初中数学因式分解基本方法教案
初中数学因式分解教案5篇
初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。
分解因式要进行到每一个因式都不能再分解为止。
分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键1、重点:利用平方差公式分解因式。
因式分解教案5篇
式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。
初中数学初一数学下册《因式分解》优秀教学案例
3.教师在小组合作过程中给予适当的指导,引导学生积极参与,培养他们的自主学习能力。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结因式分解的方法和技巧,提高数学思维水平。
2.教师及时对学生的学习情况进行反馈,针对性地给予指导和鼓励,帮助学生建立自信。
(二)问题导向
1.以问题为导向,引导学生通过观察、思考、提问等方式,发现数学问题中的规律和联系。
2.设计具有梯度的问题,由浅入深地引导学生掌握因式分解的方法和技巧,培养学生的逻辑思维和数学思维能力。
3.鼓励学生提出问题,敢于质疑,培养他们的问题意识,激发学习动力。
(三)小组合作
1.采用小组合作学习方式,让学生在讨论、交流、互助中共同解决问题,提高团队合作能力。
4.个性化教学与评价:本案例注重差异化教学,针对不同学生的特点,给予个性化的指导。同时,采用多元化的评价方式,全面评估学生的学习效果,关注学生在学习过程中的努力和进步。
5.反思与总结:在教学过程中,鼓励学生进行自我反思,总结因式分解的方法和技巧。教师及时对学生的学习情况进行反馈,帮助学生建立自信,巩固所学知识。
3.采用多元化的评价方式,包括自我评价、同伴评价、教师评价等,全面评估学生的学习效果。
4.注重过程性评价,关注学生在学习过程中的努力和进步,激发学生的学习积极性。
四、教学内ห้องสมุดไป่ตู้与过程
(一)导入新课
1.利用多媒体展示一个生活中的实际例子,如“小明的妈妈在超市购物,买了一些苹果和香蕉,苹果的价格是每千克5元,香蕉的价格是每千克3元。小明想知道,如果妈妈买了2千克苹果和3千克香蕉,一共需要支付多少钱?”通过这个例子,引导学生思考如何将问题转化为数学表达式,并引入因式分解的概念。
初中数学因式分解教案
初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
因式分解的常用方法目前最牛的教案
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=ma+b+c二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1a+ba-b = a 2-b 2 ---------a 2-b 2=a+ba-b ;2 a ±b 2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=a ±b 2;3 a+ba 2-ab+b 2 =a 3+b 3------ a 3+b 3=a+ba 2-ab+b 2;4 a-ba 2+ab+b 2 = a 3-b 3 ------a 3-b 3=a-ba 2+ab+b 2.下面再补充两个常用的公式:5a 2+b 2+c 2+2ab+2bc+2ca=a+b+c 2;6a 3+b 3+c 3-3abc=a+b+ca 2+b 2+c 2-ab-bc-ca ;三、分组分解法.一分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组. 第二、三项为一组.解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy二分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组. 例4、分解因式:2222c b ab a -+-解:原式=)()(22ay ax y x ++- 解:原式=222)2(c b ab a -+-=)())((y x a y x y x ++-+ =22)(c b a --=))((a y x y x +-+ =))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:13223y xy y x x --+ 2b a ax bx bx ax -+-+-223181696222-+-++a a y xy x 4a b b ab a 4912622-++-592234-+-a a a 6y b x b y a x a 222244+--7222y yz xz xy x ++-- 8122222++-+-ab b b a a9)1)(1()2(+---m m y y 10)2())((a b b c a c a -+-+四、十字相乘法.