第五章 卡方检验

合集下载

重庆大学生物统计学_第五章 卡方检验

重庆大学生物统计学_第五章 卡方检验

卡方 (χ2) 分布的函数
( ) CHIDIST:自由度为n的卡方分布在x点处的单尾概率 P χ2 > x
CHIINV: 返回自由度为n的卡方分布的单尾概率函数的逆函 数• CHIDIST •
X•
需要计算分布的数字(X非负值) •
Degrees_freedom • 自由度 •
CHIINV • Probability • 卡方分布的单尾概率 • Degrees_freedom • 自由度 •
没有关联 • 2. 规定显著性水平 • 3. 根据无效假设计算出理论数 • 4. 根据规定的显著水平和自由度计算出卡方值,
再和计算的卡方值进行比较。 • 如果接受假设,则说明因子之间无相关联,
是相互独立的 • 如果拒绝假设,则说明因子之间的关联是显
著的,不独立 •
一、2X2列联表的独立性检验 •
设A、B是一个随机试验中的两个事件,其中A可能 出现r1、r2个结果,B可能出现c1、c2个结果,两 因子相互作用形成4个数,分别以O11、O12、O21、 O22表示,即 • 2X2列联表的一般形式 •
故应否定H0,接受HA,认为鲤鱼体色F2性状比不符合3:1比率
(4)推断:由CHIINV(0.025, 1)=6.63, 即 χ c 2 > χ0 2.05(1),即P<0.05
故应否定H0,接受HA,认为鲤鱼体色F2性状比不符合3:1比率
独立性检验 •
步骤: • 1. 提出无效假设,即认为所观测的各属性之间
故应否定H0,接受HA,认为吸烟与患气管病极显著相关
(4)推断:由CHIINV(0.025, 1)=6.63, 即 故应否定H0,接受HA,认为吸烟与患气管炎病密切相关
二、rXc列联表的独立性检验 •

《卡方检验正式》课件

《卡方检验正式》课件

卡方检验的结果可以直接解释为实际意义 ,例如,如果卡方值较大,则说明观察频 数与期望频数存在显著差异。
缺点
对数据要求高
卡方检验要求数据量较大,且各分类的期望频数不能太小,否则可能 导致结果不准确。
对离群值敏感
卡方检验对离群值比较敏感,离群值可能会对结果产生较大的影响。
无法处理缺失值
卡方检验无法处理含有缺失值的数据,如果数据中存在缺失值,需要 进行适当的处理。
案例二:市场研究中的卡方检验
总结词
市场研究中,卡方检验用于评估不同市 场细分或产品特征与消费者行为之间的 关联。
VS
详细描述
在市场研究中,卡方检验可以帮助研究者 了解消费者对不同品牌、产品或服务的偏 好。例如,通过比较不同年龄段消费者对 某品牌的选择比例,企业可以更好地制定 市场策略和产品定位。
案例三:社会调查中的卡方检验
小,表示两者之间的差异越小。通常根据卡方值的概率水平来判断差异
是否具有统计学显著性。
02
卡方检验的步骤
建立假设
假设1
观察频数与期望频数无显著差异
假设2
观察频数与期望频数有显著差异
收集数据
从样本数据中获取观察频数 确定期望频数,可以使用理论值或预期频数
制作交叉表
将收集到的数据整理成二维表格形式,行和列分别表示分类变量
卡方检验的基本思想
01
基于假设检验原理
卡方检验基于假设检验的原理,通过构建原假设和备择假设,利用观测
频数与期望频数的差异来评估原假设是否成立。
02
比较实际观测频数与期望频数
卡方检验的核心是比较实际观测频数与期望频数,通过卡方值的大小来
评估两者之间的差异程度。
03

