初中数学竞赛讲座——数论部分2(整数的整除性)
初中数学《数的整除》讲义及练习 (2)
5-2数的整除教学目标本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要的一讲,也是竞赛常考的知识板块。
本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性,在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性的数字乘积形式来分析其整除性质。
另外一个难点是将数字的整除性上升到字母和代数式的整除性上,这个对于学生的代数思维是一个良好的训练也是一个不小的挑战。
知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b和c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、常见数的整除判定特征【例 1】已知道六位数20□279是13的倍数,求□中的数字是几?【巩固】六位数2008能被99整除,是多少?【巩固】六位数20□□08能被49整除,□□中的数是多少?【例 2】173□是个四位数字。
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)1. 下面这个41位数20555L 123个2099L 23个能被7整除,问中间方格代表的数字是几? 解析 因为5555555111111=⨯,9999999111111=⨯,11111137111337=⨯⨯⨯⨯,所以555555和999999都能被7整除,那么由18个5和18个9分别组成的18位数,也能被7整除.而原数=185230555000L L 123123个个1851890999+L L 123123个个,因此右边的三个加数中,前后两个数都能被1整除,那么只要中间的能被7整除,原数就能被7整除.把拆成两个数的和:5599BA B +.因为7|55300,7|399336+=.评注 记住111111能被7整除很有用.2. 一位魔术师让观众写下一个六位数a ,并将a 的各位数字相加得b ,他让观众说出a b -中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数,问那个数是多少?解析 由于一个数除以9所得的余数与这个数的数字和除以9所得的余数相同,所以a b -是9的倍数.设余下的那个数为x ,则()9|13579x +++++,即 ()9|7x +,由于09x ≤≤,所以,2x =.3. 若p 、q 、21p q -、21q p-都是整数,并且1p >,1q >.求pq 的值. 解析 若p q =,则212112p p q p p--==- 不是整数,所以p q ≠.不妨设p q <,于是2121212p q q q q q--<<=≤, 而21p q -是整数,故211p q-=,即21q p =-.又 214334q p p p p--==- 是整数,所以p 只能为3,从而5q =.所以3515pq =⨯=.4. 试求出两两互质的不同的三个正整数x 、y 、z 使得其中任意两个的和能被第三个数整除.解析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.不妨设x y z <<,于是y z x +、z x y +、x y z+都是正整数.先考虑最小的一个:12x y z z z z++<=≤, 所以1x y z+=,即z x y =+.再考虑z x y +,因为()|y z x +,即()|2y y x +,所以|2y x ,于是2212x y y y <=≤, 所以21x y=,即2y x =,从而这三个数为x 、2x 、3x .又因为这三个数两两互质,所以1x =.所求的三个数为1、2、3.5. 证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 ()()()()22222121231121n n n n n -+++++=++. 所以 ()()()22212|212123n n n ⎡⎤-++++⎣⎦. 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故()()()22224212123n n n ⎡⎤-++++⎣⎦Œ. 6. 若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得3517v u x -=.① 所以 17|3v .因为(17,3)=1,所以17|v 即17|95x y +.若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +.7. 设n 是奇数,求证:60|6321n n n ---.解析 因为260235=⨯⨯,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可.