任意角的三角函数及基本公式

合集下载

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。

角函数公式大全及推导过程

角函数公式大全及推导过程

三角函数公式大全及推导过程一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:xy =αtan 二、同角三角函数的基本关系式 商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos(-α)= cosα tan(-α)= -tanα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2π-α)= sinα sin (2π+α)= cosα cos(2π+α)= -sinα sin (23π-α)= -cosα cos(23π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式:)sin(cos sin 22ϕ++=+x b a x b x a (其中ab =ϕtan ) 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z)六、其它公式:1、正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径) 2、余弦定理 A bc c b a cos 2222⋅-+=B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=3、三角形的面积公式 高底⨯⨯=∆21ABC S B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边一夹角)万能公式推导sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。

高中三角函数所有公式大全

高中三角函数所有公式大全

高中三角函数所有公式大全高中三角函数最全的公式如下:1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2;三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

常见的三角函数包括正弦函数、余弦函数和正切函数。

在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。

另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。

常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角高中三角函数公式及诱导公式大全如下所示:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k T +a )=sin ak∈z;cos(2k T + a )=cos ak∈z;tan(2k Tt +a )=tan ak∈z;cot(2k T + a )=cot akEz公式二:设α为任意角,T+a的三角函数值与α的三角函数值之间的关系:sin ( T + a )=-sin a;cos( T + a )=-cos a;tan( T + a )=tan a;cot ( T+a )=cot a公式三:任意角α与-a的三角函数值之间的关系:sin(- a )=-sin a;cos(- a )=cos a;tan(- a )=-tan a;cot(- a )=-cot a公式四:利用公式二和公式三可以得到T -a与a的三角函数值之间的关系:sin( T 一a )=sin a;cos ( T - a )=-cos a;tan ( T - a )=-tan a;cot ( T-a )=-cot a 1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαcot(π+α)=cotα3、公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系cos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα。

(完整版)三角函数公式大全

(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。

商数关系:x x x cos sin tan =,xxx sin cos cot =。

平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。

积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

三角函数公式大全

三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点,记:),(y x P 22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:yx =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:,,。

1cos sin 22=+αααα22sec tan 1=+αα22csc cot 1=+三、诱导公式⑴παk 2+)(Z k ∈、α−、απ+、απ−、απ−2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ−2、απ+23、απ−23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅−⋅=−βαβαβαsin sin cos cos )cos(⋅−⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=− βαβαβαtan tan 1tan tan )tan(⋅−+=+βαβαβαtan tan 1tan tan )tan(⋅+−=−五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos −=−=−=…)(∗ ααα2tan 1tan 22tan −=二倍角的余弦公式)(∗有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=−2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα−=−六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +−=,ααα2tan 1tan 22tan −=。

数学三角公式大全

数学三角公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

任意角的三角函数基本知识点(要)

任意角的三角函数基本知识点(要)

任意角的三角函数知识点一、终边角:与α终边相同的角表示为。

分别写出终边在下列位置时的角α的集合:1.x轴上2.y轴上3.坐标轴上4.第一象限5.第二象限6.第三象限7.第四象限 8.直线y=x上二、弧度制:1、定义:2、公式:|α|=3、换算:①度换弧度:180°=弧度; 1°=弧度②弧度换度:1弧度=度;扇形:弧长L==,面积S==三、任意角的三角函数:①定义:角α终边的终边与单位圆的交点P(x,y),则sinα= cosα= tanα=角α终边上任意一点交点P(x,y),则r= ,则sinα= cosα= tanα=②三角函数线:角的终边与单位圆交于点P,过点P作轴的垂线,垂足为M,则正弦线是余弦线是即sinα= ,cosα= .过点A(1,0)作交于点T即tonα= .③同角三角函数关系式:④三角函数的符号:(1)商数关系:(2)平方关系:⑤诱导公式:2kπ+α与απ—α与απ+α与α)(βα+C )(βα-C)(βα+S )(βα-S )(βα+T )(βα-T⑧二倍角公式: α2Sα2C α2T三角函数的图象与性质答案一、终边角:与α终边相同的角表为k ·360° + α 。

