齿轮设计校核

齿轮设计校核
齿轮设计校核

问题 : 对直齿圆柱齿轮减速器,小齿轮为50齿,大齿轮75齿,模数为4,材料都为40Cr 。小齿轮速度为2300转每分钟,传递的功率为235KW,不用考虑效率。工作年限为10年,每天2小时,轻微震动

齿轮几何尺寸计算

<1>计算分度圆直径

11504200d z m mm =?=?= 22754300d z m mm =?=?=

<2>计算中心距

12()/2(200300)/2250a d d mm =+=+=

1按齿面接触疲劳强度设计校核

1.1各参数值的确定

⑴小齿轮传递的扭矩

65119.55*10/9.75810T P n N mm ==??

⑶由参考文献[2]表6.6,可取齿宽系数0.1=d φ。

⑷由参考文献[2]表6.5知弹性系数MPa Z E 8.189=。

⑸由参考文献[2]图6.15知节点区域系数5.2=H Z

⑹齿数比 1.5u =。

⑺计算端面重合度

11*1=arccos[cos /(2)]z z h ααα+=25.365°

2*22=arccos[cos /(2)]z z h ααα+=24.006

°

1122[(tan tan ')(tan tan ')]/2z z αααεαααα=-+-π

=1.879αε

0.841Z ε==

1.2计算载荷系数

(1)由参考文献[2]表6.3查得使用系数 1.2A K =。因

11151.9582300

18.29/601000601000t d n v m s ππ??===??

(2)由参考文献[2]图6.7查得动载荷系数 1.25v K =。

(3)由参考文献[2]图6.12查得齿向载荷分布系数 1.421K β=。

(4)由参考文献[2]表6.4查得齿间载荷分配系数 1.0K α=。

故载荷系数 1.2 1.25 1.421 1.0 2.1315A v K K K K K βα==???=。

1.3计算接触疲劳许用应力

由参考文献[2]图 6.29e 和图 6.29a 取接触疲劳极限应力lim1600H MPa σ=、lim2600H MPa σ=。小齿轮1与大齿轮2的应力循环次数分别为

91110606023001236510 1.007410h N n aL ==?????=?

9

8121 1.007410 6.716101.5

N N i ?===? 由参考文献[2]图6.30查得寿命系数120.90,0.90N N Z Z ==.0。

由参考文献[2]表6.7,取安全系数0.1=H S ,得

[]1lim110.96005401.0N H H H Z MPa S σσ?=

== []2lim220.96005401.0

N H H H Z MPa S σσ?=== 故取 [][]2540H H MPa σσ==

按齿面接触疲劳强度校核由前面计算知 2.1315H K =,51975810.T N mm =?,1.0d ?=,1200d mm =, 1.5u =, 2.5H Z =,1/2189.8E Z MPa =,0.841Z ε=将它们代入参考文献[2]式(10-10)中计算得

H σ

299.72H MPa σ== []H H σσ<

故齿面接触疲劳强度满足要求。

2 按齿根弯曲疲劳强度设计校核

2.1计算重合度系数

由参考文献[2]式10-5计算弯曲应力疲劳强度重合度系数

=0.25+0.75/=0.688

2.2确定公式中的参数值

由参考文献[2]图10-17查得齿形系数 =2.35

=2.23 由由参考文献[2]图10-18查得应力修正系数=1.71=1.76 2.3计算弯曲疲劳许用应力

由参考文献[2]图10-20c 查得小齿轮的弯曲疲劳强度极限MPa FE 5001=σ;大齿轮的弯曲疲劳强度极限2500FE MPa σ=; 由参考文献[2]图10-18取弯曲疲劳寿命系数120.89,0.91FN FN K K == 取弯曲疲劳安全系数,4.1=S 由参考文献[2]式(10-12)得

[]1lim110.89500317.8751.4FN F F K MPa S σσ?==

== []2lim220.89500325.01.4FN F F K MPa S σσ?==

==

11230024.07/60*100060*1000

d n v m s ??===ππ200 齿宽b

11*200200d b d mm mm =Φ==

宽高比b/h.

*

*(2)(2*10.25)*49a h h c m =+=+=

b/h=200/9=22.22

2.4计算实际载荷系数F K

根据v=24.07m/s,7级精度,由图10-8查的动载系数Kv =1.28 由531112/2*9.758*10/2009.758*10t F T d ===N,

31/ 1.2*9.758*10/20058.548/A t K F b N mm ==<100N/mm 查表10-3得齿间载

荷分配系数F K α=1.2

由表10-4和由参考文献[2]图10-13查得H K β=1.454,F K β=1.45

2.5计算载荷系数K

1.2 1.28 1.2 1.45

2.6726A V Fa F K K K K K β==???=

2.6计算齿根弯曲应力

由由参考文献[2]式10-6计算得齿根弯曲应力

5321111321

2(2*2.6726*9.758*10*2.35*1.71*0.688)/(1*4*50)90.13F Fa sa F d K TY F Y m z εσ===ΦMpa<1[]F σ

5321221321

2(2*2.6726*9.758*10*2.23*1.76*0.688)/(1*4*50)88F Fa sa F d K TY F Y m z εσ===ΦMpa<2[]F σ