由于n 是奇数,有22|62n n -,22|31n +,所以22|6231n n n ---;又有3|63n n -,3|21n +,所以3|6321n n n ---;又有5|61n -,5|32n n +,所以5|6321n n n ---.所以60|6321n n n ---.评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.8. 设n 为任意奇正整数,证明:15961000270320n n n n +--能被2006整除.解析 因为200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除.应用公式,n 为奇数时,()()121n n n n n a b a b a a b b ---+=+-++L ,()()121n n n n n a b a b a a b b ----=-+++L .由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除.又159627013261778-==⨯,10003206801740-==⨯,所以15961000270320n n n n +--能被17整除.9. 若整数a 不被2和3整除,求证:()224|1a -.解析 因为a 既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k 、61k +、62k +、63k +、64k +、65k +这六类.由于6k 、62k +、64k +是2的倍数,63k +是3的倍数,所以a 只能具有61k +或65k +的形式,有时候为了方便起见,也常把65k +写成61k -(它们除以6余数均为5).故a 具有61k ±的形式,其中k 是整数,所以()()222161136121231a k k k k k -=±-=±=±. 由于k 与31k ±为一奇一偶(若k 为奇数,则31k ±为偶数,若k 为偶数,则31k ±为奇数),所以()2|31k k ±,于是便有()224|1a -.10. 求证:31n +(n 为正整数)能被2或22整除,但不能被2的更高次幂整除. 解析 按模2分类.若2n k =为偶数,k 为正整数,则()22313131n k n +=+=+. 由3k 是奇数,()23k 是奇数的平方,奇数的平方除以8余1,故可设()2381k l =+,于是 ()3182241n l l +=+=+,41l +是奇数,不含有2的因数,所以31n +能被2整除,但不能被2的更高次幂整除. 若21n k =+为奇数,k 为非负整数,则()()()22131313313811461n k k l l ++=+=⋅+=++=+. 由于61l +是奇数,所以此时31n +能被22整除,但不能被2的更高次幂整除.11. 设p 是质数,证明:满足22a pb =的正整数a 、b 不存在.解析 用反证法.假定存在正整数a 、b ,使得22a pb =.令() , a b d =,1a a d =,1b b d =,则()11 , 1a b =.所以222211a d pb d =,2211a pb =,所以21|p a .由于p 是质数,可知,1|p a .令12a pa =,则22221a p pb =,所以2221pa b =.同理可得,1|p b .即1a 、1b 都含有p 这个因子,这与()11 , 1a b =矛盾.12. 如果p 与2p +都是大于3的质数,那么6是1p +的约数.解析 每一整数可以写成6n 、61n -、61n +、62n -、62n +、63n +中的一种(n 为整数),其中6n 、62n -、62n +、63n +在1n ≥时都是合数,分别被6、2、2、3整除.因此,质数p 是61n -或61n +的形式.如果()611p n n =+≥,那么()263321p n n +=+=+是3的倍数,而且大于3,所以2p +不是质数.与已知条件矛盾.因此()611p n n =-≥.这时16p n +=是6的倍数.评注 本题是将整数按照除以6,所得的余数分为6类.质数一定是61n +或61n -的形式.当然,反过来,形如61n -或61n +的数并不都是质数.但可以证明形如61n -的质数有无穷多个,形如61n +的质数也有无穷多个.猜测有无穷多个正整数n ,使61n -与61n +同为质数.这是孪生质数猜测,至今尚未解决.13. 已知a 、b 是整数,22a b +能被3整除,求证:a 和b 都能被3整除.证 用反证法.如果a 、b 不都能被3整除,那么有如下两种情况:(1)a 、b 两数中恰有一个能被3整除,不妨设3|a ,3b Œ.令3a m =,31b n =±(m 、n 都是整数),于是()222222996133321a b m n n m n n +=+±+=+±+,不是3的倍数,矛盾.(2)a ,b 两数都不能被3整除.令31a m =±,31b n =±,则()()2222223131961961a b m n m m n n +=++±=±++±+()22333222m n m n =+±±+,不能被3整除,矛盾.由此可知,a 、b 都是3的倍数.14. 