一二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:1二次项系数是1;2常数项是两个数的乘积;3一次项系数是常数项的两因数的和.思考:十字相乘有什么基本规律例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c,都要求24b ac ∆=- >0而且是一个完全平方数. 于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5.由于6=2×3=-2×-3=1×6=-1×-6,从中可以发现只有2×3的分解适合,即2+3=5. 1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数.例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6-1+-6= -7练习5、分解因式124142++x x 236152+-a a 3542-+x x 练习6、分解因式122-+x x 21522--y y 324102--x x 二二次项系数不为1的二次三项式——c bx ax ++2条件:121a a a = 1a 1c221c c c = 2a 2c31221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5-6+-5= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:16752-+x x 22732+-x x3317102+-x x 4101162++-y y三二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b 8b+-16b= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式12223y xy x +-22286n mn m +-3226b ab a --四二次项系数不为1的齐次多项式例例10、2322+-xy y x把xy 看作一个整体 1 -12 -3y 1 -2解:原式=)2)(1(--xy xy练习9、分解因式:1224715y xy x -+ 28622+-ax x a综合练习10、117836--x x 222151112y xy x --310)(3)(2-+-+y x y x 4344)(2+--+b a b a5222265x y x y x -- 62634422++-+-n m n mn m73424422---++y x y xy x 82222)(10)(23)(5b a b a b a ---++910364422-++--y y x xy x 102222)(2)(11)(12y x y x y x -+-++五、换元法.例13、分解因式12005)12005(200522---x x22)6)(3)(2)(1(x x x x x +++++解:1设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x2型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式1)(4)(22222y x xy y xy x +-++ 290)384)(23(22+++++x x x x六、添项、拆项、配方法.例15、分解因式14323+-x x解法1——拆项. 解法2——添项.原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x =2)2)(1(-+x x =2)2)(1(-+x x 练习15、分解因式24224)1()1()1(-+-++x x x 31724+-x x 422412a ax x x -+++第二部分:习题大全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式.2分解因式: m 3-4m= .3.分解因式: x 2-4y 2= __ _____.4、分解因式:244x x ---=___________ ______. 5.将x n -y n 分解因式的结果为x 2+y 2x+yx-y,则n 的值为 .6、若5,6x y xy -==,则22x y xy -=_________,2222x y +=__________.二、选择题7、多项式3222315520m n m n m n +-的公因式是A 、5mnB 、225m nC 、25m nD 、25mn8、下列各式从左到右的变形中,是因式分解的是A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭ 10.下列多项式能分解因式的是Ax 2-y Bx 2+1 Cx 2+y+y 2 Dx 2-4x+411.把x -y 2-y -x 分解因式为A .x -yx -y -1B .y -xx -y -1C .y -xy -x -1D .y -xy -x +112.