齿根弯曲疲劳强度满足要求

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距&图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d mi, d m2当量齿轮的分度圆直径d vi , d v2之间的关系分别为: Zj "亠 =■? 现以g 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 z v 为 (a) 丘二胆*勇诃娠屁丙pl 2 2 1 _________________ R (b) V 2 2 _ dm2 _ R - ~ = ~R - 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 ~c = ? R =1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 AjIL 2cos8 --(e) 直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

齿轮齿条传动设计计算

齿轮齿条传动设计计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传动。 2) 速度不高,故选用7级精度(GB10095-88)。 3) 材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS , 齿条材料为45钢(调质)硬度为240HBS 。 4) 选小齿轮齿数Z 1=24,大齿轮齿数Z 2=∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 (1) 确定公式内的各计算数值 1) 试选载荷系数K t =。 2) 计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm ) T 1=95.5×105P 1n 1=95.5×105×0.24247.96 =2.908×105N ?mm 3) 由表10-7选齿宽系数φd =0.5。 4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 12 。 5)由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa ;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N 1=60n 1jL h =60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH ]1= K HN1σHlim1S =1.7×600MPa =1020MPa (2) 计算 1) 试算小齿轮分度圆直径d t1,代入[σH ]1。

齿轮设计的一般步骤

1、根据负载、以及运动状态(速度、是垂直运动还是水平运动)来计算驱动功率 2、初步估定齿轮模数(必要时,后续进行齿轮强度校核,若在强度校核时,发现模数选得太小,就必须重新确定齿轮模数,关于齿轮模数的选取,一般凭经验、或是参照类比,后期进行安全校核) 3、进行初步的结构设计,确定总传动、以及确定传动级数(几级传动) 4、根据总传动比进行分配,计算出各级的分传动比 5、根据系统需要进行详细的传动结构设计(各个轴系的详细设计),这样的设计一般还在总装图上进行。 6、在结构设计的时候,若发现前期的参数不合理(包括齿轮过大、相互有干涉、制造与安装困难等),就需要及时的返回上面程序重新来过 7、画出关键轴系的简图(一般是重载轴,当然,各个轴系都做一遍当然好),画出各个轴端的弯矩图、转矩图,从而找出危险截面,并进行轴的强度校核 8、低速轴齿轮的强度校核 9、安全无问题后,拆分零件图 渐开线圆柱齿轮传动设计程序主要用于外啮合渐开线圆柱标准直齿齿轮传动设计、渐开线圆柱标准斜齿齿轮传动设计和渐开线圆柱变位齿轮传动设计。程序中的各参数和各设计方法符合相关的国家标准,即:渐开线圆柱齿轮基本轮廓(GB/T1356-2001)、渐开线圆柱齿轮模数(GB/T1357-1987等效采用ISO54-1977),以及《渐开线圆柱齿轮承载能力计算方法》(GB/T3480-1997等效ISO6336-1966)、渐开线圆柱齿轮精度(GB/T10095-2001等效ISO1328-1997)。程序根据输入的齿轮传动设计参数和相关设计要求,进行齿轮几何尺寸的计算、齿轮接触疲劳强度校核和弯曲疲劳强度校核的计算,以及相关公差值的计算等。整个设计过程分步进行,界面简洁,操作方便 硬齿面齿轮 风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。输出轴上的齿轮承受中间轴传过来的扭矩,同时也承受输出端刹车时带来的刹车力矩。 一、齿轮箱输入轴、中间轴和输出轴上各种齿轮的受力分析 风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。输出轴上的齿轮承受中间

直齿圆柱齿轮的结构设计

目录 摘要 (2) 一引言 (3) 二齿轮的设计计算 (4) 2.1 选择材料、热处理方法及精度等级 (4) 2.2 齿面接触疲劳强度设计齿轮 (4) 2.3主要参数选取及几何尺寸计算 (5) 2.4 .齿轮结构设计 (5) 三绘制齿轮图、零件图、三维造型 (7) 四结束语 (8) 五参考文献 (9)

摘要 齿轮是广泛应用于机械设备中的传动零件。它的主要作用是传递运动、改变方向和转速。根据齿轮的工况,合理的设计齿轮的结构,使得齿轮传动平稳有足够的强度。通过强度计算、材料的选择、热处理方法精度选择、几何尺寸计算。考虑齿面接触疲劳强度和齿根曲面疲劳强度得出齿轮的结构。 关键词:齿轮传动、齿轮精度、热处理、疲劳强度

一引言 随着我过工业的发展,齿轮是现代机械中应用最广泛的一种机械传动零件。它的结构设计随着工业的需要而改变。齿轮的结构设计与齿轮的几何尺寸、毛坯、材料、加工方法、使用要求及经济性等因素有关。进行齿轮的结构设计时,必须综合地考虑上述各方面的因素。通常是先按齿轮的直径大小,选定合适的结构形式,然后再根据荐用的经验数据,进行结构设计。 随着科技技术的不断进步,生产都向着自动化、专业化和大批量化的方向发展。这就要求企业的生产在体现人性化的基础上降低工人的生产强度和提高工人的生产效率,降低企业的生产成本。现代的生产和应用设备多数都采用机电一体化、数字控制技术和自动化的控制模式。在这种要求下齿轮零件越发体现出其广阔的应用领域和市场前景。特别是近年来与微电子、计算机技术相结合后,使齿轮零件进入了一个新的发展阶段。在齿轮零部件是最重要部分,因需求的增加,所以生产也步入大批量化和自动化。 为适应机械设备对齿轮加工的要求,对齿轮加工要求和技术领域的拓展还需要不断的更新与改进。

