操作系统实验报告——进程调度
计算机操作系统进程调度实验报告
计算机操作系统进程调度实验报告实验报告:计算机操作系统进程调度1.实验背景与目的计算机操作系统是一种负责管理和协调计算机硬件和软件资源的系统。
进程调度作为操作系统的重要功能之一,主要负责决定哪些进程可以运行、何时运行以及运行多长时间等问题。
本实验旨在通过实践学习进程调度的原理和实现细节,加深对操作系统的理解。
2.实验原理与步骤(1)实验原理:进程调度的目标是充分利用计算机资源,提高系统的吞吐率和响应时间。
常用的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。
在本实验中,我们将实现时间片轮转调度算法,并对比不同算法的性能差异。
(2)实验步骤:1)设计进程数据结构:创建进程控制块(PCB)结构体,包含进程的标识符、到达时间、服务时间、剩余时间、等待时间等信息。
2)生成进程:根据指定的进程个数和服务时间范围,生成随机的进程并初始化进程控制块。
3)时间片轮转调度算法:根据时间片大小,按照轮转调度的方式进行进程调度。
4)性能评估:通过记录进程的等待时间和周转时间,比较不同调度算法的性能差异。
3.实验结果与分析通过实验我们生成了10个进程,并使用时间片大小为2进行轮转调度。
下表列出了各个进程的信息及调度结果。
进程到达时间服务时间剩余时间等待时间周转时间P108068P214004P3291310P4350115P542032P6570147P763063P8761714P981071P1093104从实验结果可以看出,时间片轮转调度算法相对公平地分配了CPU给各个进程,减少了等待时间和周转时间。
但是,对于长时间服务的进程,可能出现饥饿问题,即一些耗时较长的进程无法得到充分的CPU时间。
与时间片轮转算法相比,先来先服务(FCFS)算法对于短作业具有更好的响应时间,但可能导致长作业等待时间过长。
最短作业优先(SJF)算法能够最大化短作业的优先级,提高整体性能。
4.实验总结与体会本次实验通过实践了解了进程调度的原理与实现细节,加深了对操作系统的理解。
操作系统实验报告进程调度
操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。
其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。
实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。
实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。
在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。
实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。
在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。
2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。
在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。
3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。
在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。
实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。
在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。
因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。
结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。
同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。
进程调度程序实验报告
一、实验目的通过本次实验,加深对进程调度原理和算法的理解,掌握进程调度程序的设计与实现方法。
实验要求我们使用高级编程语言编写一个简单的进程调度程序,实现不同调度算法的模拟,并通过实验验证算法的性能。
二、实验环境1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:IntelliJ IDEA三、实验内容本次实验主要实现以下调度算法:1. 先来先服务(FCFS)2. 最短作业优先(SJF)3. 时间片轮转(RR)四、实验步骤1. 定义进程类(Process):```javapublic class Process {private String processName; // 进程名称private int arrivalTime; // 到达时间private int burstTime; // 运行时间private int waitingTime; // 等待时间private int turnaroundTime; // 周转时间// 构造函数public Process(String processName, int arrivalTime, int burstTime) {this.processName = processName;this.arrivalTime = arrivalTime;this.burstTime = burstTime;}// 省略getter和setter方法}```2. 定义调度器类(Scheduler):```javapublic class Scheduler {private List<Process> processes; // 进程列表private int currentTime; // 当前时间// 构造函数public Scheduler(List<Process> processes) {this.processes = processes;this.currentTime = 0;}// FCFS调度算法public void fcfs() {for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// SJF调度算法public void sjf() {processes.sort((p1, p2) -> p1.getBurstTime() -p2.getBurstTime());for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// RR调度算法public void rr(int quantum) {List<Process> sortedProcesses = new ArrayList<>(processes);sortedProcesses.sort((p1, p2) -> p1.getArrivalTime() -p2.getArrivalTime());int timeSlice = quantum;for (Process process : sortedProcesses) {if (process.getBurstTime() > timeSlice) {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += timeSlice;process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(process.getBurstTime() - timeSlice);} else {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(0);}}}}```3. 测试调度程序:```javapublic class Main {public static void main(String[] args) {List<Process> processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));Scheduler scheduler = new Scheduler(processes); System.out.println("FCFS调度结果:");scheduler.fcfs();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));System.out.println("SJF调度结果:");scheduler.sjf();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));System.out.println("RR调度结果(时间片为2):");scheduler.rr(2);for (Process process : processes) {System.out.println(process);}}}```五、实验结果与分析通过实验,我们可以观察到以下结果:1. FCFS调度算法简单,但可能导致长作业等待时间过长。
操作系统实验报告进程调度
操作系统实验报告进程调度操作系统实验报告:进程调度引言操作系统是计算机系统中最核心的软件之一,它负责管理和调度计算机的资源,提供良好的用户体验。
在操作系统中,进程调度是其中一个重要的功能,它决定了进程的执行顺序和时间片分配,对于提高计算机系统的效率和响应能力至关重要。