卡方检验医学统计学

卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。

在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。

卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。

期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。

而实际频数则是实验中观察到的实际结果。

卡方检验的步骤如下:1.建立零假设和备择假设。

零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。

2.确定显著性水平 alpha,通常取值为0.05。

3.构建卡方检验统计量。

计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。

4.根据自由度和显著性水平,查卡方分布表得到 P 值。

5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。

卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。

卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。

举个例子,某药厂要研发一种新的药物来治疗心脏病。

为了验证该药的疗效,实验组和对照组各50 人。

在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。

卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。

除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。

卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。

其中比较明显的一点就是对样本量有一定的要求。

当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。

此外,在面对非常态分布数据时,卡方检验也会出现问题。

当数据呈现正态分布时,卡方检验的准确性最高。

然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。

卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。

卡方检验

卡方检验

由=0.01得临界值 2(k1)0 2 .0(1 3)1.3 145
由于
22 (k1) 0.01
故接受H0,即认为试验结果与孟德尔学说的结果相符合。
X2拟合检验的步骤
1.把观察到的不同类别的频数分别归入k类,这 些频数之和应是独立观察到总频数之和。
2.假设H0,即确定出每一类应有的期望数Tk
(或np)。如k>2,只要有20%的Tk(或np) <5,就要合并相邻精度类别以减少k值,以 此来增加某些Tk值。如k=2,只有当Tk都5 时,才能应用式5-1来进行X2检验,否则就需 要应用修正式来检验。
[951000.9]2
np
1000.1
1000.9
(Ynp)
2
(51000.1)2
2.78
np(1p) 1000.10.9
X 2 0 .0 5 ,1 C H I I N V ( 0 .0 5 ,1 ) 3 .8 4
因为X2 < X20.05,1, 所以优级品率没有出现下降的变化。
II: 符号检验
1. 计算X2。
2. 根据给定的置信概率,查X2分布表,如果 计算值小于表值,则接受H0,反之则拒绝。

一试剂公司按现行生产工艺生产的化学试剂,
其优品率要占到10%。现从一批产品中抽取
100个进行检验,结果发现优级品仅5个。问是
否优级品率出现了下降的变化(=0.05)?
X2
(Ynp)2
(51000.1)2 =
1 符号检验 检验不知道分布类型的数据
根据统计资料的符号,可以简便地来检验两组
成对的数据是否属于同一总体。两个样本既可
以是互相独立,也可以是相关的,也就是说既 可检验两总体是否存在显著差异,也可检验是 否来自同一总体。

统计学卡方检验

统计学卡方检验
个体化干预
根据分析结果,为患者提供个体化的干预措施,提高生存质量。
06
卡方检验注意事项及局限 性讨论
样本量要求及抽样方法选择
样本量要求
卡方检验对样本量有一定的要求,通常建议每个单元格的期望频数不小于5,以确保检验结果的稳定性和可靠性 。当样本量不足时,可能会导致检验效能降低,增加第二类错误的概率。
抽样方法选择
在进行卡方检验时,应选择合适的抽样方法。简单随机抽样是最常用的方法,但在某些情况下,如分层抽样或整 群抽样可能更适合。选择合适的抽样方法有助于提高检验的准确性和可靠性。
期望频数过低时处理策略
合并类别
当某个单元格的期望频数过低时,可以考虑 合并相邻的类别,以增加期望频数。合并类 别时应注意保持类别的逻辑性和实际意义。
适用范围及条件
适用范围
卡方检验适用于多个分类变量之间的独立性或相关性检验,如医学、社会科学等领域的调查研究。
条件
使用卡方检验需要满足一些前提条件,如样本量足够大、每个单元格的期望频数不宜过小等。此外, 对于有序分类变量或存在空单元格的情况,需要采用相应的处理方法或选择其他适合的统计方法。
02
卡方检验方法
统计学卡方检验
目录
• 卡方检验基本概念 • 卡方检验方法 • 数据准备与预处理 • 卡方检验实施步骤 • 卡方检验在医学领域应用举例 • 卡方检验注意事项及局限性讨论
01
卡方检验基本概念
定义与原理
01
02
定义
原理
卡方检验是一种基于卡方分布的假设检验方法,用于推断两个或多个 分类变量之间是否独立或相关。
确定分组界限
在确定分组界限时,可以采用等距分组、等频分组或 基于数据分布的分组方法。选择合适的分组界限有助 于保持各组之间的均衡性,减少信息损失。