若正整数x 、y 使得2x x y+是素数,求证:x y ≤. 解析 设2x p x y =+是素数,则()py x x p =-,所以()|p x x p -,故|p x ,或者|p x p -,故可得|p x ,且p x <.令x kp =,k 是大于1的整数,则()1y x k x =-≥.15. 证明:形如abcabc 的六位数一定被7、11、13整除.解析 100171113abcabc abc abc =⨯=⨯⨯⨯. 由此可见,abcabc 被7、11、13整除.16. 任给一个正整数N ,把N 的各位数字按相反的顺序写出来,得到一个新的正整数N ',试证明:N N '-被9整除.解析 N 除以9,与N 的数字和除以9,所得余数相同.N '除以9,与N '的数字和除以9,所得余数相同.N 与N '的数字完全相同,只是顺序相反,所以N 与N '的数字和相等.N 除以9与N '除以9,所得的余数相同,所以N N '-被9整除.17. 19991999199919991999N =L 144424443连写个.求N 被11除所得的余数.解 显然,N 的奇数位数字和与偶数位数字和的差为()1999999119998⨯+--=⨯.19998⨯除以11的余数与88⨯除以11的余数相同,即余数为9.从而N 除以11,所得的余数为9.18. 在568后面补上三个数字,组成一个六位数,使它能被3、4、5分别整除.符合这些条件的六位数中,最小的一个是多少?解析 要命名这个六位数尽可能小,而且能被5整除,百位数字和个位数字都应选0.这样,已知的五个数位上数字之和是5+6+8+0+0=19.要使这个六位数能被3整除,十位上可填2、5、8.由能被4整除的数的特征(这个数的末两位数应该能被4整除)可知,应在十位上填2.这个六位数是568020.19. 已知四位数abcd 是11的倍数,且有b c a +=,bc 为完全平方数,求此四位数. 解析 在三个已知条件中,b c a +=说明给出b 和c ,a 就随之给定,再由11|abcd ,可定d .而bc 为完全平方数,将b 和c 的取值定在两位平方数的十位和个位数字范围中,只要从这个范围中挑选符合要求的即可.由bc 完全平方数,只可能为16、25、36、49、64、81这六种情况.由b c a +=,此时相应的a 为7、7、9、13、10、9.其中13和10显然不可能是四位数的千位数字. 在716d 、725d 、936d 、981d ,这四种可能性中,由11|abcd ,应有()()11|d b a c +-+.()()11|176d +-+时,d 可为1;()()11|275d +-+时,这种d 不存在;()11|396d +-+时,d 可为1;()11|891d +-+时,d 可为2.故满足条件的四位数有:7161、9361、9812.评注 bc 为完全平方数,表示bc 是两位整数,0b ≠,因此,不考虑00、01、04、09这四种情况,否则还应加上1012、4048、9097这三个四位数.20. 用0,1,2,…,9这十个数字组成能被11整除的最大的十位数是多少?解析 因为0+1+2+…+9=45.这个最大十位数若能被11整除,其奇数位上数字之和与偶数位上的数字之和的差(大减小)为0或11的倍数.由于这十个数字之和是45(奇数),所以这个差不可能是0、22、44(偶数).若这个差为33,则只能是396-,但0+1+2+3+4=10,即最小的五个数字之和都超过6,不可能.若这个差为11,()4511228+÷=,452817-=.如果偶数位为9、7、5、3、1,其和为25;奇数位为8、6、4、2、0,其和为20.交换偶数位上的1与奇数位上的4,可得偶数位上的数为9、7、5、4、3,奇数位上的数为8、6、2、1、0.于是所求的最大十位数为9876524130.21. 一个六位数88的倍数,这个数除以88所得的商是多少?解析 设这个六位数为1234A B ,因为它是88的倍数,而88811=⨯,8与11互质,所以,这个六位数既是8的倍数,又是11的倍数.由1234A B 能被8整除,可知34B 能被8整除(一个数末三位组成的数能被8整除,这个数就能被8整除),所以B 是4.由能被11整除的数的特征(一个数奇数位数字之和与偶数位数字之和的差能被11整除,这个数就能被11整除),可知奇数位数字之和与偶数位数字之和的差()()234144A A ++-++=-能被11整除,则40A -=,即4A =.124344881413÷=. 所以,这个六位数是124344,它除以88的商是1413.22. 如果六位数105整除,那么,它的最后两位数是多少?解析 因为这个六位数能被105整除,而105357=⨯⨯,3、5、7这三个数两两互质,所以,这个六位数能同时被3、5、7整除.根据能被5整除的数的特征,它的个位数可以是0或5.根据能被3整除的数的特征,可知这个六位数有如下七种可能:199320,199350,199380,199305,199335,199365,199395.而能被7整除的数的特征是:这个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7整除.经试算:395199196-=,196能被7整除.