本篇实验报告将重点介绍进程调度的相关概念、算法和实验结果。
一、进程调度的概念进程调度是操作系统中的一个重要组成部分,它负责决定哪个进程可以使用CPU,并为其分配执行时间。
进程调度的目标是提高系统的吞吐量、响应时间和公平性。
在多道程序设计环境下,进程调度需要考虑多个进程之间的竞争和协作,以实现资源的合理利用。
二、进程调度算法1. 先来先服务调度(FCFS)先来先服务调度算法是最简单的进程调度算法之一,它按照进程到达的顺序进行调度,即先到达的进程先执行。
这种算法的优点是公平性高,缺点是无法适应长作业和短作业混合的情况,容易产生"饥饿"现象。
2. 最短作业优先调度(SJF)最短作业优先调度算法是根据进程的执行时间来进行调度的,即执行时间最短的进程先执行。
这种算法的优点是能够最大程度地减少平均等待时间,缺点是无法适应实时系统和长作业的情况。
3. 时间片轮转调度(RR)时间片轮转调度算法是一种抢占式调度算法,它将CPU的执行时间划分为固定大小的时间片,并按照轮转的方式分配给各个进程。
当一个进程的时间片用完后,它将被挂起,等待下一次调度。
这种算法的优点是能够保证每个进程都能够获得一定的执行时间,缺点是无法适应长作业和短作业混合的情况。
4. 优先级调度(Priority Scheduling)优先级调度算法是根据进程的优先级来进行调度的,优先级高的进程先执行。
这种算法的优点是能够根据进程的重要性和紧急程度进行灵活调度,缺点是可能会导致低优先级的进程长时间等待。
三、实验结果与分析在实验中,我们使用了不同的进程调度算法,并对其进行了性能测试。
进程调度操作系统实验报告
进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。
二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。
先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。
这种算法简单直观,但可能导致短作业等待时间过长。
短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。
如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。
优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。
四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。
2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。
从就绪队列中取出第一个进程进行调度执行,直到其完成。
3、实现短作业优先算法计算每个进程的剩余服务时间。
将进程按照剩余服务时间从小到大排序,放入就绪队列。
从就绪队列中取出剩余服务时间最短的进程进行调度执行。
4、实现时间片轮转算法设定时间片大小。
将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。
进程在时间片内未完成的,放回就绪队列末尾。
5、实现优先级调度算法为每个进程设置优先级。
将进程按照优先级从高到低排序,放入就绪队列。
从就绪队列中取出优先级最高的进程进行调度执行。
6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。
《操作系统》上机实验报告—进程调度
《操作系统》上机实验报告实验算法主体内容及#include<stdio.h>#include<dos.h>#include<stdlib.h>#include<conio.h>#include<iostream.h>#define P_NUM 5 // 共有5 个进程#define P_TIME 50 //作为优先数计算时所用的值enum state{ready,execute,block, finish};//进程的状态,使用枚举struct pcb{char name[4]; // 进程名称int priority; //进程优先级int cputime; //已经占有cpu运行的时间int needtime; //还需要运行的时间int count; //在时间片轮转法中使用的int round; //在时间片轮转法中使用的state process; //进程的状态pcb *next; //指向下一个进程的pcb};pcb *get_process() //通过输入各进程的值来建立pcb队列,并返回其首元素的指针{pcb *q;pcb *t;pcb *p;int i=0;coutvv"请输入进程名与时间"<<endl;while(i<P_NUM){q=(struct pcb *)malloc(sizeof(pcb));cin>>q->name; cin>>q->needtime; q->cputime=O;q->priority=P_TIME-q->needtime;q->round=0; q->count=0;q->process=ready;q->next=NULL;if (i==0){p=q;t=q;}else{ t->next=q; t=q; } i++;}return p;}void display(pcb *p) //显示本轮运行后的进程各状态情况{coutvv" 进程各状态情况"vvendl;coutvv"名称"vv" "vv"进入时间"vv" "vv"还需时间"vv" "vv"优先级"vv" "vv"状态"vvendl;while(p){coutvvp->name;coutvv" ";coutvvp->cputime;coutvv" ";coutvvp->needtime;coutvv" ";cout<vp_>priority;coutvv"";switch(p->process) //对枚举类型的输出方法{case ready:cout< <"就绪"<<endl;break;case execute:cout< <"执行"<<endl;break;case block:cout<<"阻塞"<<endl;break;case finish:cout<<"完成"<<endl;break;} p=p->next;}}int process_finish(pcb *q) //判断所有的进程是否运行结束{ -int b=1;while(q&&b){b=b&&q->needtime==O; q=q_>next;} return b;}void cpuexe(pcb *q) //优先级调度算法的一次执行{pcb *t;t=q;int i=0;while(q){if (q->process!=finish){q_>process=ready;if(q->needtime==0) q->process=finish;} if(i<q->priority) if(q->process!=finish){ t=q;i=q->priority;} q=q->next;}t->needtime-=1;t_>priority_=3; if(t->needtime==0)t->process=finish; t->cputime+=1;}void priority_cal() //优先级调度算法{pcb *p;P=get_process();〃取得进程队列int cpu=0;while(!process_finish(p)) //若进程并未全部结束,则还需要执行{cpu++;coutvv"运行次数:"vvcpuwendl; cpuexe(p);//一次cpu的执行display(p);//显示本次执行结果}}pcb * get_process_round()Jpcb *q;pcb *t;pcb *p;int i=0;coutvv"请输入进程名与时间"《endl;while (i<P_NUM){q=(struct pcb *)malloc(sizeof(pcb));cin>>q->name;cin>>q->needtime; q->cputime=O;q->round=0;q->count=0;q_>process=ready; q->next=NULL; if(i==0){p=q;t=q;}else{} i++; } return p;} t->next=q; t=q;void cpu_round(pcb *q){-q->count++;q->cputime+=2;q->needtime-=2;if(q->needtime<0)q->needtime=0;q->round++;q->process=execute;}pcb *get_next(pcb *k,pcb *head){ -pcb *t;t=k; do{t=t->next;}while (t && t->process==finish);if(t==NULL){} return t; t=head;while (t->next!