生物统计学 第五章 卡方检验

生物统计学 第五章 卡方检验
独立性检验 料之间是相互独立的或者是相互联系的假设检
验,通过假设所观测的各属性之间没有关联, 然后证明这种无关联的假设是否成立。
同质性检验 在连续型资料的假设检验中,对一个样本方差
的同质性检验,也需进行χ2 检验。
第五章 第一节 χ2检验的原理与方法 第二节 适合性检验 第三节 独立性检验
➢ χ2检验就是统计样本的实际观测值与理论推算
离散型资料 总体分布未知
检验对象
总体参数或几个总体参 数之差
不是对总体参数而是对 总体分布的假设检验
χ2 检验的相关知识
三、χ2检验的用途 指对样本的理论数先通过一定的理论分布推算
适合性检验 出来,然后用实际观测值与理论数相比较,从
而得出实际观测值与理论数之间是否吻合。因 此又叫吻合度检验。 是指研究两个或两个以上的计数资料或属性资
(4)推断
确定自由度,df=(r-1)(c-1),查临界值 表,进行推断。
给药方式 口服 注射 总数
给药方式与给药效果的2×2列联表
有效 58 64 122(C1)
无效 40 31 71(C2)
总数
98(R1) 95(R2) 193(T)
有效率 59.2% 67.4%
1.H0 :给药方式与给药效果相互独立。 HA :给药方式与给药效果有关联。
进行计算:
2 1
n
Oi2 n pi
Oi -第 i 组的实际观测数 pi -第 i 组的理论比率 n-总次数
豌豆
F2代,共556粒
315
101 108
32
此结果是否符合自由组合规律
根据自由组合规律,理论分离比为:
黄圆:黄皱:绿圆:绿皱= 9 :3 :3 :1 16 16 16 16

第五章卡方检验

第五章卡方检验

χ2= ∑
(Oi-Ei)2 Ei
χ2值就等于各组观测 值和理论值差的平方与理 论值之比,再求其和。
(Oi − Ei ) χ =∑ Ei i =1
2 k
2
已经证明当k充分大时,由上式定义 的统计量近似服从����ቤተ መጻሕፍቲ ባይዱ�������2分布
χ2 检验的原理是: 应用理论推算值(E)与实际观测值 (O)之间的偏离程度来决定其χ2值的大 小。在计算理论推算值(E)与实际观测 值(O)之间的符合程度时,一般采用 ∑(E-O)2。对于k组资料采用:
∑ (O − E )
i i
2
值越大,观测值与理论值相差也就
越大,反之越小。
奖学金
200元
一等 10元
5%
70元
三 等 10元 实际得到60元
14%
实际得到190元
等级 观测值(O) 理论(E) O-E 一等 三等 190 60 200 70 -10 -10
(O-E)2 100 100
两组差数虽然相同,但其差数占理论值的比重不同。
χ2< χ20.05
P>0.05
接受H0 ,即豌豆F2分离符合9:3:3:1的自由组合规律。
方法二
315 101 108 32
黄圆:黄皱:绿圆:绿皱=
2 i
9 3 3 1 : : : 16 16 16 16
2 2 2 2 1 O 1 315 101 108 32 + + χ2 = ∑ −n = × + − 556 = 0.470 3 1 3 n pi 556 9 16 16 16 16
χ2 =0.016+0.101+0.135+0.218=0.470

5第五章 拟合优度检验

5第五章  拟合优度检验
表5-3
体色 F2观测尾数
鲤鱼遗传试验F2观测结果
青灰色 1503 红色 99 总数 1602
⒈ 提出无效假设与备择假设
H 0 : 鲤鱼体色F2 代分离符合3: 1 比率 H A : 鲤鱼体色F2 代分离不符合3: 1 比率
⒉计算理论次数 青灰色的理论数为: E1=1602 ×3/4=1201.5 红色的理论数: E2=1602×1/4=400.5 2 3.计算 c 因为该资料只有k=2组,所以此例的 自由度为2-1=1 ( O,需进行连续性矫正。 E 0.5) 2
9 9 p(0) , 9 3 3 1 16 3 p(1) p(2) , 16 1 p(3) 16
9 T0 179 100.6875 , 16 3 T1 T2 179 33.5625 16
1 T3 179 11.1875 16
按公式
行总数 列总数 Ei 总数
计算各格理论值,填于各格 括号中。再计算统计量:

2
( 254 236.5 0.5)
2
236.5 2 ( 246 263.5 0.5)

( 219 236.5 0.5)
2
236.5 2 ( 281 263.5 0.5)
263.5 263.5 1.222 1.222 1.097 1.097 4.638
尾区概率 P=P1+P0=0.122+0.010=0.132。 由于不知什么性别对药物反 应强烈;∴应进行双侧检验, 即与 =0.025 比较。 2 , ∴接受H0,男女对该药反应 无显著不同。
2 P