所以,199395能被105整除,它的最后两位数是95.23. 形如1993199319931993520n L 1442443个,且能被11整除的最小数是几? 解析 本题实质上确定n 的最小值.利用被11整除的数的特征:偶数位数字之和与奇位数字之和的差能被11整除.该数的偶数位数字之和为122n +,奇数位数字之和为105n +,两者之差为()12210523n n n +-+=-.要使()11|23n -,不难看出最小的7n =,故所求最小数为71993199319931993520L 1442443个. 24. 是否存在100个不同的正整数,使得它们的和与它们的最小公倍数相等?解析 存在满足条件的100个数.事实上,对任意正整数()3n ≥,下述n 个数3,23⨯,223⨯,…,223n -⨯,13n -,它们的最小公倍数为123n -⨯,和为221222132323233323233n n n n ----+⨯+⨯++⨯+=+⨯++⨯+L L 33211113232333323n n n n n -----=+⨯++⨯+==+=⨯L L .所以,这几个数的和等于它们的最小公倍数.取100n =,可知存在符合要求的100个数.。
七年级竞赛讲义 第十四讲 整数整除的概念和性质
第四讲整数整除的概念和性质对于整数和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n称为余数,特别地,n=0时,即a=bm,便称a被被b整除(也称a是b的倍数或的约数),记为b|a.整除有以下基本性质:1.若a|b,a|c,则a|(b c);2.若a|b,b|c,则a|c;3.若a| b c,且(a,c)=1,则a|b,特别地,若质数p|b c,则必有p|b或p|c;4.若b|a,c|a,且(b,c) =1,则b c|a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125整除的数,末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.例 1 、一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是.例2、证明:形如abcabc的六位数一定能被7、11、13整除.练习:1、已知7位数61287xy是72的倍数,求出所有的符合条件的7位数.2、已知两个三位数abc 与def 的和abc +def 能被37整除,证明:六位数abcdef 也能被37整除.3、若六位数9381ab 是99的倍数,求整数a 、b 的值.例3、若a 、b 、c 、d 是互不相等的整数,且整数x 满足等式(x 一a)(x 一b)(x 一c)(x 一d)一9=0,求证;4︳(a+b+c+d).练习:证明:三个连续的奇数的平方和加1,能被12整除,但不能被24整除例4、已知a 是整数,a 不能被2和3整除,求162a 被24整除的余数练习:n为正整数,求证:30|)n(5n例6、一个三位自然数,当它分别被2,3,4,5,7除时,余数都是1,那么具有这个性质的最小三位数是;最大三位数是.( “希望杯”邀请赛试题)练习:1、一个自然数N被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N的最小值是.2、有棋子若干,三个三个地数余1,五个五个地数余3,七个七个地数余5,则棋子至少有( ).A.208个B.110个C.103个D.100个例7、某公园门票价格对达到一定人数的团队按团队票优惠.现有A、B、C三个旅游团共72人,如果各团单独购票,门票费依次为360元、384元、480元;如果三个团合起来购票,总共可少花72元.(1)这三个旅游团各有多少人?(2)在下面填写一种票价方案,使其与上述购票情况相符.例8、在射箭运动中,每一箭得到的环数或者是“0”,或者是不超过10的自然数。
初中数学竞赛精品标准教程及练习44:数的整除(二)
初中数学竞赛精品标准教程及练习(44)数的整除(二)一、内容提要第一讲介绍了能被2,3,4,5,7,8,9,11,13,25整除的自然数的特征,本讲将介绍用因式分解方法解答数的整除问题.几个常用的定理,公式,法则:⑴n个连续正整数的积能被n!整除.(n的阶乘:n!=1×2×3×…×n).例如:a为整数时,2a(a+1),6a(a+1)(a+2), 24a(a+1)(a+2)(a+3),……⑵若a b且a c, 则a(b c).⑶若a, b互质,且a c, b c ,则ab c .反过来也成立:a, b互质,ab c,则a c, b c.例如:8和15互质,8|a, 15|a,则120|a.反过来也成立:若120|a. 则8|a, 15|a.⑷由乘法公式(n为正整数)推得:由(a-b)(a n-1+a n-2b+……+ab n-2+b n-1)=a n-b n . 得(a -b)|(a n-b n).(a+b)(a2n-a2n-1b+……ab2n-1+b2n)=a2n+1+b2n+1. (a+b)|(a2n+1+b2n+1).