齿轮的设计计算过程

1.选定类型,精度等级,材料及齿数 (1)直齿圆柱硬齿面齿轮传动 (2)精度等级初定为8级 (3)选择材料及确定需用应力 小齿轮选用45号钢,调质处理,(217-255)HBS 大齿轮选用45号钢,正火处理,(162-217)HBS (4)选小齿轮齿数为Z1=24,Z2=3.2x24=76.8.取Z2=77 2. 按齿面接触强度设计计算 (1)初选载荷系数K t 电动机;载荷状态选择:中等冲击;载荷系数K t 的推荐范围为(1.2-2.5),初选载荷系数K t :1.3, (2)小齿轮转矩 )(29540/97039550000/9550111mm N n P T ?=?==(3)选取齿 宽系数1=d φ. ⑷取弹性影响系数2 1 8.189MPa Z E = ⑸按齿面硬度查得小齿轮的接触疲劳强度极限为MPa 5801lim =σ。大齿轮的接触疲劳强度极限为MPa 5202lim =σ

⑹计算应力循环次数 N 1=60n 1jl h =60X970X1X(16X300X15)=4.470X109 N 99 210397.12 .310470.4?=?= ⑺取接触疲劳寿命系数K .89.0,88.021==HN HN K ⑻计算接触疲劳许用应力 取失效概率为1%,安全系数S=1 []a HN H MP MPa S K 4.5105709.01lim 11=?==σσ []a HN H MP MPa S K 8.46253095.02 lim 22=?== σσ ⑼按齿面接触强度设计计算 ①试算小齿轮分度圆直径 mm Z u u T K d H E d t t 248.56)8 .4628.189(2.32.4110954.28.132.2)][(132.232 43211=???=+?σφ②计算齿 轮圆周转速v 并选择齿轮精度 s m n d V t /48.21000 60970 248.561000 601 1=???= ?= ππ ③计算齿轮宽度b mm d b t d 248.56248.5611=?=?=φ

齿轮结构设计

齿轮结构设计 齿轮结构设计主要确定齿轮的轮缘、轮毂及腹板(轮辐)的结构形式和尺寸大小。结构设计通常要考虑齿轮的几何尺寸、材料、使用要求、工艺性及经济性等因素,确定适合的结构型式,再按设计手册荐用的经验数据确定结构尺寸。齿轮结构形式有以下四种: 1.齿轮轴 当齿轮的齿根圆到键槽底面的距离e很小,如圆柱齿轮e≤2.5mn(下图一a),圆锥齿轮的小端e≤1.6m(下图一b),为了保证轮毂键槽足够的强度,应将齿轮与轴作成一体,形成齿轮轴,如下图二所示。 齿轮轴 2. 实心齿轮 当齿顶圆直径da≤200mm或高速传动且要求低噪声时,可采用上图一的实心结构。实心齿轮和齿轮轴可以用热轧型材或锻造毛坯加工。 3. 辐板式齿轮 对于齿顶圆直径da≤500mm时,可采用辐板式结构,以减轻重量、节约材料。通常多选用锻造毛坯,也可用铸造毛坯及焊接结构。有时为了节省材料或解决工艺问题等,而采用组合装配式结构,如过盈组合和螺栓联结组合。 腹板式齿轮(锻造)

腹板式锥齿轮 双腹板焊接齿轮 过盈、螺栓联接组合 4. 轮辐式齿轮 对于齿轮直径时,采用轮辐式结构。受锻造设备的限制,轮辐式齿轮多为铸造齿轮。轮辐剖面形状可以采用椭圆形(轻载)、十字形(中载)、及工字形(重载)等。

轮辐式齿轮(锻造)轮结构设计主要确定齿轮的轮缘、轮毂及腹板(轮辐)的结构形式和尺寸大小。结构设计通常要考虑齿轮的几何尺寸、材料、使用要求、工艺性及经济性等因素,确定适合的结构型式,再按设计手册荐用的经验数据确定结构尺寸。齿轮结构形式有以下四种: 1. 齿轮轴 当齿轮的齿根圆到键槽底面的距离e很小,如圆柱齿轮e≤2.5mn(下图一a),圆锥齿轮的小端e≤1.6m(下图一b),为了保证轮毂键槽足够的强度,应将齿轮与轴作成一体,形成齿轮轴,如下图二所示。 齿轮轴 2. 实心齿轮 当齿顶圆直径da≤200mm或高速传动且要求低噪声时,可采用上图一的实心结构。实心齿轮和齿轮轴可以用热轧型材或锻造毛坯加工。 3. 辐板式齿轮 对于齿顶圆直径da≤500mm时,可采用辐板式结构,以减轻重量、节约材料。通常多选用锻造毛坯,也可用铸造毛坯及焊接结构。有时为了节省材料或解决工艺问题等,而采用组合装配式结构,如过盈组合和螺栓联结组合。 腹板式齿轮(锻造)