0.025
作业26/11
p102

卡方检验

卡方检验

• (2)分析过程说明 • ①表6-1的资料是经过人为汇总得到的,即是采用频数表 格式来记录的的资料,同组分别有两种互不相容的结果— —杀灭或未杀灭,两组各自的结果互不影响,即相互独立。 对于这种频数表格资料,在卡方检验之前须用Weight Cases命令对频数变量进行预先统计处理,操作如下:单 击Data-Weight Cases命令,则弹出如图6-3所示对话框, 选中Weight cases by,按三角按钮将变量“计数”置入 Frequency Variable框内,定义“计数”为权数,按OK 。 • ②单击主菜单Analyze-Descriptive Statistics-Crosstabs, 则弹出对话框,按三角按钮将行变量“治疗方法” 置入 Row框内,将列变量“治疗效果” 置入Column框内,如 图6-4。 • ③按Stastics按钮,弹出“选择统计方法”对话框(见图 6-5),选中Chi-square,按Continue,返回图6-4,点OK, 输出表6-2、表 6-3。
x 2 1.428, p 0.839 0.05
,差异不显著,可以认为不同的治疗方法与治疗效果无关,即三 种治疗方法对治疗效果的影响差异不显著。
下表为不同灌溉方式下水稻叶片衰老情况的资料,试测验 稻叶衰老的情况是否与灌溉方式有关?
灌溉方式 深水 浅水 湿润 总计 绿叶数 146 183 152 481 黄叶数 7 9 14 30 枯叶数 7 13 16 36
第五章 卡方检验
一、2X2列联表的独立性检验 (一)计算公式
(二)例题及统计分析
例6.1 分别用灭螨A和灭螨B杀灭害虫,结果如表6-1, 问两种灭螨剂的效果差异是否显著? 表6-1 灭螨A和B杀灭害虫试验结果
组别 灭螨A 灭螨B 未杀灭数C1 12 22 TC1=34 杀灭数C2 32 14 TC2=46 TR1=44 TR2=36 T=80

第五讲卡方检验

第五讲卡方检验

3/19/2015
16
a
b d
2.成组四格表的专用公式
2
c
ad bc n 2 a bb d c d a c
该公式从x2基本公式推导而来,计算较为简单,结果相同。
3/19/2015
17
3.成组四格表χ2检验计算公式的适用条件
(1) 当实验对象总个数 n>40,且所有格子的理论频数 E≥5时, 可用χ2检验基本公式或专用公式计算χ2值。 (2) 当 n>40 ,但有任一格子的理论频数 E 仅满足 1<E<5 时, 需用校正公式:

3/19/2015 12
x2检验的原理:
E χ2检验假设两组率相同,(O-E)2/E 应该很小。

2
O E
2
如果实际频数和理论频数相差的很大, χ2 值也越大。 当 χ2 值比规定的界值还大时,被认为是小概率事件, 就拒绝H0,认为两组率不相同。 因为 χ2 值是对每个格子的 (O-E)2/E 求和,所以格子
自由度:=(2-1) x (2-1)=1 第四步:确定P值 第五步:判断结果
3/19/2015 31
2 (三)行x列表 x 检验
四格表是指只有2行2列,当行数或列数超过2时,统
称为行x列表。
行x列表 x2 检验是对多个样本率(或构成比)的检
验。
基本公式:x2 =(O-E)2/E
O2 n 1 专用公式: n n R C
a. Computed only for a 2x2 table b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 20. 00.

生物统计学第五章 卡方检验

生物统计学第五章 卡方检验

500
512
515
542
522
514
488
497
475
487
497
493 498 502 494 499 490
500
491 494 496 518 484 496
518
506 482 494 503 517 491
508
487 482 494 503 517 491
530
486 512 488 503 506 490
三、独立性检验

原理:通过观测数与理论数之间的一致性判断事件 之间的独立性,即判断两个事件是否是独立事件或 处理间差异是否显著。

方法:将数据列成列联表,也称列联表卡方检验。
一、2×2列联表卡方检验

(一)原理:例5 青霉素可以注射,也可以口服,每天给感冒患者 口服或注射 80 万单位的青霉素,调查两种给药方 式的药效,结果如下表所示,试分析青霉素的两 种给药方式的药用效果是否有差异?
0.302 0.061 0.155 0.121 0.09 1.539
10
总计
0
100
0
590
0.0051
1
题解

