一波长重复性)3 (0.25 )13Z in (0.2 )Z 1jZ 0 tan l 29.4323.79Z 0jZ 1 tan lZ 0Z in (0.25 ) 502 /100 25(四分之一波长阻抗变换性)Z in (0.5) 100(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗; 若在两导体间填充介电常数 r 2.25的介质,求其特性阻抗及 f300MHz 时的波长。
解:同轴线的特性阻抗 Z 060blnra则空气同轴线 Z 060 lnb65.9a当 r 2.25 时, Z 0 60b 43.9lnra当 f 300MHz 时的波长:cp0.67mfr题设特性阻抗为Z 0 的无耗传输线的驻波比,第一个电压波节点离负载的距离为l m in1,试证明此时的终端负载应为Z1 Z01j tan lmin 1j tan lmin 1证明:对于无耗传输线而言:Zin (l min 1)Z1Z 0 j tanlmin 1 Z 0Z1 j tanlmin 1 Z 0Zin (l min 1 )Z0/由两式相等推导出:Z1Z 0 1 j tan lmin 1j tan lmin 1传输线上的波长为:cfg2mr因而,传输线的实际长度为:gl0.5m4终端反射系数为:R1Z0490.9611Z 051R1输入反射系数为:in1e j 2 l490.96151根据传输线的 4 的阻抗变换性,输入端的阻抗为:2Z0Z in2500R1试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线,课后答案
T E11、T M11: λc = 2ab/ a2 + b2 = 61.57mm > λ, 故T E11、T M11波 型能传播
T E30: λc = 2a/3 = 48.09mm < λ,故T E30波型不能传播
T E21、T M21: λc = 2ab/ a2 + (2b)2 = 49.51mm < λ, 故T E21、T M21波 型能传播. 综上,能传输的波型为:T E10、T E20、T E01、T E11、T M11波型。
微波技术与天线课后部分习题解答1第三章34矩形波导存在哪3中状态
《微波技术与天线》课后部分习题解答
1 第三章
3-4 矩形波导存在哪3中状态?其导行条件是什么?
答:存在:(a)临界状态(k = kc或λ = λc或f = fc);(b)传输状 态(k < kc或λ < λc或f > fc);(c)截止状态(k > kc或λ > λc或f < fc)。
答:
(1)截止波长:λc = 2a = 4 (λ = 3 × 108/1 × 1010 = 3cm)
1−(
λ λc
)2
相移常数:β
=
2π λp
=
157.7
(2) λc = 9.12cm λp = 3.18cm β = 197.8
(3)各参数同(1)
(4)λc = 4.56cm λp = 2.25cm β = 282.3
(
m a
)2
+
(
n b
)2
+
(
p l
《微波技术与天线》习题答案
ln b 43.9 a
当 f 300MHz 时的波长:
p
f
c r
0.67m
1.3 题
设特性阻抗为 Z0 的无耗传输线的驻波比 ,第一个电压波节点离负载的距离为
.
.
lmin1 ,试证明此时的终端负载应为
Z1
Z0
1 j j
t anlmin1 t anlmin1
证明:
对于无耗传输线而言:
Z in(lmin 1)
1.11
设特性阻抗为 Z0 50 的均匀无耗传输线,终端接有负载阻抗 Z1 100 j75 为复
阻抗时,可用以下方法实现λ/4 阻抗变换器匹配:即在终端或在λ/4 阻抗变换器前并接一段
终端短路线, 如题 1.11 图所示, 试分别求这两种情况下λ/4 阻抗变换器的特性阻抗 Z01 及短
路线长度 l。 (最简便的方式是:归一化后采用 Smith 圆图计算)
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2 )
Z0
Z1 Z0
jZ0 jZ1
t an l t an l
29.43
2 3.7 9
Zin(0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin(0.5) 100
(二分之一波长重复性)
令并联短路线和负载并联后的输入阻抗为 Z 2 .