下列各个分解因式中正确的是A .10ab 2c +6ac 2+2ac =2ac5b 2+3cB .a -b 2-b -a 2=a -b 2a -b +1C .xb +c -a -ya -b -c -a +b -c =b +c -ax +y -1D .a -2b3a +b -52b -a 2=a -2b11b -2a13.若k-12xy+9x 2是一个完全平方式,那么k 应为.4 C三、把下列各式分解因式:14、nx ny - 15、2294n m -16、()()m m n n n m -+- 17、3222a a b ab -+ 18、()222416x x +- 19、22)(16)(9n m n m --+;五、解答题20、如图,在一块边长a =6.67cm 的正方形纸片中,挖去一个边长b =3.33cm 的正方形.求纸片剩余部分的面积.21、如图,某环保工程需要一种空心混凝土管道,它的规格是内径45d cm =,外径75D cm =,长3l m =.利用分解因式计算浇制一节这样的管道需要多少立方米的混凝土π取,结果保留2位有效数字22、观察下列等式的规律,经典二:知识总结归纳 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点.1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:1通常采用一“提”、二“公”、三“分”、四“变”的步骤.即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;2若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项添项等方法; 下面我们一起来回顾本章所学的内容.1. 通过基本思路达到分解多项式的目的例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解.解一:原式=-+--+()()x x x x x 54321解二:原式=()()()x x x x x 54321-+-+-2. 通过变形达到分解的目的例1. 分解因式x x 3234+-解一:将32x 拆成222x x +,则有解二:将常数-4拆成--13,则有3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值.本题要证明这个多项式是非负数,需要变形成完全平方数.证明:()()x x x 2241021100--++设y x x =-25,则4. 因式分解中的转化思想例:分解因式:()()()a b c a b b c ++-+-+2333分析:本题若直接用公式法分解,过程很复杂,观察a+b,b+c 与a+2b+c 的关系,努力寻找一种代换的方法.解:设a+b=A,b+c=B,a+2b+c=A+B说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的.中考点拨在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++= 求证:a c b +=21. 若x 为任意整数,求证:()()()7342---x x x 的值不大于100.2. 将a a a a 222222216742++++++()()分解因式,并用分解结果计算。
《整式的乘除与因式分解》初中数学教案
《整式的乘除与因式分解》初中数学教案一、教学目标:1. 让学生掌握整式乘除的运算方法,能够熟练进行整式的乘除运算。
2. 让学生理解因式分解的意义,掌握因式分解的方法,能够对简单的多项式进行因式分解。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。
2. 整式的除法:单项式除以单项式,多项式除以单项式。
3. 因式分解:提公因式法,十字相乘法,公式法。
三、教学重点与难点:1. 教学重点:整式的乘除运算,因式分解的方法。
2. 教学难点:因式分解的灵活运用,解决实际问题。
四、教学方法:1. 采用讲解法,引导学生理解整式乘除的运算规则。
2. 采用案例教学法,让学生通过具体例子掌握因式分解的方法。
3. 采用小组讨论法,培养学生的合作精神和解决问题的能力。
五、教学过程:1. 导入:通过复习相关知识,引导学生进入整式乘除与因式分解的学习。
2. 讲解:讲解整式乘除的运算规则,让学生进行相应的练习。
3. 案例分析:给出具体的因式分解例子,引导学生掌握因式分解的方法。
4. 练习:让学生进行因式分解的练习,巩固所学知识。
6. 作业布置:布置相关的练习题,巩固所学知识。
六、教学评估:1. 课堂练习:通过课堂上的即时练习,评估学生对整式乘除和因式分解的理解程度。
2. 作业批改:对学生的作业进行详细批改,了解学生对知识的掌握情况,及时发现并纠正错误。
3. 学生反馈:收集学生的反馈意见,了解他们在学习过程中的困惑和问题。