1、提出假设 H0:O-E=0;HA: O-E≠0 2、总体参数未知,需要由样本比例估计P=590/1000=0.59 3、计算理论值和卡方值,理论频率Pi按照二项分布公式计 算——n=10,0≤k ≤10,理论数Ei=NPi
10 ——
167.5~170.5 ——
1 100
0.01 1.00
0.009 1.00
0.9 100
(5)Oi与Ei进行比较,判断两者之间的不符合度,检验程序 如下:①零假设:H0:O-E=0;HA: O-E≠0 ②检验统计量:

《卡方检验》课件

《卡方检验》课件

制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。

生物统计学—卡方检验 ppt课件

生物统计学—卡方检验 ppt课件

k
cc2 i1
O i Ei
0.52 2.3 174
Ei
(4)推断:由CHIDIST(23.174, 1)=1.48E-6,即 c P2 2.1 37 0 .0 41
故应否定H0,接受HA,认为吸烟与患气管病极显著相关
(4)推断:由CHIINV(0.025, 1)=6.63, 即 c c c2 02.0(51),即 P0.05
(4)推断:当df=8-1=7,由CHIINV(0.025,7)=16.01,即
c2 c0.0225否定H0,接受HA,即样本方差与总体方差
试不同质的,认为受到污染的农田铅浓度的方差与正 常农田的方差有显著差异
生物统计学—卡方检验
卡方检验的原理和方法
Pearson定理:当(P1,P2,…,Pk)是总体的真实
论值记为:Ei,即 k c2
Oi Ei2,(dfk1)
E i1
i
生物统计学—卡方检验
卡方检验的原理和方法
Pearson定理的基本含义: 如果样本确实是抽自由(P1,P2,…,Pk)代
表的总体,Oi和Ei之间的差异就只是随机误差, 则Pearson统计量可视为服从卡方分布
反之,如果样本不是抽自由(P1,P2,…,Pk) 代表的总体,Oi和Ei之间的差异就不只是是随机 误差,从而使计算出的统计量有偏大的趋势
时候,卡方分布接近正态分布
4、卡方分布具有“可加性” X、Y 独立,
X ~ c2(n1) ,Y ~ c2(n2生) 物则统计学X—+卡方Y检~验 c2(n1+ n2)
卡方 (c2) 分布的函数
CHIDIST:自由度为n的卡方分布在x点处的单尾概率 Pc2x
CHIINV: 返回自由度为n的卡方分布的单尾概率函数的逆函数

卡方检验

卡方检验
36
总计 160 205 182 547
H0:稻叶衰老情况与灌溉方式无关;HA:稻叶衰老情 况与灌溉方式有关。
取 =0.05。 根据H0的假定,计算各组格观察次数的相应理论次数: 如与146相应的E=(481×160)/547=140.69,
与183相应的E=(481×205)/547=180.26,……, 所得结果填于表7.11括号内。
因本例共有k=4组,故df=k-1=3。查附表4,
,现实得
,所以否定
H0,接受HA,即该水稻稃尖和糯性性状在F2的实际结果 不符合9∶3∶3∶1的理论比率。
这一情况表明,该两对等位基因并非独立遗传, 而可能为连锁遗传。
实际资料多于两组的 值通式则为:
(5·15)
上式的mi为各项理论比率,ai为其对应的观察次数。 如本例,亦可由(5·15)算得
如种子灭菌项的发病穗数O11=26,其理论次数 E11=(210×76)/460=34.7,即该组格的横行总和乘以纵行总 和再除以观察总次数(下同);同样可算得
O12=50 的 E12=(250×76)/460=41.3; O21=184的E21=(210×384)/460=175.3; O22=200的E22=(250×384)/460=208.7。 以上各个E值填于表5.7括号内。
(1)设立无效假设,即假设观察次数与理论次数的差 异由抽样误差所引起,即H0:花粉粒碘反应比例为1∶1 与HA:花粉粒碘反应比例不成1∶1。
(2)确定显著水平 =0.05。
(3)计算 值
查附表4,当