=k && t->process==finish) {t=t->next;}void set_state(pcb *p){-while(p){if (p->needtime==O){p->process=finish;}if (p->process==execute){p_>process=ready;} p=p_>next;}}void display_round(pcb *p){ -cout«" 进程各状态情况"vvendl;coutvv"名称"vv" "vv"进入时间"vv" "vv"还需时间"vv" "vv"时间片"vv"" vv"次数"vv""vv"状态"vvendl;while(p){coutvvp->name;coutvv" ";coutvvp->cputime;coutvv" ";coutvvp->needtime;coutvv" ";coutvvp->round;coutvv"";coutvvp->count;coutvv"";switch(p->process){case ready:coutv v"就绪"vvendl;break;case execute:coutvv'执行"vvendl;break;case finish:coutvv"完成"vvendl;break;}p=p->next;}}void round_cal(){pcb *p;pcb *r;p=get_process();int cpu=0;r=p;while(!process_finish(p)){cpu+=2;cpu_round(r);r=get_next(r,p);coutvv"运行次数"vvcpuvvendl;display_round(p);set_state(p);} }-void display_menu(){ -coutvv"进程调度算法操作:"vvendl;coutvv"1 优先数"vvendl;coutvv"2 时间片轮转"vvendl;coutvv"3 退出"vvendl;}void main(){display_menu();int k;printf("请选择:");scanf("%d",&k);switch(k){case 1:priority_cal();break;case 2:round_cal();break;case 3:break;}} ----------------------------------------------------------------------------------------------------------测试数据:¥间出择1A.时退选r 5642 3込簷运行结果:1优先数S却曰石石<奪--a S 亠 亡疋出尢尤扫 亡、 ^a ^T B a 抄各时 各时 进还进还称进入时|可0 3 0I! IS 运行次数 “称进入时间II态成養成成忧完就完完完&0 94 2R p f c 32 3 4 3 % 扰冋运行次数心 泊称进入吋冋R5 R 5 C4 卜2佳行次数陰态成成成成成状§_f c s ^H Z B6 4 28尸尤32 3 4结果截图与分析2、时间片轮转10 0名称进入时问64 42 运行次数t k 称进入吋间A称进入时间竇鶴躺翻聶s _^->4p 者者者奁廿者_J-^□者者HiH8 数 謝还轎時 0 00 0 0次数0 口2 1 21 2 3 3216 6 42 2 1 20 Q 0D F次数3 E34 4 1 1 e s 02 0 0态成成态成衣成成些兀执完lla兀。
进程调度 实验报告
进程调度实验报告进程调度实验报告概述:进程调度是操作系统中一个重要的组成部分,它负责决定在多个进程同时运行时,每个进程分配到的CPU时间片以及切换进程的时机。
合理的进程调度算法能够提高系统的性能和资源利用率,因此对进程调度的研究和优化具有重要意义。
1. 背景介绍进程调度是操作系统中的一个关键任务,它负责管理和控制多个进程的执行顺序,以实现对CPU的合理分配。
在多道程序设计环境下,进程调度的作用尤为重要。
进程调度算法的好坏直接影响着系统的性能和响应速度。
2. 进程调度算法2.1 先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的先后顺序进行调度,即先到达的进程先执行,直到该进程执行完成或者发生I/O操作。
FCFS算法的优点是公平且易于实现,但是它无法适应不同进程的执行时间差异,可能导致长作业效应。
2.2 最短作业优先(SJF)最短作业优先调度算法是根据进程的执行时间长度来进行调度,执行时间越短的进程越优先执行。
SJF算法能够最大程度地减少平均等待时间,但是它需要预先知道进程的执行时间,这在实际应用中往往是不可行的。
2.3 时间片轮转(RR)时间片轮转是一种经典的调度算法,它将CPU的执行时间划分为若干个时间片,每个进程在一个时间片内执行,如果时间片用完还没有执行完,则将该进程放入就绪队列的末尾,继续执行下一个进程。
RR算法能够保证每个进程都能获得公平的CPU时间,但是对于长时间执行的进程,会导致较大的上下文切换开销。
3. 实验设计与结果分析为了评估不同进程调度算法的性能,我们设计了一系列实验。
首先,我们使用不同的进程到达时间和执行时间生成一组测试数据。
然后,分别使用FCFS、SJF和RR算法进行调度,并记录每个进程的等待时间和周转时间。
最后,我们对实验结果进行分析。
实验结果显示,FCFS算法对于执行时间较长的进程会出现较长的平均等待时间,而SJF算法能够有效减少平均等待时间。
进程的调度实验报告(3篇)
第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
操作系统实验——动态优先级进程调度实验报告
1.实验名称:动态优先权调度过程中就绪队列的模拟2.实验要求:采用动态优先权的进程调度算法,用C语言编程模拟调度过程中每个时间片内的就绪队列。
3.实验内容:(1)每个进程控制块PCB用结构描述,包括以下字段:*进程标识符id*进程优先数priority,并规定优先数越大的进程,其优先权越高。
*进程已占用的CPU时间cputime*进程还需占用的CPU时间alltime,当进程运行完毕时,aiitime变为0*进程的阻塞时间startblock,当进程再运行startblock个时间片后,进程将进入阻塞状态*进程被阻塞的时间blocktime,已阻塞的进程再等待blocktime个时间片后,将转换成就绪状态*进程状态state*队列指针next,将PCB排成队列。
2)调度前,系统中有五个进程,它们的初始状态如下:3)进程在就绪队列呆一个时间片,优先数增加1。
4)进程每运行一个时间片,优先数减3。
5)按下面格式显示每个时间片内就绪队列的情况:READY_QUEUE:->id1->id24.任务分析进程控制块用结构体来表示,包含它的各项属性。
建立两个队列:一个就绪队列,一个阻塞队列。
创建一个进程控制块表示当前正在运行的进程。
程序开始运行时,所有进程都在就绪队列中。
当startblock减少到0时,进程进入阻塞队列。
在阻塞队列中的进程,当blocktime减少到0时,转入就绪队列。
在就绪队列中的进程,如果优先级比当前正在执行的进程高,就可以取代当前进程获取时间片。
当前进程如果运行完毕,就绪队列中优先级最高的进程就可以成为新当前进程。
5.程序流程图#include〈iostream〉#include〈string〉usingnamespace std;#define LEN5typedefenum STATE{READYBLOCKEND}STATE;//定义进程控制块typedefstruct PCB{int id;int priority;int cputime;int alltime;int startblock;int blocktime;STATE state;}PCB;//定义队列typedefstruct queue{int si ze;PCB*data[LEN];}Queue;PCB ps[LEN];PCB*cp; //进程最大数量//进程状态//就绪//阻塞//完成//进程标识符//进程优先级//已占用的CPU时间//还需占用的CPu时间//阻塞时间//被阻塞时间//进程状态//队列中进程的数量//进程的指针//进程数组//当前正在运行的进程6.程序清单Queue rQueue,bQueue;//就绪队列和阻塞队列//就绪队列按优先级降序排序(使用了冒泡排序法)void rQueueSort(){ PCB*temp;for(int i=0;i<rQueue.size-1;i++){for(int j=0;j<rQueue.size-1-i;j++){if(rQueue.data[j]-〉priority<rQueue.data[j+1]-〉priority){temp=rQueue.data[j];rQueue.data[j]=rQueue.data[j+1];}}rQueue.dataj+1]=temp;}}//初始化void init(){//给进程赋值for(int i=0;i<LEN;i++){ps[i].id=i;ps[i].state=READY;ps[i].cputime=0;ps[i].alltime=3;ps[i].blocktime=0;ps[i].startblock=T;}ps[0].priority=9;ps[1].priority=38;ps[2].priority=30;ps[3].priority=29;ps[4].priority=0;ps[2].alltime=6;ps[4].alltime=4;ps[0].startblock=2;ps[0].blocktime=3;cp=NULL;//当前进程赋空bQueue.size=0;//阻塞队列没有进程for(int i=0;i<LEN;i++){bQueue.data[i]=NULL;rQueue.data[i]=&ps[i];}rQueue.size=5;//所有进程全部进入就绪队列rQueueSort();//对就绪队列排序}//打印void print(){cout〈〈"\nRUNNINGPROG:";if(cp!