七、教学拓展:1. 利用多媒体教学资源,如数学软件或在线平台,让学生进行互动式的整式乘除和因式分解练习。
2. 组织数学竞赛或小组竞赛,激发学生的学习兴趣和竞争意识。
3. 结合实际问题,让学生运用整式乘除和因式分解的知识解决实际问题,提高学生的应用能力。
八、教学反思:1. 反思教学方法的有效性,根据学生的反馈和作业情况,调整教学策略。
初中数学人教版九年级上册:因式分解法 教案
21.2.3因式分解法【教学目标】知识技能1.了解因式分解的概念2.会利用因式分解法解某些简单数字系数的一元二次方程情感态度1.学会和他人合作,并能与他人交流思维的过程和结果2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心重点难点重点应用因式分解法解一元二次方程难点将方程化为一般形式后,对方程左侧二次三项式进行因式分解活动1复习引入问题(学生活动)解下列方程.(1)220x x (用配方法),(2)2360x x (用公式法).(3)要使一块矩形场地的长比宽多3m ,并且面积为228m ,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程2692x x 有何联系和区别?(6)你能由方程2692x x 的解法联想到怎样解方程23280x x 吗?活动2实验发现思考:(1)210x x (),(2)320x x ().问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解的理论依据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零。
即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之。
这种方法叫做因式分解法.(3)因式分解法解一元二次方程的步骤:①移项,使方程的右边为零;②将方程的分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.活动3用因式分解法解决问题教材第14页例3.补充例题解方程(1)238x x ,(2)24312x x ().分析:(1)移项提取公因式x ;(2)等号右侧移项到左侧得312x -,提取因式-3,即34x -(),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次因式的乘积,另一边为0的形式.解:(1)移项,得2380x x ,因式分解,得380x x (),于是,得0380x x ,或,12803x x,(2)移项,得243120x x (),24340x x ()()因式分解,得4430x x ()()整理,得470x x ()()于是,得4070x x 或1247x x ,活动5课堂小结小结:(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次。
人教版初中九年级上册数学《因式分解法》教案
21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2,x2=-1;(2)原方程整理为4x2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x1=-12,x2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.例2 用适当的方法解下列方程:(1)3x2+x-1=0; (2)2(2x-3)2=12;(3)(3x-2)2=4(3-x)2; (4)(x-1)(x+2)=-2.分析:根据方程的结构特征,灵活选择恰当的方法来求解.【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成.对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.思考请你谈谈解一元二次方程的几种方法的特点,与同伴交流.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D.x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本节课围绕利用因式分解法解一元二次方程这一重点内容,教师通过问题情境以及学生的合作交流,使学生的问题凸现出来,让学生迅速掌握解题技能,并探讨出解题的一般步骤,使学生知道因式分解法是一元二次方程解法中应用较为广泛的简便方法,提高解题速度.2.学生已经学过多项式的因式分解,所以对本课内容并不陌生,通过本课学习,让学生更能领会因式分解在数学领域的广泛应用.3.本节课有大量的基础计算问题,也有符合不同学生层次的问题,力争让所有学生学有所得,提高课堂效率.4.解一元二次方程是本章教学的重中之重,如何正确选择用不同方法解一元二次方程是关键,本节课中的计算题有一题多解问题,体现了选择“最优化”解方程方法的问题.良好的学习态度能够更好的提高学习能力。