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

齿轮齿条传动机构设计说明

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

齿轮结构及设计工艺技术

齿轮机构及其设计 1. 工业的象征; 2. 历史悠久; 3. 研究(广泛)深入,分工细致。 二、齿轮的类型 1.平行轴:a.直齿圆柱齿轮:外啮合/内啮合 b.斜齿圆柱齿轮:外啮合/内啮合 c.人字齿轮 2.相交轴:a.直齿圆锥齿轮 b.曲齿圆锥齿轮 3.交错轴:a.螺旋齿轮(交错轴斜齿轮) b.蜗杆蜗轮 c.准双曲面齿轮 4.齿轮齿条:a.直齿 b.斜齿 c.螺旋齿 三、本章要求

1.齿形 ---- 掌握渐开线齿廓啮合特性。 2.几何尺寸 ----会计算渐开线齿轮传动的几何尺寸。. 四、本章特点 1.名词术语多、概念多、公式多。 2.注意归纳、掌握规律、化为少。

§5-2 齿廓啮合差不多定律 一、齿廓啮合的差不多定律 1.节圆 已知:两啮合中心距a=O 1O 2 传动比 2 112ωω= i a . 节点---两个齿轮的相对速度瞬心。 由于 v v p p 21= 故有 p p o o 2211ωω= 得 121221i p o p o ==ωω ① 由图知 a p p o o =+21 ② 解上两式子i o a p 1211+= 12 221i a p i o += [讨论]

假如i 12为变量,则p o 1亦为变量,p 点为动点,它在动平面上画出的曲线为非圆曲线。 假如i 12为常量,则p o 1亦为定值,p 点为定点,按在动平面上画出的轨迹为圆。 b .节圆---当 c i =12时,以 p o 1 、p o 2为半径的两个圆。 ① 节圆半径只决定与a 与12i 。 ② 节圆是一对相互啮合齿轮上作相切纯滚动的圆。 ③ 一对齿轮相啮合时才有节圆。(单个齿轮无节圆) 2.齿廓的几何要求 a. 设两齿廓在任意一点k 接触。主动轮1推动从动轮2转动。 b .两齿轮在k 点的线速度分不为K O K O v v k k 2211,⊥⊥ 。 c .沿公法线n-n 方向v v kn kn 21=,即1122cos cos k k k k v v αα= d .也确实是222111cos cos k k K O K O αωαω'= e .作辅助线 f .设n-n 线与连心线交于Q 点,则有Q N O 11?与Q N O 22?相似。

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中点处的当量齿轮作为计算的依据。对轴交角∑=90°的直齿锥齿轮传动,其齿数比u、锥距R(图<直齿锥齿轮传动的几何参数>)、分度圆直d1,d2、平均分度圆直径d m1,d m2、当量齿轮的分度圆直径d v1,d v2之间的关系分别为: 令φR=b/R,称为锥齿轮传动的齿宽系数,通常取φR=0.25-0.35,最常用的值为φ =1/3。于是 R 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r 与平均 v 分度圆直 径d m的关 系式为 直齿锥齿轮传动的几何参数 现以m m表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿的模数(简称平均模数),则当量齿数z v为

显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮的根切齿数。另外,由式(d) 极易得出平均模数m m和大端模数m的关系为 一、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图。 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根 高,过点A作直线AO1⊥AO,与圆锥齿轮轴线交于点O1,设想以OO1为轴线, O 1A为母线作一圆锥O 1 AB,称为直齿圆锥齿轮的背锥。由图可见A、B 附近 背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

将背锥展成扇形齿轮,它的参数 等于圆锥齿轮大端的参数,齿数就是圆锥齿 轮的实际齿数。将扇形齿轮补足,则齿数 增加为。这个补足后的直齿圆柱齿轮称为 当量齿轮,齿数称为当量齿数。其中 当量齿数的用途: 1.仿形法加工直齿圆锥齿轮 时,选择铣刀的号码。 2.计算圆锥齿轮的齿根弯曲 疲劳强度时查取齿形系数。 标准直齿圆锥齿轮不发生根切的最 少齿数与当量齿轮不发生根切的最少齿 数的关系: 二、直齿圆锥齿轮的几何尺寸 标准直齿圆锥齿轮机构的几何尺寸计算公式 名称代 号 计算公式 小齿轮大齿轮 分度 圆 锥 角 齿顶 高 齿根 高 分度 圆

齿轮齿条传动设计计算39229

7)由图10-19取接触疲劳寿命系数 HN1 1.7。 材料选择。由表10-1选择小齿轮材料为40Cr (调质),硬度为280HBS 齿条 材料为45钢(调质)硬度为240HBS 6)由式10-13计算应力循环次数。 N 1 60n 1 jL h 60 7.96 1 2 0.08 200 4 6.113 10 4 1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传 动。 2 ) 速度不高,故选用7级精度(GB10095-88。 3) 4) 选小齿轮齿数1=24,大齿轮齿数 2=x 。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d it I 2 ccc (K" u 1 Z E 2.323 |— ----------------------- --- V u (1) 确定公式内的各计算数值 1) 试选载荷系数t 2) 计算小齿轮传递的转矩。 (预设齿轮模数 m=2mn 直径d=65mm T 1 95.5 1O 5 R n 1 95.5 105 O. 2424 2.908 105N mm 7.96 3) 由表10-7选齿宽系数d =。 4) 由表10-6查得材料的弹性影响系数 1 E 189.8 MPa 2 5) 由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 Hlim1 600M Pa ;齿 条的接触疲劳强度极限 Hlim 2 500 Mpa 。