(a+b)(a2n-1-a2n-2b+……+ab2n-2-b2n-1)=a2n-b2n. (a+b)|(a2n-b2n).概括起来:齐偶数次幂的差式a2n-b2n含有因式a+b和a-b.齐奇数次幂的和或差式a2n+1+b2n+1或a2n+1-b2n+1只分别含有因式a+b或a-b.例如(a+b)| (a6-b6), (a-b)| (a8-b8);(a+b)|(a5+b5),(a-b)|(a5-b5).二、例题例1. 已知:整数n>2. 求证:n 5-5n 3+4n 能被120整除..证明:n 5-5n 3+4n =n(n 4-5n 2+4)=n(n -1)(n+1)(n+2)(n -2). ∵(n -2) (n -1)n(n+1) (n +2)是五个连续整数,能被n!整除,∴ 120|n 5-5n 3+4n.例2. 已知:n 为正整数. 求证:n 3+23n 2+21n 是3的倍数.证明:n 3+23n 2+21n =21n (2n 2+3n+1) =21n(n+1)(2n+1) =21n(n+1)(n+2+n -1) = 21n(n+1)(n+2)+ 21n(n+1)(n -1). ∵ 3!|n(n+1)(n+2), 且3!|n(n+1)(n -1)..∴ 3|21n(n+1)(n+2)+21n(n+1)(n -1). 即n 3+23n 2+21n 是3的倍数. (上两例关鍵在于创造连续整数)例3. 求证:⑴ 33|255+1; ⑵ 1989|(19901990-19881988).证明:⑴ 255+1=25×11+111=3211+111.∵(32+1)|(3211+111 ) , 即33|255+1.⑵ 19901990-19881988=19901990-19881990+19881990-19881988.(添两项)∵(1990+1988)|(19901990-19881990).即1989×2|(19901990-19881990).∵ 19881990-19881988=19881988(19882-1)=19881988(1988+1)(1988-1).即 19901990-19881988=1989×2N +1989×19881988×1987. (N 是整数)∴ 1989|19901990-19881988.例4 设n 是正整数, 求证:7|(32n+1+2n+2).证明:32n+1+2n+2=3×32n +4×2n =3×9 n +4×2 n +3×2 n -3×2 n (添两项)=(4×2 n +3×2 n )+(3×9 n -3×2 n )=(4+3)+3(9 n -2 n )=7×2 n +3(9-2)N . (N 是整数)∴7|(32n+1+2n+2)(例3,4是设法利用乘法公式)例5. 已知8719xy 能被33整除,求x, y 的值.解:∵33=3×11,∴1+9+x+y+8+7其和是3的倍数, 即x+y=3K -25 (k 为整数).又(1+x+8)-(9+y+7)其差是11的倍数,即x -y=11h+7(h 是整数).∵0≤x ≤9, 0≤y ≤9,∴0≤x +y ≤18,9≤x -y ≤9,x+y>x -y, 且 x+y 和x -y 同是奇数或偶数.符合条件的有⎩⎨⎧-==⎩⎨⎧-==⎩⎨⎧==48414711y x y x y x 或或 . 解得⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==629529y x y x y x 或或 . 例6.设N =782x ,且17|N, 求 x..解:N =2078+100x=17×122+4+17×6x -2x=17×(122+6x )+4-2x.∵ 17|N ,∴17|4-2x ,当 4-2x=0.∴ x=2.三、练习441. 要使2n +1能被3整除,整数n 应取___,若6|(5 n -1), 则整数n 应取___.2.求证:①4!|(n4+2n3-n2-2n);②24|n(n2-1)(3n+2);③6|(n3+11n);④30|(n 5-n).3.求证:①100|9910-1);②57|(23333+72222);③995|(996996-994994);④1992|(997997+995995).4.设n是正整数,求证3 n+3n+2+62n能被33整除.5.求证:六位数abcabc能被7,11,13,整除.6.已知:五位数983xy能被77整除,求x, y的值.7.已知:a, b, c都是正整数,且6|(a+b+c).求证:6|(a3+b3+c3).三、练习44参考答案:1.正奇数;正偶数2.①,②分解为4个连续整数③n(n-1)(n+1)+12n ④n(n-1)(n+1)(n2-4+5)3.②81111+491111③添项-1,1④添项995997-9959974.化为3n(1+32)+36n=11×3n+36 n-3n=……5.7×11×13=1001六位数105a+104b+103c+102a+10b+c=……6.仿例57.由6|(a+b+c)可知a,b,c中至少有一个是偶数,且a3+b3+c3-3abc含有因式a+b+c。
§2初等数论--整除(ppt文档)
24∣24 n3 ( n + 2 )
∴24∣f ( n ).