初中数学初一数学下册《因式分解》教案、教学设计
3.结合本节课学习的因式分解知识,尝试解决以下实际问题:
(1)一个长方形的长是宽的两倍,已知长方形的周长是30cm,求长和宽的长度。
(2)某数的平方与25的差是64,求这个数。
2.自主探究,合作交流:引导学生通过自主探究,发现因式分解的方法,鼓励学生之间进行合作交流,共同总结规律。
3.演示讲解,突破难点:针对重难点内容,教师进行详细讲解,配合实际例题,使学生更好地理解因式分解的方法和技巧。
4.分层练习,巩固提高:设计不同难度的练习题,让学生在练习中巩固所学知识,逐步提高解决问题的能力。
(7)拓展延伸:针对学有余力的学生,可以设计一些综合性的练习题,提高学生的综合运用能力。
四、教学内容与过程
(一)导入新课,500字
今天我们将开始学习因式分解这一章节。首先,我想请大家回顾一下我们已经学过的整式乘法。整式乘法是将两个或多个整式相乘,而因式分解则是将一个多项式分解成几个整式的乘积。这是两种相反的运算过程,但它们之间有着密切的联系。
3.判断使用哪种因式分解方法需要根据多项式的具体形式和特点。
希望同学们在课后能够主动复习本节课的内容,多做练习题,掌握因式分解的方法和技巧。在下节课中,我们将进一步探讨因式分解在实际问题中的应用。
五、作业布置
为了巩固本节课所学知识,特布置以下作业:
1.请同学们完成课本第56页的练习题1、2、3,这些题目涵盖了因式分解的基本方法,通过这些练习,希望大家能够熟练掌握提公因式法、平方差公式和完全平方公式。
初中数学初一数学下册《因式分解》教案、教学设计
一、教学目标
八年级因式分解教案 初中数学因式分解教案
八年级因式分解教案初中数学因式分解教案一、教学目标1.让学生理解因式分解的概念,掌握基本的因式分解方法。
2.培养学生运用因式分解解决问题的能力,提高学生的数学素养。
3.培养学生合作学习、自主探究的精神。
二、教学内容1.因式分解的概念2.提公因式法3.公式法4.十字相乘法三、教学重点与难点1.教学重点:因式分解的方法及其应用2.教学难点:灵活运用各种因式分解方法,解决实际问题四、教学过程第一课时一、导入新课1.复习旧知识:回顾整式的乘法运算,如(a+b)(c+d)等。
2.提问:同学们,我们在整式乘法中学习了多项式乘多项式,那么有没有一种方法可以将多项式转化为几个整式的乘积呢?这就是我们今天要学习的因式分解。
二、探究新知识1.引入因式分解的概念:将一个多项式转化为几个整式的乘积的过程,叫做因式分解。
2.学习提公因式法:通过实例讲解,让学生理解提公因式法的原理,并掌握其操作步骤。
3.学习公式法:讲解平方差公式和完全平方公式,让学生学会运用公式法进行因式分解。
4.学习十字相乘法:通过实例演示,让学生掌握十字相乘法的操作步骤。
三、课堂练习1.让学生独立完成课本上的练习题,巩固所学知识。
2.针对学生出现的错误,进行讲解和指导。
第二课时一、复习导入1.复习上节课所学的因式分解方法。
2.提问:同学们,我们在上节课学习了因式分解的三种方法,那么在实际问题中,如何选择合适的方法进行因式分解呢?二、巩固提高1.让学生运用所学知识,解决实际问题。
2.讲解例题,引导学生分析问题,选择合适的方法进行因式分解。
三、课堂小结2.强调灵活运用各种方法,提高解题能力。
四、课后作业1.完成课本上的课后习题,巩固所学知识。
2.收集生活中的实际问题,尝试运用因式分解方法解决。
五、教学反思2.调整教学方法,提高学生的学习兴趣和效果。
六、教学评价1.评价学生在课堂上的表现,了解学生对因式分解方法的掌握程度。
2.评价学生在课后作业中的表现,了解学生对因式分解方法的运用能力。
初中数学公式法因式分解教案设计
初中数学公式法因式分解教案设计一、教学目标:1.了解因式分解的基本概念,能够正确运用公式法因式分解。
2.培养学生的逻辑思维和应用能力,能够将各种因式分解形式转换。
3.通过因式分解,培养求解策略和思考能力。
二、教学重难点:教学重点:因式分解的基本概念和公式法的运用。
教学难点:练习题的运用能力,强化问题的简化和逻辑思维。
三、教学过程:1.引入1.1.告诉学生,因式分解是代数运算中的一项基本技能,掌握好因式分解对于解决其他数学问题也非常有帮助。
1.2.通过一个例子来引入:8x+12y的因式分解。
1.3.介绍公式法因式分解方法,让学生能够掌握其基本思路。
公式法因式分解,就是通过一些公式和规律,将一个多项式化简成一个或几个乘积的形式。
三类常见的公式:a² - b² = (a+b)(a-b)a³ + b³ = (a+b)(a² - ab + b²)a³ - b³ = (a-b)(a² + ab + b²)2.讲解公式法因式分解的步骤2.1.找出整个式子中的公因式:将多项式中每一项中的公因式提出来。
2.2.分解第一个括号中的项:根据公式将括号内部的项进行分解。
2.3.分解第二个括号中的项:同样根据公式进行分解。
3.让学生通过例题掌握公式法因式分解的基本步骤和做法。