分别写出终边在下列位置时的角α的集合: 1. x 轴上 {},k k Z ααπ=∈2. y 轴上 ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭3. 坐标轴上,2k k Z ααπ⎧⎫=∈⎨⎬⎩⎭4. 第一象限22,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭5. 第二象限22,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭6. 第三象限322,2k k k Z παππαπ⎧⎫++∈⎨⎬⎩⎭7. 第四象限3222,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭8. 第一或第三象限,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭9. 第二或第四象限,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭10. 直线y =x 上,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭11. 直线y =-x 上3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭二、 弧度制:1、定义:弧长等于半径的弧所对的圆心角叫一弧度的角.2、 公式:|α|=lr3、 换算:① 度换弧度:180°=π弧度;1°=180π弧度②弧度换度:1弧度=180π度;扇形: 弧长L =180n rπ= r α, 面积S =2360n r π=12lr三、 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r =,六个三角函数的定义依次是sin y r α=、cos x r α=、tan y α=cot x α=sec r α=csc r α= ②三角函数线:角的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,则正弦线是MP 余弦线是OM即sin α=MP,cos α= OM.过点A(1,0)作 切线交 角的终边或反向延长线 于点T ,则正切线是AT 。

任意角的三角函数及基本公式

任意角的三角函数及基本公式

任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。

任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。

1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。

正弦函数将给定角度的正弦值映射到数轴上。

其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。

2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。

其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。

3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。

其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。

4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。

其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。

5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。

其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。

6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。

其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。

这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。

同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。

(史上最全)三角函数公式大全

(史上最全)三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) )(tan )2tan(cos )2cos(sin )2sin(.1Z k k k k ∈⎪⎩⎪⎨⎧=+=+=+ααπααπααπ sin()sin 2.cos()cos tan()tan αααααα-=-⎧⎪-=⎨⎪-=-⎩ sin()sin 3.cos()cos tan()tan πααπααπαα+=-⎧⎪+=-⎨⎪+=⎩⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin(.4 sin(2)sin 5.cos(2)cos tan(2)tan πααπααπαα-=-⎧⎪-=⎨⎪-=-⎩ ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看.成.锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)sin()cos 26.cos()sin 2tan()cot 2πααπααπαα⎧+=⎪⎪⎪+=-⎨⎪⎪+=-⎪⎩ sin()cos 27.cos()sin 2tan()cot 2πααπααπαα⎧-=⎪⎪⎪-=⎨⎪⎪-=⎪⎩ 3sin()cos 238.cos()sin 23tan()cot 2πααπααπαα⎧+=-⎪⎪⎪+=⎨⎪⎪+=-⎪⎩ 3sin()cos 239.cos()sin 23tan()cot 2πααπααπαα⎧-=-⎪⎪⎪-=-⎨⎪⎪-=⎪⎩ 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαs i n c o s c o s s i n )s i n (⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαs i n s i n c o s c o s )c o s (⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαt a n t a n 1t a n t a n )t a n (⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ ; αα2sin 22cos 1=-;2)cos (sin 2sin 1ααα+=+ ;2)cos (sin 2sin 1ααα-=-;六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=;ααα2tan 1tan 22tan -=。

三角函数公式及推导

三角函数公式及推导

三角函数诱导公式折叠公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+α)=tanαk∈zcot(2kπ+α)=cotαk∈z折叠公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα折叠公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα折叠公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα折叠公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα折叠公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα折叠推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα折叠诱导公式记忆口诀:“奇变偶不变,符号看象限”口诀解析:“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化与否(“变”是指正弦变余弦、余弦变正弦、正切变余切、余切变正切、正割变余割、余割变正割)。

高中数学 三角函数公式大全

高中数学 三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

三角函数任意角的三角函数

三角函数任意角的三角函数

两角差余弦公式
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
两角和与差的正弦公式
两角和正弦公式
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
两角差正弦公式
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
两角和与差的正切公式
对于任意角α,有以下基本 公式
sin²α+cos²α=1, 1+tan²α=sec²α, 1+cot²α=csc²α
04
05
两角和与差的 倍角和半角公 三角函数公式 式
sin(α+β)=sinαcosβ+cos αsinβ。 cos(α+β)=cosαcosβsinαsinβ
sin(2α)=2sinαcosα, cos(2α)=cos²α-sin²α, tan(2α)=(2tanα)/(1tan²α)
三角函数的图象与性质
01
三角函数的图象是在单位圆上点的轨迹,具有周期nx的图象是一条波形曲线,具有周期性,最小正周期为2π;余弦 函数y=cosx的图象也是一条波形曲线,也具有周期性,最小正周期为2π;正切 函数y=tanx的图象是一条直线,没有周期性。
交流电
交流电的电压和电流是时间的周期函数,可以用三角函数来 表示。
控制工程
在控制工程中,系统的传递函数和稳定性分析需要用到三角 函数的知识。
THANK YOU.
在解三角形中,三角函数可以用于求角度、长度 等,例如利用余弦定理求三角形面积: S=1/2bcsinA。
在微积分中,三角函数可以用于求函数的积分和 导数等,例如求圆的面积:A=πr²。