=3.84 ,实得
=0.2926小于
,所以接受H0。即认为观察次数和理
论次数相符,接受该玉米F1代花粉粒碘反应比率为1∶1的

医学统计学课件卡方检验

医学统计学课件卡方检验

队列研究中的卡方检验
总结词
在队列研究中,卡方检验用于比较不同暴露 水平或不同分组在某个分类变量上的分布差 异,以评估暴露因素与疾病发生之间的关系 。
详细描述
队列研究是一种前瞻性研究方法,按照暴露 因素的不同将参与者分为不同的组,追踪各 组的疾病发生情况。通过卡方检验,可以比 较不同暴露水平或不同分组在分类变量上的 分布差异,如分析不同饮食习惯的人群中患
卡方检验与相关性分析的区别
卡方检验主要用于比较实际观测频数与期望频数之间的差异,而相关性分析则用于研究 两个或多个变量之间的关联程度。
卡方检验与相关性分析的联系
在某些情况下,卡方检验的结果可以为相关性分析提供参考,帮助了解变量之间的关联 程度。
05
卡方检验的应用实例
病例对照研究中的卡方检验
总结词
02
公式
卡方检验的公式为 $chi^{2} = sum frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$,
其中 $O_{ij}$ 表示实际观测频数,$E_{ij}$ 表示期望频数。
03
适用范围
卡方检验适用于两个分类变量的比较,可以用于分析病例对照研究、队
列研究等类型的研究。
卡方检验的用途
如比较不同年龄组、性别组等人群中某种疾病的患病率。
卡方检验的基本假设
每个单元格中的期望 频数应该大于5。
卡方检验对于样本量 较小的情况可能不适 用。
观察频数与期望频数 应该服从相同的概率 分布。
02
卡方检验的步骤
收集数据
01
02
03
确定研究目的
在开始卡方检验之前,需 要明确研究的目的和假设 ,以便有针对性地收集数 据。

卡方检验

卡方检验

3459.5(E1) 3459.5(E2) 6919
-22.5 +22.5 0
0.1463 0.1463 0.2926
此处要推论是否符合1∶1分离,只要看观察次数与理 论次数是否一致,故可用 测验:
(1)设立无效假设,即假设观察次数与理论次数的差 异由抽样误差所引起,即H0:花粉粒碘反应比例为1∶1 与HA:花粉粒碘反应比例不成1∶1。 (2)确定显著水平 =0.05。
a11 a21 C1
a12 a22 C2
R1 R2 n
(5· 16)
如本例各观察次数代入(5· 16)可得:
二、2×C表的独立性测验
2×C表是指横行分为两组,纵行分为C≥3组的相依表资
料。 在作独立性测验时,其 c≥3,故不需作连续性矫正。 =(2-1)(c-1)=c-1。由于
[例5.9] 进行大豆等位酶Aph的电泳分析,193份野生大
为1∶1,由此可以计得3437+3482=6916粒花粉中,蓝色
反应与非蓝色反应的理论次数应各为3459.5粒。设以O代 表观察次数,E代表理论次数,可将上列结果列成表
玉米花粉粒碘反应观察次数与理论次数
碘反应
观察次数(O) 理论次数(E)
O-E
(O-E)2/E
蓝色 非蓝色 总数
3437(O1) 3482(O2) 6919
(5· 17)
横行因素
纵 行 因 素
1 2 … i … c


1
2 总 计
a11
a21 C1
a12
a22 C2

… …
a1i
a2i Ci

… …
a1c
a2c Cc
R1
R2 n

5-卡方检验

5-卡方检验

检验一致。
基本公式:
2 R C Aij 2 专用公式: n 1 i 1 j 1 n m i j
34
(二)多个独立样本频率的比较
例3 用三种不同治疗方法治疗慢性支气管炎的疗 效如下表所示,试比较三种治疗方法治疗慢性支气 管炎的疗效有无差异?
组别 A药 B药 有效 35 20 无效 5 10 合计 40 30 有效率(%) 87.5 66.67
22
四格表校正公式:当(n 40,1T<5)需校正

2
( ad bc n 2) n
2
(a b)(c d )(a c)(b d )
( A T 0.5) 2 T
2
23
例2 将病情相似的淋巴系肿瘤患者随机分成两组, 分别做单纯化疗与复合化疗,两组疗法的缓解率见
42 42
108
28 28
42
问:中药和西药治疗胃溃疡的有效率有无差别?
7
χ
2
检验统计量计算公式

2
A T
T
2
R 1C 1
A:实际频数(actual frequency)
T:理论频数(theoretical frequency)
理论频数是指用理论阳性率推算各实际频数的估
注意:当T<1或n<40时,校正公式也不恰当,这
时必须用四格表的确切概率计算法。
27
在R软件下完成卡方检验
> a<-matrix(c(2,14,10,14), nc=2)
>a
[,1] [,2] [1,] [2,] 2 14 10 14
> chisq.test(a)