例题:4.1、因式分解3a^2 + 12a:这题中3和a都是整个式子的公因式。
3a² + 12a = 3a(a + 4)5.2、因式分解9x^2 + 12xy:乘因式法,这题中9和x²都是整个式子的公因式。
9x² + 12xy = 3x(3x + 4y)6.3、因式分解 x^2 - 4y^2:使用公式x² - y² = (x + y)(x - y)这题可以分类讨论,即:x² - 4y² = (x + 2y)(x - 2y)这个过程也可以反推,即将括号内的式子做乘法,看看是否能还原成原本的式子。
初中数学因式分解教案(推荐6篇)
初中数学因式分解教案(推荐6篇)初中数学因式分解教案(一)教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x24和y225学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2b2=(a+b)(ab)如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2=2②b2=2③0.16a4=2④1.21a2b2=2⑤2x4=2⑥5x4y2=2解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2例2:下列多项式能否用平方差公式进行因式分解①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2解答:①1.21a2+0.01b2能用②4a2+625b2不能用③16x549y4不能用④4x236y2不能用初中数学因式分解教案(二)因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
北师大版数学八年级下册4.1《因式分解》教案
北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。
因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。
本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。
但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。
因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。
2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:因式分解的方法。
2.难点:灵活运用各种方法进行因式分解,解决实际问题。
五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考,培养学生的创新能力。
3.小组合作学习:培养学生团队协作能力和解决问题的能力。
六. 教学准备1.准备相关教案、PPT、教学素材等。
2.准备黑板、粉笔、投影仪等教学用品。
3.提前让学生预习本节课的内容,了解因式分解的基本概念。
七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。
2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。
引导学生了解各种方法的特点和应用。
3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。
教师巡回指导,解答学生的疑问。
初中九年级数学教案-因式分解法【省一等奖】
∴12x =,21x =-。
(答案)D 。
3.方程2120x x +-=的两个根为( )。
A .12x =-,26x =B .16x =-,22x =C .13x =-,24x =D .14x =-,23x =(解题过程)解:()()430x x +-=,则40x +=,或30x -=,解得:14x =-,23x =。
(答案)D 。
4.一元二次方程2412x x -=的根是( )。
A .12x =,26x =-B .12x =-,26x =C .12x =-,26x =-D .12x =,26x =(解题过程)解:整理得:2412x x -=,分解因式得:()()260x x +-=,解得:12x =-,26x =。
(答案)B 。
二、课堂设计。
1.知识回顾。
(1)因式分解的方法。
提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
公式法:利用平方差公式()()[]a b a b a b -=+-和完全平方公式()[2]a ab b a b ±+=±分解因式。
十字相乘法:简单来讲就是,十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
其实就是运用乘法公式()()()²x a x b x a b x ab ++=+++的逆运算来进行因式分解。