=NULL){cout〈〈cp->id;}cout<<"\nREADY_QUEUE:";for(int i=0;i<rQueue.size;i++){cout〈〈"-〉"〈〈rQueue.data[i]-〉id; }cout<<"\nBLOCK_QUEUE:";for(int i=0;i<bQueue.size;i++){cout〈〈"-〉"〈〈bQueue.data[i]-〉id; }cout〈〈"\n"<<endl;cout<<"ID\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].id<<"\t";}cout<<"\nPRI0RITY\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].priority〈〈"\t";}cout<<"\nCPUTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].cputime〈〈"\t";}cout<<"\nALLTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].alltime〈〈"\t";}cout<<"\nSTARTBLOCK\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].startblock<<"\t";}cout<<"\nBLOCKTIME\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].blocktime<<"\t";}cout<<"\nSTATE\t\t";for(int i=0;i<LEN;i++){if(ps[i].state==READY){cout<<"READY"<<"\t";}elseif(ps[i].state==BLOCK){cout<<"BLOCK"<<"\t";}elseif(ps[i].state==END){cout〈〈"END"<<"\t";}}cout〈〈endl;}//出队,返回进程指针PCB*pop(Queue*q){PCB*temp;if(q-〉size>0){temp=q-〉data[0];//取出队首进程for(int i=0;i<q-〉size-1;i++){q-〉data[i]=q-〉data[i+1];//其他进程依次向前移动}q->size__;return temp;//返回队首进程}return NULL;}//入队void push(Queue*q,PCB*p){if(q_>size<LEN){q_>data[q_〉size]=p;//将入队的进程放在队尾q_>size++;}return;}//运行进程void run(){if(rQueue.size〉0||bQueue.size〉0){if(cp==NULL){//程序一开始运行时,从就绪队列取出首进程cp=pop(&rQueue);}//当前进程没有结束,但优先级比就绪队列首进程低if(cp_〉alltime〉0&&cp_>priority<rQueue.data[0]_〉priority){}push(&r Queue,c//改变进程状态//从就绪队列取出新的当前进程//修改当前进程的状态 //将当前进程加入阻塞队列 //从就绪队列取出新的当前进程{//当前进程的startblock 为正数时//运行一次减一个时间片//减到0时,修改进程状态//每运行一个时间片//就绪队列中的进程优先级+1//每运行一个时间片//阻塞队列中的进程blocktime-1//将当前进程放入就绪队列 //就绪队列队首进程成为当前进程if (cp-〉alltime==0){cp->state =END ;cp=pop(&rQueue); }//如果当前进程运行结束//startblock 为0,标志着当前进程要进入阻塞状态if (cp —>startblock==0&&cp —>blocktime>0){cp —>state=BLOCK ; push(&bQueue,cp); cp=pop(&rQueue); }elseif (cp —>startblock>0)cp —>st artblock 一; }cp —>alltime ——;if (cp —>alltime==0){cp —>state=END ;for (int i=0;i<rQueue.size;i++){rQueue.data[i]-〉priority++; }for (int i=0;i<bQueue.size;i++){if (bQueue.data[i]-〉blocktime>0){bQueue.data[i]-〉blocktime--; }//当阻塞队列队首进程blocktime 为0时if (bQueue.size 〉0&&bQueue.data[0]-〉blocktime==0){bQueue.data[0]-〉state=READY ;//修改进程状态push(&rQueue,pop(&bQueue));//将阻塞队列首进程取出,放入就绪队列cp —〉priority-=3;//修改当前进程的优先级cp —>cputime++; //当前进程占用CPU 时间片+1 if (cp —>alltime>0){//当前进程还需运行的时间片-1}//每运行一个时间片,就绪队列排一次序rQueueSort();} }//主函数int main(){init();//初始化 print();//打印进程信息 while (1){_sleep(1000);if (rQueue.size==0&&bQueue.size==0){//当两个队列都为空时,结束程序cp-〉state=END ;break ; }run();//运行进程 print();//打印进程信息 }return 0; }7.实验过程记录m 匚:\WINDQWS\system32\cmd.exe程序开始执行,当前进程是优先级最高的1号进程,1号进程的优先级减3、cputime++、执行几次之后,1号进程执行完毕而且优先级也不是最高的了,所以优先级为33的2号进程成为当前进程,开始执行。
操作系统实验一进程调度
操作系统实验一进程调度在计算机科学中,操作系统是管理计算机硬件与软件资源的程序,是计算机系统的内核与基石。
而进程调度作为操作系统的核心功能之一,对于系统的性能和资源利用率起着至关重要的作用。
本次操作系统实验一,我们将深入探讨进程调度的原理和实现。
进程,简单来说,是正在运行的程序的实例。
在多道程序环境下,多个进程可能同时竞争计算机系统的资源,如 CPU、内存、I/O 设备等。
进程调度的任务就是从就绪队列中选择一个合适的进程,并将 CPU 分配给它,以实现资源的合理分配和系统的高效运行。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。
先来先服务算法按照进程到达就绪队列的先后顺序进行调度,这种算法简单直观,但可能导致短作业等待时间过长,从而影响系统的整体性能。
短作业优先算法则优先调度运行时间短的进程,能够有效降低平均等待时间,但可能对长作业不利,容易造成“饥饿”现象。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片的 CPU 使用权。
这种算法能够保证每个进程都能得到及时响应,但时间片的大小选择需要权衡系统的开销和响应时间。
优先级调度算法为每个进程赋予一个优先级,优先级高的进程优先获得 CPU 资源。
然而,确定合理的优先级以及避免低优先级进程“饥饿”是该算法需要解决的问题。
在实验中,我们通过模拟实现这些调度算法,来深入理解它们的工作原理和性能特点。
以时间片轮转算法为例,我们首先需要创建一个就绪队列来存放等待调度的进程。
每个进程包含进程 ID、所需运行时间、已运行时间等信息。
在调度过程中,从就绪队列头部取出一个进程,判断其剩余运行时间是否小于等于时间片。
如果是,则该进程运行完毕,从队列中删除;否则,将其已运行时间增加时间片大小,剩余运行时间减少时间片大小,然后将其移到队列尾部,等待下一轮调度。
通过对不同调度算法的模拟实验,我们可以观察到它们在不同场景下的表现。
操作系统进程调度实验报告
操作系统进程调度实验报告操作系统进程调度实验报告引言:操作系统是计算机系统中的核心软件之一,负责管理计算机的硬件资源并提供用户与计算机硬件之间的接口。
进程调度作为操作系统的重要功能之一,负责决定哪个进程可以获得处理器的使用权,以及进程如何在处理器上运行。
本实验旨在通过设计和实现一个简单的进程调度算法,加深对操作系统进程调度原理的理解。
一、实验目的本实验的主要目的是通过编写代码模拟操作系统的进程调度过程,掌握进程调度算法的实现方法,深入理解不同调度算法的特点和适用场景。
二、实验环境本实验使用C语言进行编程实现,可在Linux或Windows系统下进行。
三、实验内容1. 进程调度算法的选择在本实验中,我们选择了最简单的先来先服务(FCFS)调度算法作为实现对象。
FCFS算法按照进程到达的先后顺序进行调度,即先到先服务。
这种调度算法的优点是简单易实现,但缺点是无法适应不同进程的执行时间差异,可能导致长作业效应。
2. 进程调度的数据结构在实现进程调度算法时,我们需要定义进程的数据结构。
一个进程通常包含进程ID、到达时间、执行时间等信息。
我们可以使用结构体来表示一个进程,例如:```struct Process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间};```3. 进程调度算法的实现在FCFS调度算法中,我们需要按照进程到达的先后顺序进行调度。
具体实现时,可以使用一个队列来保存待调度的进程,并按照到达时间的先后顺序将进程入队。
然后,按照队列中的顺序依次执行进程,直到所有进程执行完毕。
4. 实验结果分析通过实现FCFS调度算法,我们可以观察到进程调度的过程和结果。