练习:对于任意的五个自然数,证明其中必有3 个数的和能被3整除。
2019/11/23
阜阳师范学院 数科院
11
例6 已知: 782 + 8161能被57整除, 求证:783 +8163也能被57整除。
由ax0 by0是S中的最小正整数,知 r 0.
即有 (ax0 by0 ) (ax by).
注:(ax0 by0 )即是a ,b的最大公约数.
2019/11/23
10
例5 设n为整数,求证:24∣n(n+2)(5n+1)(5n-1).
证明:f ( n ) = n ( n + 2 ) ( 5n + 1 ) ( 5n-1 ) = n ( n + 2 ) [ ( n2-1) + 24n2] = ( n-1 ) n ( n + 1 ) ( n + 2 ) + 24 n3 ( n + 2 )
(1)
定义2:(1)式通常写成
a b q (余r)
(2)
并称q为a被b除所得的不完全商; r叫做a被b除所得的余数; (2)式称为带余数除法。
2019/11/23
7
定理4 设a与b是两个整数,b > 0,则存在唯一 的两个整数q和r,使得 a bq r, 0 r b 证明: 存在性:考虑整数序列 ,3b,2b,b,0,b,2b,3b, 则a必在序列的某两项之间(包括这两项), 即存在一个整数q,使得 qb a (q 1)b 令 r a qb ,则有 a bq r, 0 r b 成立.
数学七年级竞赛入门辅导讲义_共十讲_很实用 2
第一讲 数的整除一、内容提要:如果整数A 除以整数B (B ≠0)所得的商A /B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征 除 数能被整除的数的特征 2或5末位数能被2或5整除 4或25末两位数能被4或25整除 8或125末三位数能被8或125整除 3或9各位上的数字和被3或9整除(如771,54324) 11 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1 已知两个三位数328和92x 的和仍是三位数75y 且能被9整除.求x ,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y =6.∵328+92x =567,∴x =3.1234能被12整除,求x.例2 己知五位数x解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8.当末两位4x能被4整除时,x=0,4,8.∴x=8.例3 求能被11整除且各位字都不相同的最小五位数.解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.三、练习1分解质因数:(写成质因数为底的幂的連乘积)①593②1859③1287④3276⑤10101⑥10296.987能被3整除,那么a=_______________.2若四位数ax能被11整除,那么x=__________.3若五位数123435m能被25整除.4当m=_________时,59610能被7整除.5当n=__________时,n6能被11整除的最小五位数是________,最大五位数是_________.7能被4整除的最大四位数是_____,能被8整除的最小四位数是______.88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________.9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个.10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?1234能被15整除,试求A的值.11己知五位数A12求能被9整除且各位数字都不相同的最小五位数.第二讲倍数约数一、内容提要1.两个整数A和B(B≠0),如果B能整除A(记作B/A),那么A叫做B 的倍数,B叫做A的约数.例如3/15,15是3的倍数,3是15的约数.2.因为0除以非0的任何数都得0,所以0被非0整数整除.0是任何非0整数的倍数,非0整数都是0的约数.如0是7的倍数,7是0的约数.3.整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,…….4.整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A.例如6的约数是±1,±2,±3,±6.5.通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数.6.公约数只有1的两个正整数叫做互质数(例如15与28互质).7.在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除.二、例题例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32.