(2)解一元二次方程的方法:直接开方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解2.因式分解法解一元二次方程的步骤。
初中数学二次因式分解教案
初中数学二次因式分解教案一、教学目标1.掌握二次因式分解的基本理论,能够较好的运用所学知识解决数学问题。
2.了解二次因式分解的相关概念,能够准确应用相关概念解决问题。
3.提高学生的数学思维能力和数学解题能力,培养学生的数学兴趣。
二、教学内容1.二次因式分解的基本概念1.1.二次因式1.2.二次式2.二次因式分解的基本原理2.1.公因式2.2.提取因式2.3.分解公式2.3.1.a² - b² = (a + b)(a - b)2.3.2.a² + 2ab + b² = (a + b)²2.3.3.a² - 2ab + b² = (a - b)²2.3.4.a³ + b³ = (a + b)(a² - ab + b²)2.3.5.a³ - b³ = (a - b)(a² + ab + b²)3.二次因式分解的实际应用3.1.解二元一次方程3.2.解直线方程3.3.解二次函数方程三、教学过程1.引入话题教师可以通过提问引入话题,如:你们在解题时经常遇到什么样的问题?有什么样的数学公式可以帮助我们解决这些问题?随后,教师可以给学生简单介绍二次因式分解的相关知识。
2.讲解理论知识教师可以通过讲解理论知识的方式,帮助学生全面了解二次因式分解的基本原理和相关概念,并且让学生了解相关概念对问题的解决有何帮助。
3.练习操作技能教师可以通过教学视频、课堂演示等多种模式帮助学生掌握二次因式分解的操作技能,让学生通过大量的练习得到深刻的体验,从而掌握二次因式分解的相关知识和技能。
4.练习应用能力教师可以通过情境教学等多种方式,来帮助学生将理论知识与实际问题相结合,提高学生的数学应用能力。
四、教学方法1.灵活运用多种教学方法,如情境教学激励教学等,使学生能够以全面、自由的方式掌握知识。
初中因式分解方法教案
一、教学目标1. 知识与技能:让学生掌握因式分解的基本概念和方法,能够运用因式分解解决一些实际问题。
2. 过程与方法:通过学生的自主探究、合作交流,培养学生的动手操作能力、逻辑思维能力和数学素养。
3. 情感态度与价值观:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的自信心。
二、教学内容1. 因式分解的定义与意义2. 常用的因式分解方法:提公因式法、公式法、十字相乘法、分组分解法等。
3. 因式分解的应用三、教学重点与难点1. 教学重点:让学生掌握因式分解的基本方法和技巧。
2. 教学难点:如何引导学生灵活运用因式分解的方法解决实际问题。
四、教学过程1. 创设情境:让学生计算一些简单的多项式,从而引出因式分解的概念。
2. 自主探究:让学生通过小组合作,探究并总结因式分解的方法。
3. 讲解与示范:教师对每种因式分解方法进行讲解和示范,让学生清晰地了解因式分解的步骤。
4. 练习与巩固:让学生通过课堂练习,加深对因式分解方法的理解。
5. 拓展与应用:让学生运用因式分解解决一些实际问题,提高学生的应用能力。
6. 总结与反思:让学生回顾本节课所学内容,总结因式分解的方法和技巧。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,是否能够主动探究、提出问题。
2. 知识掌握程度:通过课堂练习和课后作业,检查学生对因式分解方法和应用的掌握情况。
3. 合作与交流:评价学生在小组合作中的表现,是否能够有效沟通、共同解决问题。
4. 情感态度:观察学生在学习过程中的自信心和兴趣,是否能够积极面对挑战。
六、教学资源1. 教材:人教版《数学》七年级下册。
2. 教具:黑板、粉笔、多媒体课件。
3. 学具:练习本、文具。
七、教学时间1课时因式分解是初中数学的重要内容,通过本节课的教学,希望学生能够掌握因式分解的基本方法,并在实际问题中能够灵活运用。
在教学过程中,要注意激发学生的学习兴趣,培养学生的动手操作能力和逻辑思维能力,为今后的数学学习打下坚实的基础。
初中九年级数学教案因式分解法
法
为学习本节
新知识作铺
学生观察式子特 垫
点,进行因式分解,
为下面地学习作
铺垫
学生根据 ab=0
得到 a=0 或 b=0, 对比探究,结
为下面学习作铺 合已有知识,
垫
尝试解题,培
养学生发现
学生直接利用 2 问题地能力
地结论完成 3 中
教学教案
教学教案
4. 试求下列方程地根
○1 4x2-11x =0; x(x-2)+ (x-2)=0; (x-2)2 -(2x-4)=0
○2 25y2-16=0; (3x+1)2 -(2x-1)2 =0; (2x-1)2 =(2-x)2
○3 x2+10x+25=0; 9x2-24x+16=0;
○4 5x2-2x- 1 = x2-2x+ 3 ; 2x2+12x+18=0;
4
4
解方程
分析:观察○1 ○2 ○3 三组方程地结构特点,在方程右边为 0
4
确定性.