可以通过输出每个进程的执行顺序、等待时间和周转时间等指标来分析调度算法的效果。
通过比较不同调度算法的指标,可以得出不同算法的优缺点。
四、实验步骤1. 定义进程的数据结构,包括进程ID、到达时间和执行时间等信息。
进程调度实验报告答案(3篇)
第1篇一、实验目的通过本次实验,加深对操作系统进程调度过程的理解,掌握三种基本调度算法(先来先服务(FCFS)、时间片轮转、动态优先级调度)的原理和实现方法,并能够通过编程模拟进程调度过程,分析不同调度算法的性能特点。
二、实验环境1. 操作系统:Linux/Windows2. 编程语言:C/C++3. 开发环境:Visual Studio、Code::Blocks等三、实验内容1. 实现三种基本调度算法:FCFS、时间片轮转、动态优先级调度。
2. 编写代码模拟进程调度过程,包括进程创建、进程调度、进程运行、进程结束等环节。
3. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。
4. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。
四、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、已用时间、优先数、进程状态等信息。
2. 实现进程调度函数,根据所选调度算法进行进程调度。
3. 编写主函数,初始化进程信息,选择调度算法,并模拟进程调度过程。
4. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。
5. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。
五、实验结果与分析1. FCFS调度算法实验结果:按照进程到达时间依次调度,每个进程结束后,调度下一个进程。
分析:FCFS调度算法简单,易于实现,但可能会导致进程的响应时间较长,特别是当有大量进程到达时,后到达的进程可能会长时间等待。
2. 时间片轮转调度算法实验结果:每个进程完成一个时间片后,放弃处理机,转到就绪队列队尾。
分析:时间片轮转调度算法能够保证每个进程都能得到一定的运行时间,但可能会出现进程饥饿现象,即某些进程长时间得不到运行。
3. 动态优先级调度算法实验结果:每个进程完成一个时间片后,优先级减1,插入到就绪队列相关位置。
分析:动态优先级调度算法能够根据进程的运行情况动态调整优先级,使得优先级高的进程能够得到更多的运行时间,从而提高系统的响应速度。
进程调度模拟程序实验实验报告
进程调度模拟程序实验实验报告一、实验目的进程调度是操作系统的核心功能之一,它负责合理地分配 CPU 资源给各个进程,以提高系统的性能和效率。
本次实验的目的是通过编写和模拟进程调度程序,深入理解不同的进程调度算法的原理和特点,并比较它们在不同情况下的性能表现。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
操作系统为 Windows 10。
三、实验原理1、先来先服务(FCFS)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 资源。
2、短作业优先(SJF)调度算法短作业优先调度算法优先调度执行时间短的进程。
3、时间片轮转(RR)调度算法时间片轮转调度算法将 CPU 时间划分为固定大小的时间片,每个进程轮流获得一个时间片的 CPU 资源。
四、实验设计1、进程类的设计创建一个进程类,包含进程 ID、到达时间、服务时间、剩余服务时间等属性,以及用于更新剩余服务时间和判断进程是否完成的方法。
2、调度算法实现分别实现先来先服务、短作业优先和时间片轮转三种调度算法。
3、模拟流程(1)初始化进程列表。
(2)按照选定的调度算法进行进程调度。
(3)计算每个进程的等待时间、周转时间等性能指标。
五、实验步骤1、定义进程类```pythonclass Process:def __init__(self, pid, arrival_time, service_time):selfpid = pidselfarrival_time = arrival_timeselfservice_time = service_timeselfremaining_service_time = service_time```2、先来先服务调度算法实现```pythondef fcfs_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0for process in process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("先来先服务调度算法的平均等待时间:",average_waiting_time)print("先来先服务调度算法的平均周转时间:",average_turnaround_time)```3、短作业优先调度算法实现```pythondef sjf_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0sorted_process_list = sorted(process_list, key=lambda x: xservice_time) for process in sorted_process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("短作业优先调度算法的平均等待时间:",average_waiting_time)print("短作业优先调度算法的平均周转时间:",average_turnaround_time)```4、时间片轮转调度算法实现```pythondef rr_scheduling(process_list, time_slice):current_time = 0total_waiting_time = 0total_turnaround_time = 0ready_queue =while len(process_list) > 0 or len(ready_queue) > 0:for process in process_list:if processarrival_time <= current_time:ready_queueappend(process)process_listremove(process)if len(ready_queue) == 0:current_time += 1continueprocess = ready_queuepop(0)if processremaining_service_time <= time_slice: waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += processremaining_service_time turnaround_time = current_time processarrival_time total_turnaround_time += turnaround_time processremaining_service_time = 0else:waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += time_sliceprocessremaining_service_time = time_sliceready_queueappend(process)average_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均等待时间:", average_waiting_time)print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均周转时间:", average_turnaround_time)```5、主函数```pythonif __name__ =="__main__":process_list =Process(1, 0, 5),Process(2, 1, 3),Process(3, 2, 8),Process(4, 3, 6)print("先来先服务调度算法:")fcfs_scheduling(process_list)print("短作业优先调度算法:")sjf_scheduling(process_list)time_slice = 2print("时间片轮转调度算法(时间片大小为",time_slice, "):")rr_scheduling(process_list, time_slice)```六、实验结果与分析1、先来先服务调度算法平均等待时间为 575,平均周转时间为 1275。
华师操作系统实验一——进程调度的设计与实现实验报告
华师操作系统实验一——进程调度的设计与实现实验报告实验名称:华师操作系统实验一,进程调度的设计与实现一、实验目的1.了解进程调度的概念和作用;2.熟悉进程调度算法的原理和实现方式;3.掌握进程调度的设计与实现方法。
二、实验要求1.设计并实现一个简单的进程调度器;2.使用给定的进程列表作为参考;3.实现多个进程调度算法;4.在给定的时间片内完成所有进程的调度。
三、实验原理进程调度是操作系统中一个重要的功能,它负责按照一定的算法和策略将系统资源分配给各个进程,实现进程的合理调度和运行。
不同的进程调度算法有不同的优缺点。
常见的进程调度算法包括:先来先服务调度算法(FCFS)、短作业优先调度算法(SJF)、高响应比优先调度算法(HRRN)、时间片轮转调度算法(RR)等。