卡方检验

卡方检验
卡方检验
假设检验方法
01 基本原理
03 检验方法 05 代码实现
目录
02 步骤 04 资料检验
卡方检验,是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比 比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
基本原理
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程 度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡 方值就为0,表明理论值完全符合。
卡方检验要求:最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据 不符合要求,就要应用校正卡方。
谢谢观看
注意:卡方检验针对分类变量。
步骤
(1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5, 而区间个数k不要太大也不要太小。 (3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和 f1+f2+...+fk等于样本容量n。 (4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi 就是落入第i个小区间Ai的样本值的理论频数(理论值)。
检验方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(3)检验统计量的计算:本例是两组数据,没有估计参数, k=2,a=0,df=1,样本统计量需要连续矫正
2
i 1
k
O
i E i 0.5
2
Ei
2.45

(4)拒绝域的建立
(5)结论:符合孟德尔分离定律
适合性检验的自动程序:P=Chitest(Oi,Ei): Oi表示观察 值区域;Ei表示理论值区域;用于适合性检验
两种青霉素的给药方式的药用效果调查表
给药方式 有效(A) 无效(Ā) 口服(B) 注射(B ) 总计 58 64 122 40 31 71 总数 98 95 193 有效率 59.20% 67.40% ——

一般考虑样本中各处理之间是否有关联,处
理间是否是独立事件

检验时以各处理间无关联或者各处理是独立 事件作为零假设
0.302 0.061 0.155 0.121 0.09 1.539
10
总计
0
100
0
590
0.0051
1
题解

1、提出假设 H0:O-E=0;HA: O-E≠0 2、总体参数未知,需要由样本比例估计P=590/1000=0.59 3、计算理论值和卡方值,理论频率Pi按照二项分布公式计 算——n=10,0≤k ≤10,理论数Ei=NPi
158
166
154
154
157
167
157
159
170
158
题解
(1)将观测值分为k组;按照分组原理分成10组,制成频数 分布表
高粱“三尺三”株高频数分布表
组号 1 组限/cm 141~143 组界/cm 140.5~143.5 中值 142 频数 1 频率 0.01
2
3 4 5 6 7 8 9 10 ——
三、独立性检验

原理:通过观测数与理论数之间的一致性判断事件 之间的独立性,即判断两个事件是否是独立事件或 处理间差异是否显著。

方法:将数据列成列联表,也称列联表卡方检验。
一、2×2列联表卡方检验

(一)原理:例5 青霉素可以注射,也可以口服,每天给感冒患者 口服或注射80万单位的青霉素,调查两种给药方 式的药效,结果如下表所示,试分析青霉素的两 种给药方式的药用效果是否有差异?
10 ——
167.5~170.5 ——
1 100
0.01 1.00
0.009 1.00
0.9 100
(5)Oi与Ei进行比较,判断两者之间的不符合度,检验程序 如下:①零假设:H0:O-E=0;HA: O-E≠0 ②检验统计量:
(Oi Ei) 2 Ei i 1
k 2
高粱“三尺三”株高观察频数和理论频数表(合并后) 组号 1~3 组界/cm 140.5~149.5 观察频数(Oi) 7 观察频率 (Pi) 0.07 理论频率 (P) 0.093 理论频数 (Ei) 9.30 卡方值 0.569
计算每组的理论频数Ei 检验Oi 与Ei 的差异显著性,判断两者之间的不符合 度

a、零假设:H0:O-E=0;备择假设: O-E≠0(这里检验的 不是参数,而是判断观测数是否符合理论分布)

b、检验统计量:这里要求n充分的大,当n≥50时(最好
≥100),所定义的检验统计量近似服从卡方分布,Ei=nPi
145
148 151 154 157 160 163 166 169 ——
2
4 13 23 28 15 10 3 1 100
0.02
0.04 0.13 0.23 0.28 0.15 0.10 0.03 0.01 1

(2)获得的n次观测值中,第i组的观测频数记为Oi,
Oi n, n 100
Ti
6.1638
(5)自由度df=k-1-a=8-1-1=6
(6)拒绝域的建立
(7)接受H0,服从正态分布