常用三角函数公式及口诀

常用三角函数公式及口诀

常用三角函数公式及口诀-CAL-FENGHAI.-(YICAI)-Company One1常用三角函数公式及口诀常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαta n(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

(完整版)三角函数公式大全

(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦函数:r y =αsin 余弦函数:r x =αcos 正切函数:x y=αtan 余切函数:y x =αcot 正割函数:xr=αsec 余割函数:y r =αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。

商数关系:x x x cos sin tan =,xxx sin cos cot =。

平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。

积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosαtan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z)公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos (απ-2)=sinα tan (απ-2)=cotα cot (απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos (απ+2)=-sinα tan (απ+2)=-cotα cot (απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin (απ-23)=-cosα cos (απ-23)=-sinαtan (απ-23)=cotα cot (απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin (απ+23)=-cosα cos (απ+23)=sinαtan (απ+23)=-cotα cot (απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

三角函数公式大全整理

三角函数公式大全整理

三角函数公式大全整理2023三角函数公式大全整理三角函数与幂函数、指数函数、对数函数等一样,属于基本初等函数。

三角函数是以角的弧度数为自变量的函数,常见的三角函数包括正弦函数、余弦函数、正切函数,下面作者为大家带来三角函数公式大全整理,期望对您有所帮助!三角函数公式大全整理公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα三角函数怎样算度数一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3知识拓展:sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=0.259cos15=-0.759;cos15°=0.966tan15=-0.855;tan15°=0.268sin30°=1/2高中数学三角函数公式公式一公式二sin(2kπ+α)=sin αcos(2kπ+α)=cos αtan(2kπ+α)=tan αcot(2kπ+α)=cot αsec(2kπ+α)=sec αcsc(2kπ+α)=csc αsin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot αsec(π+α)=-sec αcsc(π+α)=-csc α公式三公式四sin(-α)=-sin αcos(-α)=cosαtan(-α)=-tan αcot(-α)=-cot αsec(-α)=sec αcsc(-α)=-csc αsin (π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot αsec (π-α)=-sec αcsc(π-α)=csc α公式五公式六sin(α-π)=-sin αcos(α-π)=-cos αtan(α-π)=tan αcot(α-π)=cot αsec(α-π)=-sec αcsc(α-π)=-csc αsin(2π-α)=-sin αcos(2π-α)=cos αtan(2π-α)=-tan αcot (2π-α)=-cot αsec(2π-α)=sec αcsc(2π-α)=-csc α公式七公式八sin (π/2+α)=cosαcos(π/2+α)=−sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα公式九公式十sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα高中数学三角函数推导方法定名法则90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀

三角函数公式大全
一、定义

二、函数关系
倒数关系:;;
商数关系:;.
平方关系:;;
三、诱导公式
口诀:奇变偶不变,符号看象限
公式一:设为任意角,终边相同的角的同一三角函数的值相等:
公式二:设为任意角,与的三角函数值之间的关系:
公式三:任意角与的三角函数值之间的关系:
公式四:与的三角函数值之间的关系:
公式五:与的三角函数值之间的关系:
公式六:及与的三角函数值之间的关系:
四、基本公式
1.和差角公式
口诀:正余同余正,余余反正正



2.和差化积
口诀:正加正,正在前。

正减正,余在前。

余加余,余并肩。

余减余,余不见,负号很讨厌。



3.积化和差
4.倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
5.半角公式
五、万能公式
六、辅助角公式
七、三角形定理
1.正弦定理
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有
正弦定理变形可得:
2.余弦定理
在如图所示的在△ABC中,有
或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 18 讲 任意角的三角函数及基本公式(第课时)任意角的三角函数⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧±±--︒±︒+︒•⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧的函数关系与以及的函数关系与以及的函数关系与的函数关系与诱导公式倒数关系式商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。