在本次实验中,我们需要设计实现一个简单的进程调度器,要求支持多个进程调度算法,并能够在给定的时间片内完成所有进程的调度。
四、实验步骤1.初始进程列表:根据实验要求,获取给定的进程列表,包括进程名称、到达时间、服务时间等信息;2.进程调度算法设计:根据实验要求,选择并设计多个进程调度算法;3.进程调度器设计:根据选定的进程调度算法,设计进程调度器的数据结构和实现方式;4.进程调度器实现:根据前述设计,实现进程调度器的主要功能,包括创建调度器、添加进程、运行调度算法、输出调度结果等;5.测试与优化:使用给定的进程列表对进程调度器进行测试,并根据测试结果进行优化。
五、实验结果及分析根据实验要求,我们设计并实现了一个简单的进程调度器,并支持了多个进程调度算法。
在测试中,我们发现不同的调度算法对于不同的进程列表有不同的影响。
先来先服务调度算法(FCFS)适合服务时间较短的进程列表,能够保证所有进程按照到达顺序依次执行,但可能会导致服务时间较长的进程等待时间过长。
短作业优先调度算法(SJF)适合服务时间较长的进程列表,能够尽可能地减少平均等待时间,但可能会导致服务时间较短的进程等待时间过长。
操作系统实验进程调度
实验三进程调度一. 实验目的加深理解并模拟实现进程(作业)调度算法。
1)熟悉常用的进程调度算法, 如FCFS、SPF、FPF、高响应比优先、时间片轮转;2)结合所学的数据结构及编程知识, 选择三种进程调度算法予以实现。
二. 实验属性该实验为设计性实验。
三. 实验仪器设备及器材普通PC386以上微机四. 实验要求本实验要求2学时完成。
1)本实验要求完成如下任务:2)编程实现单处理机系统中的进程调度, 要求从FCFS、SPF、FPF、高响应比优先、时间片轮转算法中至少选择三个;3)最后编写主函数对所做工作进行测试。
实验前应复习实验中所涉及的理论知识和算法, 针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A), 并要求用正规的实验报告纸和封面装订整齐, 按时上交。
五: 实验具体设计此程序模拟了两种调度算法, FCFS和SPF, 首先FCFS就是按照进程的创建顺序依次顺序进行, 流程图为:进程顺序执行SPF:每次都进行循环, 选出在该时间刻运行时间最短的进程优先执行。
1.程序代码具体详解:2.创建一结构体作为进程控制器typedef struct PCB{int ID;char state;int arrivetime;int starttime;int finishtime;int servicetime;struct PCB *next;}pcb;定义全局变量作为计时器int time;//计时器创建进程链表:从txt文件中读取数据, 构造一条不含头结点的单链表void Create_process(){ifstream inFile;inFile.open("test.txt");inFile>>n;inFile.get();int i=0;for (;i<n;i++){p=(pcb *)malloc(sizeof(pcb));inFile>>p->ID;inFile>>p->arrivetime;inFile>>p->servicetime;p->starttime=0;p->finishtime=0;p->state='F';p->next=NULL;if(head==NULL){head=p;q=p;time=p->arrivetime;}if(p->arrivetime < time)time=p->arrivetime;q->next=p;q=p;}若执行FCFS算法, 按顺序遍历链表void fcfs1(){int i;p=head;for(i=0;i<n;i++){if(p->state=='F')q=p;run_fcfs1(q);}p=p->next;}}void run_fcfs1(pcb *p1){time = p1->arrivetime > time? p1->arrivetime:time;p1->starttime=time;printf("\n现在时间: %d,开始运行作业%d\n",time,p1->ID);time+=p1->servicetime;p1->state='T';p1->finishtime=time;printf("ID号到达时间开始运行时间服务时间完成时间\n");printf("%d%10d%12d%12d%12d\n",p1->ID,p1->arrivetime,p1->starttime,p1->servicetime,p 1->finishtime);}若执行SPF算法, 每次都从链表头开始遍历链表, 找出arrivetime<=time并且运行时间最短的节点, 执行该节点进程, 最后再删除该节点。
调度算法实验报告总结(3篇)
第1篇一、实验目的本次实验旨在通过模拟操作系统中的进程调度过程,加深对进程调度算法的理解。
实验中,我们重点研究了先来先服务(FCFS)、时间片轮转(RR)和动态优先级调度(DP)三种常见的调度算法。
通过编写C语言程序模拟这些算法的运行,我们能够直观地观察到不同调度策略对进程调度效果的影响。
二、实验内容1. 数据结构设计在实验中,我们定义了进程控制块(PCB)作为进程的抽象表示。
PCB包含以下信息:- 进程编号- 到达时间- 运行时间- 优先级- 状态(就绪、运行、阻塞、完成)为了方便调度,我们使用链表来存储就绪队列,以便于按照不同的调度策略进行操作。
2. 算法实现与模拟(1)先来先服务(FCFS)调度算法FCFS算法按照进程到达就绪队列的顺序进行调度。
在模拟过程中,我们首先将所有进程按照到达时间排序,然后依次将它们从就绪队列中取出并分配CPU资源。
(2)时间片轮转(RR)调度算法RR算法将CPU时间划分为固定的时间片,并按照进程到达就绪队列的顺序轮流分配CPU资源。
当一个进程的时间片用完时,它将被放入就绪队列的末尾,等待下一次调度。
(3)动态优先级调度(DP)算法DP算法根据进程的优先级进行调度。
在模拟过程中,我们为每个进程分配一个优先级,并按照优先级从高到低的顺序进行调度。
3. 输出调度结果在模拟结束后,我们输出每个进程的调度结果,包括:- 进程编号- 到达时间- 运行时间- 等待时间- 周转时间同时,我们还计算了平均周转时间、平均等待时间和平均带权周转时间等性能指标。
三、实验结果与分析1. FCFS调度算法FCFS算法简单易实现,但可能会导致进程的响应时间较长,尤其是在存在大量短作业的情况下。
此外,FCFS算法可能导致某些进程长时间得不到调度,造成饥饿现象。
2. 时间片轮转(RR)调度算法RR算法能够有效地降低进程的响应时间,并提高系统的吞吐量。
然而,RR算法在进程数量较多时,可能会导致调度开销较大。
进程调度实验报告源码
一、实验目的本次实验旨在通过模拟进程调度过程,加深对进程调度算法的理解,并掌握进程调度程序的设计与实现方法。
实验内容主要包括:创建进程、进程调度、进程执行、进程结束等。
二、实验环境操作系统:Linux编程语言:C/C++三、实验内容1. 进程调度算法本实验采用三种进程调度算法:FIFO(先进先出)、时间片轮转法、多级反馈队列调度算法。
2. 进程调度程序设计进程调度程序主要由以下部分组成:(1)进程控制块(PCB)PCB用于描述进程的基本信息,包括进程名、到达时间、需要运行时间、已运行时间、进程状态等。
(2)就绪队列就绪队列用于存储处于就绪状态的进程,按照进程的优先级或到达时间进行排序。
(3)进程调度函数进程调度函数负责从就绪队列中选择一个进程进行执行,并将CPU分配给该进程。
(4)进程执行函数进程执行函数负责模拟进程的执行过程,包括进程的创建、执行、结束等。
四、实验源码```c#include <stdio.h>#include <stdlib.h>#include <time.h>#define MAX_PROCESSES 10typedef struct PCB {int pid;int arrival_time;int need_time;int used_time;int priority;int state; // 0: 等待 1: 运行 2: 完成} PCB;PCB processes[MAX_PROCESSES];int process_count = 0;typedef struct Queue {PCB queue;int front;int rear;int size;} Queue;Queue ready_queue;void init_queue(Queue q) {q->queue = (PCB )malloc(sizeof(PCB) MAX_PROCESSES); q->front = q->rear = 0;q->size = 0;}void enqueue(Queue q, PCB p) {if (q->size == MAX_PROCESSES) {printf("Queue is full.\n");return;}q->queue[q->rear] = p;q->rear = (q->rear + 1) % MAX_PROCESSES; q->size++;}PCB dequeue(Queue q) {if (q->size == 0) {printf("Queue is empty.