Z 2 =1/ Re[Y1] 156 则 Z 01 Z0Z2 =88.38
(2)
令 4
特性阻抗为 Z 01 ,并联短路线长为 l
Z in2 Z01
Z1 Z01 j t an Z01 Z1 j t an
4
微波技术与天线,课后答案
1 第二章
2-3 传 输 线 电 路 图 如 图1所 示 。 问 : 图a中ab间 的 阻 抗Zab = 0对 吗 ? 图b中ab间 的阻抗Zab = ∞对吗?为什么? 解:
图 1: 题2-3图
Zin(z)
=
Z0
ZL Z0
+ jZ0tan(βz) + jZLtan(βz)
所以传输线上的电流、电压分布如图10所示。 2-31 ( ) 传输线阻抗匹配的方法有哪几种?哪些是窄频带的?哪些是 宽频带的? 答:
传输线阻抗匹配的方法主要有:λ/4阻抗变换器;宽带λ/4阻抗变换器;支 节匹配器和渐变匹配器。 其中λ/4阻抗变换器、 支节匹配器是窄带匹配; 宽带λ/4阻抗变换器、渐 变匹配器是宽带匹配;
(24)
所以有
ρ
=
ZL + jZ0tan(βz) Z0 + jZLtan(βz)
=
2
(25)
将z = λ/12,ZL = √RL + jXL,Z0 = 70代入式(25)中得: RL = 80,XL = 30 3
2-21 (√ ) 传输线长λ,特性阻抗为Z0,当终端负载分别为ZL = Z0,ZL = 0,ZL = j 3Z0时。 (1)计算相应的终端反射系数和驻波比; (2)画出相对电压振幅|U/U +|、相对电流振幅|I/I+|的沿线分布并标出其最
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
微波与天线技术(第二版)课后答案
第二章2-1 答: 将微波元件等效为网络进行分析,就是用等效电路网络参数代替原微波元件对原系统的影响。
它可将复杂的场分析变成简单易行的路分析,为复杂的微波系统提供一种简单便捷的分析工具。
2-2 答: 波导等效为双线的等效条件是两者的传输功率相等,由于模式电压,电流不唯一,导致等效特性阻抗,等效输入阻抗也不唯一,而归一化阻抗仅由反射系数确定,反射系数是可唯一测量的微波参量。
因而归一化阻抗也是唯一可确定的物理量。
故引入归一化阻抗的概念。
2-3 答: 归一化电压U与电流I 和不归一电压U ,电流I 所表示的功率要相等,由此可得UI ,的定义为//U U I I == UI ,2-4 答: (a) 由121220.02U U I U I ==+ 得 10[]0.021A ⎡⎤=⎢⎥⎣⎦(b) 由12212200U U I I I =+= 得 1200[]01A ⎡⎤=⎢⎥⎣⎦ (c) 由12121U nU I I n== 得 0[]01/nA n ⎡⎤=⎢⎥⎣⎦(d) 由 传输线方程已知终端条件的解双曲函数的形式,将j γβ=,11(),()z lz lU z U I z I ''==''==代入得12021220c o s s i n s i n c o s U l U j Z l Il I jU l I Z ββββ=+=+ 即 00cos sin []sin /cos ljZ l A j l Z l ββββ⎡⎤=⎢⎥⎣⎦当 /2l θβπ==时 0100[]0.010j A j ⎡⎤=⎢⎥⎣⎦(e) 将 l θβπ== 代入(d)中解 可得10[]01A -⎡⎤=⎢⎥-⎣⎦2-5 解: (a) 01/00[]00/0j n jn a jn j n ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦22222212(1/)2111[]2(1/)(1/)2111n j n j n n n n s j n n j n n j nn n n ⎡⎤--⎢⎥-⎡⎤++⎢⎥==⎢⎥-+--⎢⎥⎣⎦⎢⎥++⎣⎦(b) 010*********02010/.0[]/0/00/.jZ jZ Z Z A j Z j Z Z Z -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦01020201/0[]0/Z Za Z Z -⎡⎤=⎢⎥-⎣⎦222202010102010222220102010201020102222222010201020102010222220102010*******[]()2()2Z ZZ Z Z Z Z Z Z Z Z Z Z Z s Z Z Z Z Z Z Z Z Z Z Z Z Z Z ⎡⎤⎡⎤---⎢⎥⎢⎥++⎢⎥⎢⎥==⎢⎥⎢⎥-+----⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-6 解: (a)等效电路如图所示 100101[]10121j j a jj j j -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦由1221222U U j I I j U I =-+=+ 得11221211()2211()22U I I j j U I I j j =-+-=+-即 1/21/2/2/2[]1/21/2/2/2j j j j Z j j j j --⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦(b)等效电路如图所示 101100[]10110j j a j j j ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦由1212U jI I jU == 得12210()()()0U j I U j I =+--=-+ ∴0[]0j Z j-⎡⎤=⎢⎥-⎣⎦(c)等效电路如图所示100101[]10121j j a jj j j ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦由1221222U U J I I j U I =+=- 得112212()22()22j j U I I j j U I I =---=-+-∴/2/2[]/2/2j j Z j j --⎡⎤=⎢⎥-⎣⎦2-7 证: 由 111112U Z I ZI =+ ① 212122U Z I ZI =+ ②将 22L U Z I =-代入 ② 得 122122L IZ Z Z I -=+∴ 212121112111122in LU IZZ Z ZZI IZZ ==+=-+2-8 证: 由 111112I Y U Y U =+ ① 212122I Y U Y U =+ ② 将 22L I Y U =-代入②得 22121/L Y Y Y U U -=+ 即212122LU Y U YY =-- 代入①有212121112111122in LI UYY Y YY U UYY ==+=--2-9 证: 由互易时 det[A]=1 可得 2212(1)(2)1xB B xB A +-+=即 12A x = 且 20xB +≠ 0B ≠2-10 证: ∵1112121212222U a U a I I a U a I=+=+ 且22LU Z I =∴ 1112212111212122222122//L in L U a U I a a Z aZ I a U I a a