解:列表如下:正整数正约数个数计正整数正约数个数计正整数正约数个数计2 1,2 2 31,3 2 2×3 1,2,3,6422 1,2,4 3 32 1,3,32 3 22×3 1,2,3,4,6,12623 1,2,4,84 331,3,32,334 22×321,2,3,4,6,9,12,18,36924 1,2,4,8,165 341,3,32,33,345其规律是:设A=a m b n(a,b是质数,m,n是正整数) 那么合数A的正约数的个是(m+1)(n+1)例如:求360的正约数的个数.解:分解质因数:360=23×32×5,360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个).例2用分解质因数的方法求24,90最大公约数和最小公倍数解:∵24=23×3,90=2×32×5∴最大公约数是2×3,记作(24,90)=6.最小公倍数是23×32×5=360,记作[24,90]=360.例3己知32,44除以正整数N有相同的余数2,求N.解:∵32-2,44-2都能被N整除,∴N是30,42的公约数.∵(30,42)=6,而6的正约数有1,2,3,6.经检验1和2不合题意,∴N=6,3.例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1.解:∵[10,9,8]=360,∴所以所求的数是359.三、练习1.12的正约数有_________,16的所有约数是_________________2.分解质因数300=_________,300的正约数的个数是_________3.用分解质因数的方法求20和250的最大公约数与最小公倍数.4.一个三位数能被7,9,11整除,这个三位数是_________5.能同时被3,5,11整除的最小四位数是_______最大三位数是________ 6.己知14和23各除以正整数A有相同的余数2,则A=________7.写出能被2整除,且有约数5,又是3的倍数的所有两位数.答____8.一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?9.一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?第三讲 质数 合数一、内容提要1.正整数的一种分类:1⎧⎪⎨⎪⎩质数合数质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数).合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2. 根椐质数定义可知① 质数只有1和本身两个正约数,② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3.任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.二、例题例1 两个质数的和等于奇数a (a ≥5).求这两个数.解:∵两个质数的和等于奇数, ∴必有一个是2,所求的两个质数是2和a -2.例2 己知两个整数的积等于质数m , 求这两个数.解:∵质数m 只含两个正约数1和m ,又∵(-1)(-m )=m ,∴所求的两个整数是1和m 或者-1和-m .例3 己知三个质数a ,b ,c 它们的积等于30,求适合条件的a ,b ,c 的值.解:分解质因数:30=2×3×5.适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a .应注意上述六组值的书写排列顺序,本题如果改为4个质数a ,b ,c ,d 它们的积等于210,即abcd =2×3×5×7那么适合条件的a ,b ,c ,d 值共有24组,试把它写出来.例4 试写出4个連续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N 是不大于5的所有质数的积,即N =2×3×5那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N 等于不大于n +1的所有质数的积,那么N +2,N +3,N +4,……N +(n +1)就是所求的合数.三、练习1.小于100的质数共 个,它们是 .2.己知质数P 与奇数Q 的和是11,则P = ,Q = .3.己知两个素数的差是41,那么它们分别是 .4.如果两个自然数的积等于19,那么这两个数是 .如果两个整数的积等于73,那么它们是 .如果两个质数的积等于15,则它们是 .5.两个质数x 和y ,己知xy=91,那么x = ,y = ,或x = ,y= .6. 三个质数a ,b ,c 它们的积等于1990.那么 _______________a b c =⎧⎪=⎨⎪=⎩7.能整除311+513的最小质数是 .8.己知两个质数A 和B 适合等式A +B =99,AB =M .求M 及B A +AB 的值. 9.试写出6个連续正整数,使它们个个都是合数.10.具备什么条件的最简正分数可化为有限小数?11.求适合下列三个条件的最小整数:① 大于1 ②没有小于10的质因数 ③不是质数.12.某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是 .13.一个质数加上10或减去14都仍是质数,这个质数是 .第四讲零的特性一、内容提要(一)、零既不是正数也不是负数,是介于正数和负数之间的唯一中性数.