8)计算接触疲劳许用应 力。 取失效概率为1%安全系数S=1,由式(10-12)得 K HN 1 Hlim1 S 1.7 600M Pa 1020MPa 计算 1 ) 试算小齿轮分度圆直径d ti,代入 2)d1t 2.323{K.T1 u 1 68.89mm 计算圆周速度V。 Z E 60 1000 3)计算齿宽b o d d1t 0.5 4)计算齿宽与齿高之 比。 模数 m t d1t 68.89 Z1 24 齿高 2.25m t 2.25 卜 3 2.908 105 1 189.8 2 0.5 1020 68^1^ 0.026m/s 60 1000 68.89 34.445mm 2.87 2.27 6.46 34.445 6.46 5.33

齿轮几何参数设计计算

第2章渐开线圆柱齿轮几何参数设计计算 2.1 概述 渐开线圆柱齿轮设计是齿轮传动设计中最常用、最典型的设计,掌握其设计方法是齿轮设计者必须具备的,对于其它类型的传动也有很大的帮助。在此重点讨论渐开线圆柱齿轮设计的设计技术。 2.2 齿轮传动类型选择 直齿(无轴向力) 斜齿(有轴向力,强度高,平稳) 双斜齿(无轴向力,强度高,平稳、加工复杂) 2.3 齿轮设计的主要步骤 多级速比分配 单级中心距估算 齿轮参数设计 齿轮强度校核 齿轮几何精度计算 2.4 齿轮参数设计原则 (1) 模数的选择 模数的选择取决于齿轮的弯曲承载能力,一般在满足弯曲强度的条件下,选择较小的模数,对减少齿轮副的滑动率、増大重合度,提高平稳性有好处。但在制造质量没有保证时,应选择较大的模数,提高可靠性,模数増大对动特性和胶合不利。 模数一般按模数系列标准选取,对动力传动一般不小于2 对于平稳载荷:mn=(0.007-0.01)a 对于中等冲击:mn=(0.01-0.015)a 对于较大冲击:mn=(0.015-0.02)a (2)压力角选择 an=20 大压力角(25、27、28、30)的优缺点:

优点:齿根厚度和渐开线部分的曲率半径增大,对接触弯曲强度有利。齿面滑动速度减小,不易发生胶合。根切的最小齿数减小。缺点:齿的刚度增大,重合度减小,不利于齿轮的动态特性。轴承所受的载荷增大。过渡曲线长度和曲率半径减小,应力集中系数增大。 小压力角(14.5、15、16、17.5、18)的优缺点: 优点:齿的刚度减小,重合度增大,有利于齿轮的动态特性。轴承所受的载荷减小。缺点:齿根厚度和渐开线部分的曲率半径减小,对接触弯曲强度不利。齿面滑动速度增大,易发生胶合。根切的最小齿数增多。 (3)螺旋角选择 斜齿轮螺旋角一般应优先选取整:10-13. 双斜齿轮螺旋角一般应优先选取:26-33. 螺旋角一般优先取整数,高速级取较大,低速级取较小。 考虑加工的可能性。 螺旋角增大的优缺点: 齿面综合曲率半径增大,对齿面接触强度有利。 纵向重合度增大,对传动平稳性有利。 齿根的弯曲强度也有所提高(大于15度后变化不大)。 轴承所受的轴向力增大。 齿面温升将增加,对胶合不利。 断面重合度减小。 (4)齿数的选择 最小齿数要求(与变位有关) 齿数和的要求 齿数互质要求 大于100齿的质数齿加工可能性问题(滚齿差动机构) 高速齿轮齿数齿数要求 增速传动的齿数要求 (5)齿宽和齿宽系数的选择 一般齿轮的齿宽由齿宽系数来确定, φa=b/a φd=b/d1 φm=b/mn φa=(0.2-0.4)