难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。

1.了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算;2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。

任意角三角函数的意义,三角函数值的符号; 1.角的定义⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。

⑵ 射线逆时针旋转而成的角叫正角。

射线顺时针旋转而成的角叫负角。

射线没有任何旋转所成的角叫零角。

2.弧度制⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。

用“弧度” 作单位来度量角的制度叫做“弧度制”。

注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与︒1sin 、︒2sin 不是一回事。

⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。

正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。

⑶ 设一个角的弧度数为α,则 rl=α (l 为这角所对的弧长,r 为半径)。

⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。

⑸ 1801π=︒弧度,1弧度︒=)180(π。

设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22121r lr S == 。

3.角的集合表示 ⑴ 终边相同的角设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+︒•=360k (也可记为απβ+=k 2 Z k ∈)。

⑵ 区域角介于某两条终边间的角叫做区域角。

例如 ︒+︒•<<︒+︒•3036060360k k α(也可记为3262ππαππ+<<+k k Z k ∈)。

⑶ 象限角以角的顶点为原点,以其始边为x 轴的正半轴建立直角坐标系,则角的终边落在第几象限,这个角就叫做第几象限的角。

例.已知x 在第二象限,问2x在哪一象限? 解:∵ ππππ+<<+k x k 222 ,∴ 224ππππ+<<+k x k , 当k 为偶数时,2x 在第一象限;当k 为奇数时,2x在第三象限。

点评:第一二象限角的半角在第一或第三象限,第三四象限角的半角在第二或第四象限,记住这一结论,可提高解题速度。

例.ABC ∆中,已知178cos =A ,53sin =B ,(A 、B 是锐角,)求C 角。

分析:A 、B 是锐角,故C 角可能是锐角,也可能是钝角。

显然,如果想通过C sin 去求C 角是无法确定C 角是锐角还是钝角的。

所以应该求C cos 。

解:1529.05317554178)cos()](180cos[cos ≈⨯+⨯-=+-=+-︒=B A B A C , 显然,C 角在第一象限,约为2181'︒ 。

点评:如果要利用一个角的三角函数值来确定此角究竟在那一象限,需要选择适当名称的三角函数。

掌握判定一个角是锐角还是钝角的方法,是很有用处的。

例如求证一个平面截直三面角所得的截面是锐角三角形,只要证明这个三角形的每个内角的余弦大于零。

4.三角函数的定义及符号 ⑴三角函数定义设角α终边上一点P 的坐标为(x ,y )P 与原点的距离为r (0>r ),那么下面的六个比值:yr x r y x x y r x r y 、、、、、 分别叫做角α的正弦、余弦、正切、余切、正割、余割,并且分别用符号表示为:r y =αsin ,x y=αtan ,ααcos 1sec =,r x =αcos ,y x=αcot ,ααsin 1csc =。

⑵ 各三角函数在各象限的符号如下图:cot ,tan符号记忆:“正弦一二为正”,“余弦一四为正”,“正切一三为正”。

注意:①由 αα2cos 1sin -±= 求αsin 时,应该由α所在的象限来确定αsin 的符号。

②去掉α2cos的根号时,如果0cos <α,应写为 -αcos 。

⑶ 终边相同的同一三角函数的值相等。

即 )()2(ααπf k f =+ (J k ∈,)(x f 为三角函数)。

⑷ 三角函数线(以第一象限角为例)正弦线 余弦线 正切线 余切线 例.确定 ︒-︒16cos 15cos 的符号。

解:画出单位圆,用线段把 ︒15cos 和︒16cos 表示出来, 图中线段 ︒=15cos OA ,︒=16cos OB , 显然,︒>︒16cos 15cos , ∴ 016cos 15cos >︒-︒ 。

5.同角三角函数的关系⑴ 倒数关系:1csc sin =•αα ,1sec cos =•αα ,1cot tan =•αα 。

⑵ 商数关系:αααcos sin tan = ,αααsin cos cot = , ⑶ 平方关系:1cos sin22=+αα ,αα22sec tan 1=+ ,αα22csc cot 1=+ 。