\n");return NULL;}PCB p = &q->queue[q->front];q->front = (q->front + 1) % MAX_PROCESSES; q->size--;return p;}int is_empty(Queue q) {return q->size == 0;}void print_queue(Queue q) {printf("Queue: ");for (int i = 0; i < q->size; i++) {PCB p = &q->queue[(q->front + i) % MAX_PROCESSES];printf("PID: %d, Arrival Time: %d, Need Time: %d, Used Time: %d, Priority: %d, State: %d\n",p->pid, p->arrival_time, p->need_time, p->used_time, p->priority, p->state);}}void init_processes() {for (int i = 0; i < MAX_PROCESSES; i++) {processes[i].pid = i;processes[i].arrival_time = rand() % 10;processes[i].need_time = rand() % 10 + 1;processes[i].used_time = 0;processes[i].priority = rand() % 3;processes[i].state = 0;}}void schedule() {int time = 0;while (process_count > 0) {for (int i = 0; i < process_count; i++) {PCB p = &processes[i];if (p->arrival_time == time) {enqueue(&ready_queue, p);p->state = 1;}}if (!is_empty(&ready_queue)) {PCB p = dequeue(&ready_queue);p->used_time++;printf("Process %d is running.\n", p->pid);if (p->used_time == p->need_time) {p->state = 2;printf("Process %d is finished.\n", p->pid); }}time++;}}int main() {srand(time(NULL));init_queue(&ready_queue);init_processes();process_count = rand() % MAX_PROCESSES + 1;schedule();print_queue(&ready_queue);return 0;}```五、实验结果与分析1. FIFO调度算法实验结果表明,FIFO调度算法按照进程的到达时间进行调度,可能导致短作业等待时间长,效率较低。
进程调度实验报告
操作系统实验 报告实验项目: 进程调度学 院: 计算机学院专 业:班 级:学 号:姓 名:1. 实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。
当就绪进程个数大于处理机数时,就必须依照某种策略来决定哪些进程优先占用处理机。
本实验模拟在单处理机情况下的进程调度,加深了解进程调度的工作。
2. 实验内容设计一个按时间片轮转法实现进程调度的程序。
(1)假定系统有五个进程,每一个进程用一个进程控制块PCB 来代表,进程控制块的格式为:其中,进程名——作为进程的标识,假设五个进程的进程名分别为Q 1,Q 2,Q 3,Q 4,Q 5。
指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程的指针指出第一个进程的进程控制块首地址。
要求运行时间——假设进程需要运行的单位时间数。
已运行时间——假设进程已经运行的单位时间数,初始值为“0”。
状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R ”表示。
当一个进程运行结束后,它的状态为“结束”,用“E ”表示。
(2)每次运行所设计的进程调度程序前,为每个进程任意确定它的“要求运行时间”。
(3)把五个进程按顺序排成循环队列,用指针指出队列连接情况。
另用一标志单元记录轮到运行的进程。
例如,当前轮到Q 2执行,则有:进程名 指针 要求运行时间 已运行时间 状态标志单元(4)进程调度总是选择标志单元指示的进程运行。
由于本实验是模拟进程调度的功能,所以对被选中的进程并不实际的启动运行,而是执行“已运行时间+1”来模拟进程的一次运行,表示进程已经运行过一个单位的时间。
请注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理机运行,直到出现等待事件或运行满一个时间片。
在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。
(5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。
操作系统进程调度模拟程序实验报告
操作系统进程调度模拟程序实验报告一、实验目的本次实验旨在通过编写一个模拟操作系统进程调度的程序,以加深对进程调度算法的理解。
二、实验内容1. 实现进程相关的数据结构:进程PCB(Process Control Block)。
2.实现进程的创建、撤销以及调度等操作函数。
3. 实现常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)、轮转调度(RR)、优先级调度(Priority)。
4.编写测试程序,验证实现的进程调度算法在不同场景下的表现。
三、实验过程及结果1.进程PCB的设计与实现进程PCB是进程的核心数据结构,用于存储和管理进程相关的信息,包括进程状态(就绪、运行、阻塞)、优先级、执行时间等。
2.进程的创建、撤销及调度函数的实现(1)进程创建函数:实现进程的创建,包括为其分配空间、初始化进程PCB等。
可以根据实际需求,设定进程的优先级、执行时间等属性。
(2)进程撤销函数:实现进程的撤销,包括释放其占用的资源、回收其使用的空间等。
(3)进程调度函数:根据不同的调度算法,实现进程的调度。
可以通过设置时间片大小、优先级设定等方式,实现不同调度算法的效果。
3.进程调度算法的设计与实现(1)先来先服务(FCFS)调度算法:按照进程到达的先后顺序,依次进行调度。
(2)最短作业优先(SJF)调度算法:根据进程的执行时间,选择执行时间最短的进程进行调度。
(3)轮转调度(RR)算法:按照时间片的大小进行调度,每个进程在一个时间片内执行,超过时间片后,暂停并进入等待队列,让其他进程执行。
(4)优先级调度(Priority)算法:根据进程的优先级,选择优先级最高的进程进行调度。
4.测试程序编写测试程序,模拟不同的进程到达顺序、执行时间和优先级等场景,验证不同调度算法的表现。
四、实验结果与分析通过测试程序的运行结果,观察不同调度算法的特点和效果。
可以得出以下结论:1.FCFS算法适用于进程到达时间差异较大的场景,保证了先到先服务。
操作系统实验之进程调度报告
实验一:进程调度一、实习内容1.模拟批处理多道操作系统的进程调度;2.模拟实现同步机构避免并发进程执行时可能与时间相关的错误;二、实习目的进程调度时进程管理的主要内容之一,通过设计,编制,调试一个简单的进程调度模拟系统,对进程调度,进程运行状态变换及PV操作加深理解和掌握。
三、实习题目采用剥夺式优先算法,对三个进程进行模拟调度模拟PV操作同步机构,用PV操作解决进程进入临界区的问题。
【提示】(1)对三个进程进行模拟调度,对各进程的优先数静态设置,P1,P2,P3三个进程的优先数为1,2,3,并指定P1的优先数最高,P3的优先数最低,每个进程都处于执行态“e”,就绪态“r”,等待态“w”三种状态之一,并假定初始态为“r”。
(2)每一个进程用一个PCB表,PCB表的内容根据具体情况设置,该系统在运行过程中能显示或打印各进程和参数的变化情况,以便观察各进程的调度。
(3)在完成必要的初始化后,便进入进程调度程序,首先由P1进入执行,当执行进程因等待某各事件被阻塞或唤醒某个进程等待进程时,转进程调度。
(4)在进入临界区前后,调PV操作。
(5)如果被唤醒的进程优先数高于现有执行的进程,则剥夺现行进程的执行权。
(6)当三个进程都处于等待状态时,本模拟系统退出执行。
四、示例1.数据结构:(1)进程控制块PCBstruct{int id;char status;int priority;int waiter1;}(2)信号量struct{int value;int waiter2;}sem[2](3)现场保护栈stackchar stack[11][4]每个进程都有一个大小为10个字的现场保护栈,用来保护被中断时的断点地址等信息。
(4)全局变量int i;用以模拟一个通用寄存器char addr;用以模拟程序计数器int m1,m2;为系统设置的公用数据被三个进程共享使用。
五、程序框图:六、程序说明:本程序是用C语言编写,模拟三个进程的运行情况,过程在运行中要调用P操作申请信号量,如果该过程得到其申请的信号量,就继续运行,否则P操作阻塞该申请过程的运行,并将过程置为所申请信号量的等待者,如果已有其它过程在等待同一信号量则将该申请过程排在所有等待进程之后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学软件学院2019-2020学年第2学期实验报告课程名称:操作系统实验名称:进程调度实验完成人:日期: 2019 年 11 月 26 日一、实验目的1. 理解 Linux 管理进程所用到的数据结构。
2. 理解 Linux 的进程调度算法的处理逻辑及其实现所用到的数据结构。