齿轮设计校核

问题 : 对直齿圆柱齿轮减速器,小齿轮为50齿,大齿轮75齿,模数为4,材料都为40Cr 。小齿轮速度为2300转每分钟,传递的功率为235KW,不用考虑效率。工作年限为10年,每天2小时,轻微震动 齿轮几何尺寸计算 <1>计算分度圆直径 11504200d z m mm =?=?= 22754300d z m mm =?=?= <2>计算中心距 12()/2(200300)/2250a d d mm =+=+= 1按齿面接触疲劳强度设计校核 1.1各参数值的确定 ⑴小齿轮传递的扭矩 65119.55*10/9.75810T P n N mm ==?? ⑶由参考文献[2]表6.6,可取齿宽系数0.1=d φ。 ⑷由参考文献[2]表6.5知弹性系数MPa Z E 8.189=。 ⑸由参考文献[2]图6.15知节点区域系数5.2=H Z ⑹齿数比 1.5u =。 ⑺计算端面重合度 11*1=arccos[cos /(2)]25.365z z h ααα+=? 2*22=arccos[cos /(2)]24.006z z h ααα+=? 1122[(tan tan ')(tan tan ')]/2z z αααεαααα=-+-π =1.879αε 0.841Z ε== 1.2计算载荷系数 (1)由参考文献[2]表6.3查得使用系数 1.2A K =。因 11 151.9582300 18.29/601000601000t d n v m s ππ??===?? (2)由参考文献[2]图6.7查得动载荷系数 1.25v K =。 (3)由参考文献[2]图6.12查得齿向载荷分布系数 1.421K β=。 (4)由参考文献[2]表6.4查得齿间载荷分配系数 1.0K α=。 故载荷系数 1.2 1.25 1.421 1.0 2.1315A v K K K K K βα==???=。

(完整版)齿轮齿条传动设计计算.docx

1. 选定齿轮类型、精度等级、材料级齿数 1)选用直齿圆柱齿轮齿条传动。 2)速度不高,故选用 7 级精度( GB10095-88)。 3)材料选择。由表 10-1 选择小齿轮材料为 40Cr(调质 ),硬度为 280HBS ,齿条 材料为 45 钢(调质)硬度为 240HBS 。 4)选小齿轮齿数 Z 1 =24,大齿轮齿数 Z 2 = ∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 3 K t T 1 u + 1 Z E d 1t ≥ 2.32 √ ?( ) 2 φd u [ σ ] H (1) 确定公式内的各计算数值 1)试选载荷系数 K t =1.3。 2)计算小齿轮传递的转矩。 (预设齿轮模数 m=8mm,直径 d=160mm ) T 1 = 95.5 ×105 P 1 = 95.5 ×105 ×0.2424 n 1 7.96 = 2.908 ×105 N ?mm 3) 由表 10-7 选齿宽系数 φ = 0.5。 d 1 4)由表 10-6 查得材料的弹性影响系数 Z E = 189.8MPa 2 。 5)由图 10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 σ = 600MPa;齿 Hlim1 条的接触疲劳强度极限 σ = 550MPa 。 Hlim2 6)由式 10-13 计算应力循环次数。 N 1 = 60n 1 jL h = 60 × ( 2× 0.08× 200 × ) = × 4 7.96 ×1 × 4 6.113 10 7)由图 10-19 取接触疲劳寿命系数 K HN1 = 1.7。 8)计算接触疲劳许用应力。 取失效概率为 1%,安全系数 S=1,由式( 10-12)得 [ σH ] 1 = K HN1 σHlim1 ×600MPa = 1020MPa = 1.7 S (2) 计算 1)试算小齿轮分度圆直径 d ,代入 [σ ] 。 t1 H 1

直齿圆柱齿轮设计步骤知识讲解

直齿圆柱齿轮设计 1.齿轮传动设计参数的选择 齿轮传动设计参数的选择: 1)压力角α的选择 2)小齿轮齿数Z1的选择 3)齿宽系数φd的选择 齿轮传动的许用应力 精度选择 压力角α的选择 由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。我国对一般用途的齿轮传动规定的压力角为α=20o。为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。但增大压力角并不一定都对传动有利。对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。 小齿轮齿数Z 1 的选择 若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多 一些为好,小一些为好,小齿轮的齿数可取为z 1 =20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿 数,一般可取z 1 =17~20。 为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z 1≥17。Z 2 =u·z 1 。 齿宽系数φ d 的选择

由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增 大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。圆柱齿轮齿宽系数的荐用值列于下表。对于标准圆柱齿轮减速器,齿宽系数取为 所以对于外捏合齿轮传动φ a 的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。运用设计计算公式时,对于标准减速器,可先选定再用上式计 算出相应的φ d 值 表:圆柱齿轮的齿宽系数φ d 装置状况两支撑相对小齿轮作对 称布置两支撑相对小齿轮作不对 称布置 小齿轮作悬臂布 置 φd0.9~1.4(1.2~1.9)0.7~1.15(1.1~1.65)0.4~0.6 注:1)大、小齿轮皆为硬齿面时φ d 应取表中偏下限的数值;若皆为软齿面或仅大齿轮为 软齿面时φ d 可取表中偏上限的数值; 2)括号内的数值用于人自齿轮,此时b为人字齿轮的总宽度; 3)金属切削机床的齿轮传动,若传递的功率不大时,φ d 可小到0.2; 4)非金属齿轮可取φ d ≈0.5~1.2。 齿轮传动的许用应力 齿轮的许用应力[σ]按下式计算 式中参数说明请直接点击 疲劳安全系数S 对接触疲劳强度计算,由于点蚀破坏发生后只引起噪声、振动增大,并 不立即导致不能继续工作的后果,故可取S=S H =1。但是,如果一旦发生断齿,就 会引起严重的事故,因此在进行齿根弯曲疲劳强度的计算时取S=S F =1.25~1.5.