(三)总体参数未知的二项分布检验
例3 检验烟草种子的发芽率,每个培养皿放10粒
种子,共100个培养皿,实验结果如下表所示。 1000粒种子有590粒发芽,检验发芽的种子数 是否符合二项分布。
不得小于5,若小于5,将尾区相邻的组合并,直到合并后
的组的Ei≥5,合并后再计算卡方值。
(Oi Ei) 2 df Ei i 1
k 2

c、建立拒绝域 d、作出统计学结论
二、适合性检验(goodness of fit)
用来检验观测数与依照某种假设或分布模型 计算得到的理论数之间一致性的一种统计假 设检验,以便判断该假设或模型是否与实际 观测数相吻合。
508
491 527 505 485 500 520
500
505 522 472 529 503 512
479
478 470 482 476 527 482
506
492 493 506 496 500 488
504
512 548 478 500 499 509
488
494Leabharlann 518500516
511
516

k
(3)第i组的理论频率为Pi,其计算方法如下:
s 4.98cm
i 1
① 先计算样本平均数和标准差 x 156.1cm
②假设高粱“三尺三”符合正态分布 , 2 。根据参数估计原
理, 用 x 估计 , 用s/c4=4.98/0.9975=4.99估计(样本标准
差分布的矩系数C4、C5表)。即假设高粱的株高x服从正态 分布 156 1,4.992 .
1
2 3 4 5 6 7 8 9
0
0 4 14 22 27 19 9 5
0
0 12 56 110 162 133 72 45
0.0019
0.0125 0.0480 0.1209 0.2087 0.2503 0.2058 0.1111 0.0355
6.25
0.81
12.09 20.87 25.03 20.58 15.71 100
i 1
Ei

2 2 ③建立拒绝域 2 df ,0.05 3,0.05 7.815
④结论:高粱株高服从正态分布

(二)总体参数已知的正态性检验
袋标准重量为500g,调查了100袋,结果如下表所示。 袋装食盐重量调查表
例2 自动包装的袋装食盐的重量是否服从正态分布?已知每
4
5 6 7 8~10 总计
149.5~152.5
152.5~155.5 155.5~158.5 158.5~161.5 161.5~164.5 ——
13
23 28 15 14 100
0.13
0.23 0.28 0.15 0.14 1.00
0.142
0.216 0.232 0.176 0.138 1.00


③根据正态分布概率的计算关系,查附表1,计算各组组界的 理论频率
(4)计算各组的理论频数为Ei=npi,填入下表
高粱“三尺三”株高观察频数和理论频数表
组号 1 2 3 4 5 6 7 8 9 组界/cm 140.5~143.5 143.5~146.5 146.5~149.5 149.5~152.5 152.5~155.5 155.5~158.5 158.5~161.5 161.5~164.5 164.5~167.5 观察频数(Oi) 1 2 4 13 23 28 15 10 3
例4
表型
观察频数( Oi ) 理论频数(Ei)
卡方值
抗性植株
敏感植株 总计
14
6 20
10
10 20
1.225
1.225 2.45
题解

按照孟德尔分离定律,Ss与ss的杂交后代代表型的比例应 该为1:1,即10个抗性植株和10个敏感植株

(1)提出假设 H0:O-E=0;HA: O-E≠0 (2)计算理论值和卡方值:理论值就是根据孟德尔遗传定 律计算得到的后代分离理论数量
144~146
147~149 150~152 153~155 156~158 159~161 162~164 165~167 168~170 总计
143.5~146.5
146.5~149.5 149.5~152.5 152.5~155.5 155.5~158.5 158.5~161.5 161.5~164.5 164.5~167.5 167.5~170.5 ——

(一)总体参数未知的正态性检验
例1 高粱“三尺三”株高测定结果(cm)
155 159 150 159 157 161 158 148 164 153 158 150 161 149 159 155 163 155 159 153 160 156 153 161 153 156 156 155 153 156 141 153 156 151 163 158 150 144 160 156 155 162 157 154 164 159 156 155 145 162 151 156 158 148 157 150 160 156 154 152 153 152 164 159 157 151 153 152 154 147 163 154 151 160 157 158 162 157 158 158 157 152 150 155 161 155 162 155 154 165
1、卡方检验的原理
应用理论值(expected value,E)与观测
值(observed value,O)之间的偏离程度 来决定卡方值的大小。
2、卡方检验的程序

将观测值分为k组 计算n次观测值中每组的观测频数,记为Oi 根据变量的分布规律或概率运算法则,计算每组的 理论频率为Pi
相关文档
最新文档