6.三角函数的诱导公式以180º或360º作为基准,加减一个角α,这样的角的三角函数可以化为α的同名函数,它的符号由角的终边所在的象限来确定。

例如:ααsin )180sin(-=+︒。

以90º或270º作为基准,加减一个角α,这样的角的三角函数可以化为α的余函数,它的符号由角的终边所在的象限来确定。

例如:ααcos )90sin(=-︒。

诱导公式的记忆口诀:横同纵余,符号看象限。

(“横”指以横轴作为基准,“纵” 指以纵轴作为基准。

)利用诱导公式,可以把任意角的三角函数化为锐角的三角函数。

如果有必要(例如在做证明题时),可以利用ααcsc sin 与 ,ααsec cos 与 ,ααctg tg 与互为余函数的关系,进一步把任意角的三角函数化为不大于45º角的三角函数。

1.α是第二象限角,其终边上一点)5,(x P ,且 x 42cos =α ,则 αsin 的值为( ) A .410; B . 46; C . 42; D . -410。

2.已知锐角α终边上一点A 的坐标为(23sin ,-23cos ),则角α的弧度数为 ( )A . 3;B . π-3;C . 23π-; D . 32-π。

3.已知 k =︒100tan ,则 ︒80sin 的值等于 ( )A .21kk +; B . 21k k +-; C . k k 21+; D . kk 21+-。

4.若1cot 1sin tan 1cos 22-=+++θθθθ ,则θ在 ( )A . 第一象限;B .第二象限;C .第三象限;D .第四象限。

5.设 ααcos sin +=t 且 0cos sin 33<+αα ,则t 的取值范围是 ( ) A . )0,2[-; B . ),3()0,3(∞+-Y ; C . )2,1()0,1(Y -; D . )2,2[-。

6.设 α、β 是︒0到︒360间的角,如果 βαsin sin = ,那么α与β之间的关系如何?7.确定下列各式的符号:⑴ ︒-︒140cos 140sin ; ⑵ ︒-︒310300ctg ctg 。

8.化简:ααααsin 1sin 1sin 1sin 1+---+ 。

1 2 3 4 5 6 7 8 角的定义 √ √ √ 弧度制 √ 角的集合表示三角函数的定义及符号√√ √ 同角三角函数的关系 √ √ √三角函数的诱导公式√ √1.α是第二象限角,其终边上一点)5,(x P ,且 x 42cos =α ,则 αsin 的值为( ) A .410; B . 46; C . 42; D . -410。

解:∵ r xx ==42cos α ,∴ 22=x ,∴ 410225sin ==α ,故应选A 。

2.已知锐角α终边上一点A 的坐标为(23sin ,-23cos ),则角α的弧度数为 ( )A . 3;B . π-3;C . 23π-; D .32-π。

解:∵ )23tan()32tan(3cot 3sin 23cos 2tan ππα-=--=-=-=,故应选C 。

3.已知 k =︒100tan ,则 ︒80sin 的值等于 ( )A .21kk +; B . 21k k +-; C . k k 21+; D . kk 21+-。

解:∵ k -=︒-=︒-︒=︒100tan )100180tan(80tan ,而 080tan >︒ ,∴ 0<k , ∴ k180tan 180cot -=︒=︒ ,∴ 2221)1(1180cot 1180csc 180sin k kk+-=+=︒+=︒=︒ ,故应选B 。

4.若1cot 1sin tan 1cos 22-=+++θθθθ ,则θ在 ( )A . 第一象限;B .第二象限;C .第三象限;D .第四象限。

解:题给条件可化为 1sin sin cos cos -=+θθθθ ,则 0sin <θ ,0cos <θ ,故应选C 。

5.设 ααcos sin +=t 且 0cos sin 33<+αα ,则t 的取值范围是 ( ) A . )0,2[-; B . ),3()0,3(∞+-Y ; C . )2,1()0,1(Y -; D . )2,2[-。

解:)cos cos sin )(sin cos (sin cos sin 2233αααααααα+-+=+]cos 43)cos 21)[(sin cos (sin 22ααααα+-+=而 0cos sin 33<+αα ,0cos 43)cos 21(sin 22>+-ααα ,∴ 0cos sin <+αα ,故应选A 。

6.设 α、β 是︒0到︒360间的角,如果 βαsin sin = ,那么α与β之间的关系如何? 解:βα= 或 πβα=+ 或 πβα3=+。

解题错误:遗漏 πβα3=+。

7.确定下列各式的符号:⑴ ︒-︒140cos 140sin ; ⑵ ︒-︒310300ctg ctg 。

相关文档
最新文档