齿轮与轴系零件结构设计

机械设计大作业题目齿轮及轴系零件设计 机械工程及自动化学院 机械设计制造及其自动化专业 08 年级 1 班设计者志强 指导教师亮 完成日期 2010年11月24日

一.目的 1、掌握齿轮及轴系零件结构设计的方法 2、培养独立设计能力 3、学会查阅有关手册及设计资料 二.题目及方案 1、题目:齿轮及轴系零件设计 2、设计方案: 项目 输出轴转 速(r/min)输出轴功 率(kW) 大齿轮齿 数Z2 大齿轮模 数m n 大齿轮螺 旋角β (左旋) 大齿轮宽 度B 小齿轮齿 数Z1 设计方案155 4.5 107 3 9°22 80 23 三.结构简图:

(五)初步设计轴的结构 1)为了满足半联轴器的轴向定位要求,I-II 轴段右端需制出一轴肩,由密封圈处轴径标准值系列:25,28,30,32,35,38,40,42,45,48,50,55,60??????可得: 取 d 45mm II III -= 2)II-III 轴段右端的轴肩为非定位轴肩,由轴承标准系列综合考虑, 取50mm III IV d -= 由于两个轴承成对,故尺寸相同, 所以d 50III IV VII VIII d mm --== 因为轴承宽度B=20mm, 所以,VII-VIII L =20mm 3)半联轴器与轴配合的毂孔长度1L 112mm =,为保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故I-II L 长度应比1L 略短一些, 取I-II L 110mm = 4)由齿轮孔轴径及III-IV 轴段右端轴肩考虑,该轴肩为非定位轴肩, 各轴段长度和半径: d 45mm II III -= 50mm III IV d -= d 50III IV VII VIII d mm --== VII-VIII L =20mm I-II L 110mm = IV-V =52d mm 60mm V VI d -=

机械设计课程设计-减速器-齿轮轴设计与校核

二).齿轮轴的设计 Ⅰ.输出轴上的功率I I P 、转速I I n 和转矩I I T 由上可知kw P 63.8=II ,min 125.303r n =II ,mm N T ??=II 510719.2 Ⅱ.求作用在齿轮上的力 因已知高速小齿轮的分度圆直径 mm mz d 8729311 =?== 而 N d T F t 57.625087 10719.2225 1=??==II N F F t r 2275tan ==α 0=a F Ⅲ.初步确定轴的最小直径 材料为45钢,调质处理。根据《机械设计》表15-3,取1150=A ,于是 mm n P A d 115.353 0' m in ==II II 由于键槽的影响,故mm d d 17.3603.1' m in m in == 输出轴的最小直径显然是安装带轮处的直径ⅡⅠ-d ,取mm d 38=-ⅡⅠ,根据带轮结构和尺寸,取mm l 100=-ⅡⅠ。 Ⅳ.齿轮轴的结构设计 (1).根据轴向定位的要求确定轴的各段直径和长度 1).为了满足带轮的轴向定位要求,Ⅰ-Ⅱ段右端需制出一轴肩,故取Ⅱ-Ⅲ段的直径mm d 42=-ⅢⅡ; 2).初步选择滚动轴承。因轴承同时受有径向力和轴向力的作用,故选用角接触球轴承。按照工作要求并根据mm d 42=-ⅢⅡ,查手册选取单列角接触球轴承 7209AC ,其尺寸为mm mm mm B D d 198545??=??,故 mm d d 45VIII -VII ==-ⅣⅢ;而mm l 19VIII I =-Ⅵ。

3).由小齿轮尺寸可知,齿轮处的轴段V-VI 的直径mm d 87VI -V =, mm l 92VI -V =。轴肩高度IV -III 07.0d h >,故取mm h 5.3=,则轴环处的直径mm d d 52==--ⅦⅥⅤⅣ。轴环宽度h b 4.1≥,取mm l 5.6=-ⅤⅣ,因为要使大小 齿轮对齐啮合,故mm l 5.26VII -VI =。 4).轴承端盖的总宽度为mm 20(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与大带轮右端面间的距离mm l 30=,故mm l 50=-ⅢⅡ。 5).取齿轮距箱体内壁的距离mm a 15=,考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离s ,取mm s 5.8=,已知滚动轴承宽度mm T 19=,则 mm mm l a s T l 5.36)6155.819(=-++=-++=--ⅤⅣⅣⅢ (2).轴上零件的周向定位 带轮与轴的周向定位均采用平键连接。按ⅡⅠ-d 由《机械设计》表6-1查得平键截面mm mm h b 810?=?,键槽用键槽铣刀加工,长为mm 80。滚动轴承与轴的周向定位是由过度配合来保证的,此处选轴的直径尺寸公差为6m 。 (3).确定轴上圆角和倒角尺寸 参考《机械设计》表15-2,取轴端圆角ο452?。 至此,已初步确定了轴的各段和长度,简图如下: Ⅴ.求轴上的载荷 首先根据轴的结构图做出轴的计算简图。在确定轴承的支点位置时,应从手