Z a++===++2-11 解: 设波节处的参考面为1T ' 则11110.21e S e-''=Γ==-+将参照面1T '内移到1T 1m in 1/4l θβπ==∴ 1211110.2j S S e j θ'==- 由对称性可知 22110.2S j S =-= 由无耗网络的性质可知 22121112111,/2S S θθπ=-=± ∴122150.98S S ==±=± ∴ 0.20.98[]0.980.2j S j -±⎡⎤=⎢⎥±-⎣⎦2-12 解: 插入相移 21arg S θπ== 插入衰减 2211()10lg0.175L dB dB S ==电压传输系数 210.98j T S e π== 输入驻波比 11111 1.51S S ρ+==-2-13 解: 由 0[]0j a j ⎡⎤=⎢⎥⎣⎦ 可知 0[]0j S j -⎡⎤=⎢⎥-⎣⎦由1212U jI I jU == 可得12210()()()0U j I U j I =+--=-+ 即 0[]0j Z j-⎡⎤=⎢⎥-⎣⎦由1221I jU I jU =-= 得 0[]0j Y j⎡⎤=⎢⎥⎣⎦2-14 解: 插入驻波比 即为输入驻波比 即 111112212211111112212211,,[]011j S a a a a S a S a a a a ρ+⎡⎤+--===⎢⎥-+++⎣⎦∴1111, 2.622j S S jρ====+2-15 解: 11l θβ= 111211122122[]j j j S e S eS S e S θθθ---⎡⎤'=⎢⎥⎣⎦2-16 解: 11l θβ=内移 22l θβ=外移 30θ=不动∴ 11211222122()111213()2212223313233[]j j j j j j j j S e S eS e S S e S eS eS e S e S θθθθθθθθθθ-----⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦由 [][]S P S P '= 也可求得 其中 120000001j j e P eθθ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2-17 解: 代入式 (2-44a)可得1111112211211111212112/322/32()()1/9,1/3M M S OS OM S M O S OS S S S =Γ=Γ-Γ-Γ==-Γ-ΓΓ-ΓΓ-Γ===±Γ-Γ∴ 2/31/3[]1/32/3S ±⎡⎤=⎢⎥±⎣⎦由 [][][1]S S +≠ 可知该网络是互易有耗的。
《微波技术与天线》傅文斌-习题标准答案-第章
《微波技术与天线》傅文斌-习题答案-第章————————————————————————————————作者:————————————————————————————————日期:217第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。
答 长线是指几何长度大于或接近于相波长的传输线。
工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。
例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。
2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。
分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。
分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。
分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。
分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。
当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。
2.3传输线电路如图所示。
问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。
因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。
2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。
解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波技术与天线
* 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 3
1)25.0(-=Γλ Ω-∠=++=ο79.2343.29tan tan )2.0(10010l
jZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z
1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1
min 1min 01tan tan 1l j l j Z Z βρβρ--⨯
= 证明: 1min 1
min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρ
ββ--⨯=∴=++⨯
=由两式相等推导出:对于无耗传输线而言:
)(Θ
* 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有:
z
jZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4
tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 2
0Z Z Z in in ='⨯
故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。
1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。
现在传输线上测得电压最大值和最小值分别为100mV 和20mV ,第一个电压波节的位置离负载l min1=λ/3,试求
该负载阻抗Z1。
解:根据驻波比的定义:ρ=|U max|/|U min|=100/20=5
反射系数的模值 |Г1|=ρ-1/ρ+1=2/3
由 l min1=λФ1/4(pai)+λ/4=λ/3
求得反射系数的相位Ф1=(pai)/3,因而复反射系数Г1=2e j(pai)/3/3 负载阻抗为 Z1=Z0(1+Г1)/(1-Г1)=82.4 64.30
*
*例2-1 设某矩形波导的尺寸为a=8cm,b=4cm,试求工作频率在3GHz时该波导能传输的模式。
解:由f=3GHz,得λ=c/f=0.1m
λcTE10=2a=0.16m>λλcTE01=2b=0.08m<λλcTM11=2ab/ a2+b2=0.0715m<λ
可见,该波导在工作频率为3GHz时只能传输TE10模。
*。