分析:四个方程最适合地解法依次是:利用完全平方公式,
求根公式法,提公因式法,直接开平方法或利用平方差公
式. 归纳:配方法要先配方,再降次;公式法直接利用求根公
式;因式分解法要先使方程一边为两个一次因式相乘,另
一边为 0,再分别使各一次因式等于 0.配方法,公式法适 先观察,尝试选用
用于所有一元二次方程,因式分解法用于某些一元二次 合适方法解方程,
步理解降次 思想解方程
让学生在巩 固过程中掌 握所学知识, 培养应用意 识与能力
本节课应掌握: 1.用因式分解法解一元二次方程 2.归纳一元二次方程三种解法,比较它们地异同,能根据 方程特点选择合适地方法解方程 五,作业设 计
初中数学《整式乘法与因式分解》教案:用整式求解实际问题的应用示例
初中数学《整式乘法与因式分解》教案:用整式求解实际问题的应用示例一、教学目标1.掌握整式乘法的基本方法。
2.掌握因式分解的基本方法。
3.应用整式乘法和因式分解解决实际问题。
二、教学重点与难点1.教学重点:整式乘法的基本方法、因式分解的基本方法、应用整式乘法和因式分解解决实际问题。
2.教学难点:如何应用整式乘法和因式分解解决实际问题。
三、教学过程1.导入让学生回顾一下上一节课学到的内容:如何进行整式加减法,如何将一个整式乘以一个常数。
2.整式乘法的基本方法1)用竖式计算法说明整式的乘法。
从竖式计算法的角度,对整式的乘法进行详细说明,让学生理解整式乘法的基本方法。
2)例题:计算(x+2(x+3)。
讲解例题的解法,让学生掌握整式乘法的基本方法。
3)示范练习让学生自己完成几道题目,以巩固整式乘法的基本方法。
同时,教师也可以根据不同的题型加以引导和讲解。
3.因式分解的基本方法1)用样例说明因式分解的基本方法。
引导学生通过样例,了解如何因式分解,让学生掌握因式分解的基本方法。
2)例题:将3x²+12x分解为因式。
讲解例题的解法,让学生掌握因式分解的基本方法。
3)示范练习让学生自己完成几道题目,以巩固因式分解的基本方法。
同时,教师也可以根据不同的题型加以引导和讲解。
4.应用整式乘法和因式分解解决实际问题1)例题:一个长方形的宽是x+1,长度是x+4,其面积为(x+1)(x+4),求该长方形的周长。
讲解例题的解法,让学生掌握应用整式乘法和因式分解解决实际问题的方法。
2)示范练习让学生自己完成几道题目,以巩固应用整式乘法和因式分解解决实际问题的方法。
同时,教师也可以根据不同的题型加以引导和讲解。
四、教学总结通过本次课的学习,学生已经掌握了整式乘法与因式分解的基本方法,并且还学习了应用整式乘法和因式分解解决实际问题的方法。
教师可以通过课后习题,让学生进行巩固和总结。
同时,也可以适当引导学生发掘整式乘法和因式分解在实际中的更多运用,激发学生的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名
年级 高一 性别 教学课题 因式分解 教学
目标 1.理解因式分解是把一个多项式化为几个整式的积的形式,是整式乘法的逆变形. 2.灵活应用乘法公式进行分解因式,注意因式分解的彻底性
重点 难点 重点:能利用因式分解的常用方法进行分解因式
难点:灵活地应用因式分解的常用方法分解因式
课前检查 作业完成情况:优□ 良□ 中□ 差□ 建议_______________________________
第 2次课
因式分解
1.提问:什么是因式分解?
答:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式
2.因式分解应该注意的问题:
(1)一个多项式进行分解因式,首先应考虑有没有公因式,•如果有公因式应提取,而且要提取彻底.
(2)分解因式要分解到不能再分解为止,•一般没有特殊说明是在有理数范围内分解因式.
(3)分解结果中的每一个因式应当是整式.
(4)分解结果若出现相同因式,应写成幂的形式.
3.因式分解的方法:
(1)、提公因式法.:ma+mb+mc=m(a+b+c)
(2)、运用公式法.
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);
(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;
(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);
(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).
下面再补充两个常用的公式:
(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;
(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);
例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,。