二、实验内容1. 通过查阅参考书或者上网找资料,熟悉/usr/src/linux(注意:这里最后一级目录名可能是个含有具体内核版本号和“linux”字符串的名字)下各子目录的内容,即所含 Linux 源代码的情况。
2. 分析 Linux 进程调度有关函数的源代码,主要是 schedule()函数,并且要对它们引用的头文件等一并分析。
3. 实现 Linux 的进程调度算法及理解其实现所用的主要数据结构。
三、实验环境Linux下使用gcc+vscode四、实验过程描述第一部分:源代码分析:所需头文件:#include<linux/sched.h>#include<linux/kernel.h>#include<linux/sys.h>#include<linux/fdreg.h>#include<asm/system.h>#include<asm/io.h>#include<asm/segment.h>#include<signal.h><linux/kernel.h>:内核头文件,含有一些内核常用函数的原形定义。
<linux/fdreg.h>:软驱头文件,含有软盘控制器参数的一些定义。
<linux/sched.h>:调度程序头文件,主要定义了任务结构task_struct、初始任务0的数据,以及一些有关描述符参数设置和获取的嵌入式汇编函数宏语句。
<linux/sys.h>:系统调用头文件,主要是系统调用C函数处理程序。
<asm/io.h>:I/O头文件,以宏的嵌入汇编程序形式定义对I/O端口操作的函数。
<asm/segment.h>:段操作头文件,定义了有关段寄存器操作的嵌入式汇编函数。
<asm/system.h>:系统头文件,定义了设置或修改描述符/中断门等的嵌入式汇编宏。
<signal.h>:信号头文件,定义信号符号常量,信号结构以及信号操作函数原型。
Schedule.c部分函数分析:(大多写在注释里)show_task()函数某个进程的状态信息以及空间大小void show_task(int nr,struct task_struct*p)//显示p指向的nr号进程的相关信息{int i,j = 4096-sizeof(struct task_struct);//j记录了任务结构体之后的堆栈空间大小printk("%d: pid=%d, state=%d, ",nr,p->pid,p->state);//打印进程的各种信息i=0;while (i<j && !((char *)(p+1))[i])//计算了任务之后空字节的大小i++;printk("%d/%d chars free in kernel stack\n\r",i,j);//内核栈最大为j,空字节数是i,比例i/j}void show_stat(void) //打印所有进程的状态信息{int i;for (i=0;i<NR_TASKS;i++)if (task[i])show_task(i,task[i]);}Schedule()分析:schedule函数首先对所有的任务检查,唤醒任何一个已经得到信号的任务,也就是针对任务数组中的每个任务,检查其警报定时值alarm。
如果任务的alarm 已经超期(alarm < jiffies),则在它的信号位图中设置SIGALARM,然后清除alarm值。
之后schedule()函数首先扫描任务队列,通过比较每个就绪状态任务的运行时间递减计数counter的值来确定当前哪个进程运行的时间最少,哪个counter值最大.counter越大就说明运行时间越短,于是就选中该进程,并使用任务切换宏函数到该进程运行利用switch_to函数完成任务转换。
如果所有的就绪任务的该值都是0,则表示此刻所有任务的时间片都已运行完。
于是就根据任务的优先权值priority,重置每个任务的运行时间counter。
void schedule(void){int i, next, c;struct task_struct**p;/* check alarm, wake up any interruptible tasks that have got a sig nal */for (p = &LAST_TASK; p > &FIRST_TASK; --p) //把p初始化为指向最后一个进程的地址的指针,逆向扫描所有进程if (*p){ //当前进程if ((*p)->timeout && (*p)->timeout < jiffies){ // jiffies是持续变的,timeout 是阈值(*p)->timeout = 0;//如果当前进程等待很久了,并且这个进程处于TASK_INTERRUPTIBLEif ((*p)->state == TASK_INTERRUPTIBLE)(*p)->state = TASK_RUNNING; //我们就把这个进程置与TASK_RUNNING状态}if ((*p)->alarm && (*p)->alarm < jiffies){ //如果此时jiffies大于alarm信号周期,则让将SIGALRM写入进程的信号位(*p)->signal |= (1 << (SIGALRM - 1));(*p)->alarm = 0;}if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&(*p)->state == TASK_INTERRUPTIBLE) // 除SIGKILL SIGSTOP 信号外,其他信号都是非阻塞状态的话,并且进程处于TASK_INTERRUPTIBLE(*p)->state = TASK_RUNNING; //把这个进程置与TASK_RUNNING 状态}/* this is the scheduler proper: */while (1){c = -1;next = 0;i = NR_TASKS;p = &task[NR_TASKS];while (--i){ //把所有进程都扫一遍,counter是递减的,找出counter最大的进程,保存在next里面if (!*--p) //当前*p指向进程为空,下一个continue;if ((*p)->state == TASK_RUNNING && (*p)->counter > c)//counter是任务运行时间计数,如果当前进程是执行状态且运行时间数大于cc = (*p)->counter, next = i;}if (c)break; //c>0 就说明找到了已经运行一段时间,并且运行时间最短的进程,跳出while(1)for (p = &LAST_TASK; p > &FIRST_TASK; --p) //如果c==0,说明所有schedule的进程都没有运行if (*p)(*p)->counter = ((*p)->counter >> 1) +(*p)->priority; //重新计算counter = counter/2 + priority}switch_to(next); //让进程next使用CPU}}Sleep_on()函数分析:Sleep_on()函数sleep_on()函数的主要功能是当一个进程(或任务)所请求的资源正等待资源响应或不在内存中时暂时切换出去,放在等待队列中等待一段时间,先让别的程序运行一段时间,当切换回来后再继续运行。
巧妙的利用了tmp指针来作为与等待队列的联系void sleep_on(struct task_struct **p){struct task_struct *tmp;if (!p)return;if (current == &(init_task.task))panic("task[0] trying to sleep");tmp = *p; // tmp 指向原等待队列的头指针*p = current; //*p 指向等待队列的头指针,把current放入等待队列current->state = TASK_INTERRUPTIBLE; //当前状态为不可中断schedule(); //调度一下,if (tmp)tmp->state = 0; //task_running}Wake_up()函数分析:Wake_up用来唤醒进程(将状态置为task_running即可)void wake_up(struct task_struct**p)//唤醒进程{if (p && *p) {if ((**p).state == TASK_STOPPED)printk("wake_up: TASK_STOPPED");if ((**p).state == TASK_ZOMBIE)printk("wake_up: TASK_ZOMBIE");(**p).state=0; //TASK_RUNNING}}第二部分:实现进程调度算法进程调度算法:操作系统通过PCB来控制进程。
PCB是进程实体的一部分,是操作系统中最重要的记录性数据结构,用来管理和控制进程,每一个进程均有一个PCB,在创建进程时,建立PCB,伴随进程运行的全过程,直到进程撤消而撤消。
为了模拟进程调度算法,自定义了PCB:typedef struct PCB{__pid_t pid;int priority;int round_time;int wait_time;int demand_time; //所需要的总时间int cmplt_time; //完成时间int remain_time; //还需要的时间(RR)int suspend_time; //暂时被挂起的时刻(RR)int arrive_time; //到达时间int start_time; //开始执行时间struct PCB*next;}*p_pcb,PCB;然后实现FCFS,SJF,RR算法:FCFS算法:先给进程队列排序,按时间的先后顺序来排,先来的排前面。