齿轮齿条的设计

齿轮齿条的材料选择 齿条材料的种类很多,在选择过程中应考虑的因素也很多,主要以以下几点作为参考原则: 1)齿轮齿条的材料必须满足工作条件的要求。 2)应考虑齿轮尺寸的大小、毛坯成形方法及热处理和制造工艺。 3)正火碳钢,不论毛坯制作方法如何,只能用于制作载荷平稳或轻度冲击 工作下的齿轮,不能承受大的冲击载荷;调制碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的 高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS 或者更多。 钢材的韧性好,耐冲击,还可通过热处理或化学热处理改善其力学性能及提高齿面硬度,故适用于来制造齿轮。由于该齿轮承受载荷比较大,应采用硬齿面(硬度≥350HBS ),故选取合金钢,以满足强度要求,进行设计计算。 齿轮齿条的设计与校核 1.2.1起升系统的功率 设V 为最低起钻速度(米/秒),F 为以V 起升时游动系统起重量(理论起重量,公斤)。 起升功率 V F P ?= F=N 5 106? 1V 取(米/秒)

KW P 4808.01065=??= 由于整个起升系统由四个液压马达所带动,所以每部分的平均功率为 KW KW P P 1204 4804 == =' 转矩公式: 595.510P T n ?= 所以转矩 T= mm N n .120 105.955?? 式中n 为转速(单位r/min ) 1.2.2 各系数的选定 计算齿轮强度用的载荷系数K ,包括使用系数A K 、动载系数V K 、齿间载荷分配系数K α及齿向载荷分配系数K β,即 K=A V K K K K αβ 1)使用系数A K 是考虑齿轮啮合时外部因素引起的附加载荷影响的系数。 该齿轮传动的载荷状态为轻微冲击,工作机器为重型升降机,原动机为液压装置,所以使用系数A K 取。 2)动载系数V K 齿轮传动不可避免地会有制造及装配误差,轮齿受载后还要产生弹性变形,对于直齿轮传动,轮齿在啮合过程中,不论是有双对齿啮合过渡到单对齿啮合,或是有单对吃啮合过渡到双对齿啮合的期间,由于啮合齿对的刚度变化,也要引起动载荷。为了计及动载荷的影响,引入了动载系数V K ,如图2-1所示。

(完整版)齿轮齿条传动设计计算

1.选定齿轮类型、精度等级、材料级齿数 1)选用直齿圆柱齿轮齿条传动。 2)速度不高,故选用7级精度(GB10095-88)。 3)材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS,齿条材料为45钢(调质)硬度为240HBS。 4)选小齿轮齿数Z1=24,大齿轮齿数Z2=∞。 2.按齿面接触强度设计 由设计计算公式进行计算,即 d1t ≥2.32√K t T1 d ? u+1 ( Z E [H] )2 3 (1)确定公式内的各计算数值 1)试选载荷系数K t =1.3。 2)计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm) T1=95.5×105P1 1 = 95.5×105×0.2424 =2.908×105N?mm 3) 由表10-7选齿宽系数φd=0.5。 4)由表10-6查得材料的弹性影响系数Z E=189.8MPa 1 2。 5)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N1=60n1jL h=60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1=K HN1σHlim1 S =1.7×600MPa=1020MPa (2)计算 1)试算小齿轮分度圆直径d t1,代入[σH]1。

d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 =2.32√1.3×2.908×1050.5?∞+1∞ (189.81020)23=68.89mm 2)计算圆周速度v 。 v =πd 1t n 1=π×68.89×7.96=0.029m s ? 3)计算齿宽b 。 b =φd ?d 1t =0.5×68.89=34.445mm 4)计算齿宽与齿高之比b h 。 模数 m t =d 1t z 1=68.8924 =2.87 齿高 h =2.25m t =2.25×2.87=6.46mm b =34.445=5.33 5)计算载荷系数。 根据v =0.029m/s ,7级精度,由图10-8查得动载荷系数K V =1; 直齿轮,K Hα=K Fα=1; 由表10-2查得使用系数K A =1.5; 由表10-4用插值法查得7级精度、小齿轮为悬臂布置时K Hβ=1.250。 由b h =5.33,K Hβ=1.250查图10-13得K Fβ=1.185;故载荷系数 K =K A K V K HαK Hβ=1.5×1×1×1.250=1.875 6)按实际的载荷系数校正所算得的分度圆直径,由式(10-10a )得 d 1=d 1t √K t 3=68.89×√1.8753=77.84mm 7)计算模数m 。 m = d 1z 1=77.8424 =3.24mm 3. 按齿根弯曲强度设计 由式(10-5)得弯曲强度设计公式为

轴结构设计和强度校核

一、轴的分类按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴 转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可

以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。 各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显着的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。 三、轴的结构设计 轴的结构设计包括定出轴的合理外形和全部结构尺寸。 轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。设计时,必须针对不同情况进行具体的分析。但是,不论何种具体条件,轴的结构都应满足:轴和装在轴上的零件要有准确的工作位置;轴上的零件应便于装拆和调整;轴应具有良好的制造工艺性等。下面讨论轴的结构设计中的几个主要问题。 拟定轴上零件的装配方案 各轴段直径和长度的确定 轴上零件的定位 提高轴的强度的常用措施 轴的结构工艺性 轴上零件的定位 为了防止轴上零件受力时发生沿轴向或周向的相对运动,轴上零件除了有游动或

相关文档
最新文档