零是自然数,是整数,是偶数.1.零是表示具有相反意义的量的基准数.例如:海拔0米的地方表示它与基准的海平面一样高收支平衡可记作结存0元.2.零是判定正、负数的界限.若a>0则a是正数,反过来也成立,若a是正数,则a>0记作a>0 ⇔a是正数读作a>0等价于a是正数b<0 ⇔b是负数c≥0 ⇔c是非负数(即c不是负数,而是正数或0)d≤0 ⇔d是非正数(即d不是正数,而是负数或0)e≠0 ⇔e不是0(即e不是0,而是负数或正数)3.在一切非负数中有一个最小值是0.例如绝对值、平方数都是非负数,它们的最小值都是0.记作:|a|≥0,当a=0时,|a|的值最小,是0,a2≥0,a2有最小值0(当a=0时).4.在一切非正数中有一个最大值是0.例如-|x|≤0,当x=0时,-| x |值最大,是0,(∵x≠0时都是负数),-(x-2)2≤0,当x=2时,-(x-2)2的值最大,是0.(二)、零具有独特的运算性质1.乘方:零的正整数次幂都是零.2.除法:零除以任何不等于零的数都得零;零不能作除数.从而推出,0没有倒数,分数的分母不能是0.3.乘法:零乘以任何数都得零.即a×0=0,反过来如果ab=0,那么a、b中至少有一个是0.要使等式xy=0成立,必须且只需x=0或y=0.4.加法:互为相反数的两个数相加得零.反过来也成立.即a、b互为相反数⇔a+b=0。
竞赛讲座 整数的整除性和同余
竞赛讲座-整数的整除性和同余一、整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)7) 任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
8) 任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
2.整除性问题的证明方法例1证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例2 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.例3 设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例4 使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例5 设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=-<<<∴k=1.若a≥3,此时 1=-<矛盾. 已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.二、同余1. 同余式及其应用定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余.记为或一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r(r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2对模m的同余,即它们用m除所得的余数相等.利用整数的剩余类表示,可以证明同余式的下述简单性质:(1) 若,则m|(b-a).反过来,若m|(b-a),则;(2) 如果a=km+b(k为整数),则;(3) 每个整数恰与0,1,…,m-1,这m个整数中的某一个对模m同余;(4) 同余关系是一种等价关系:①反身性;②对称性,则,反之亦然.③传递性,,则;(5)如果,,则①;②特别地应用同余式的上述性质,可以解决许多有关整数的问题.例1求使2n+1能被3整除的一切自然数n.解∵∴则2n+1∴当n为奇数时,2n+1能被3整除;当n为偶数时,2n+1不能被3整除. 例2 求2999最后两位数码.解考虑用100除2999所得的余数. ∵∴又∴∴∴2999的最后两位数字为88.例3 求证31980+41981能被5整除.证明∵∴∴∴。
七年级竞赛数学培优辅导——整式的整除(word打印版)
七年级竞赛数学培优辅导——整式的整除内容提要1. 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。
2. 根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,那么 式的整除的意义可以表示为:若f(x)=p(x)×q(x), 则称f(x)能被 p(x)和q(x)整除例如∵x 2-3x -4=(x -4)(x +1),∴x 2-3x -4能被(x -4)和(x +1)整除。
显然当 x=4或x=-1时x 2-3x -4=0,3. 一般地,若整式f(x)含有x –a 的因式,则f(a)=0反过来也成立,若f(a)=0,则x -a 能整除f(x)。
4. 在二次三项式中若x 2+px+q=(x+a)(x+b)=x 2+(a+b)x+ab 则p=a+b,q=ab在恒等式中,左右两边同类项的系数相等。
这可以推广到任意多项式。
例题例1己知 x 2-5x+m 能被x -2整除,求m 的值。
x -3解法一:列竖式做除法 (如右) x -2 x 2-5x+m由 余式m -6=0 得m=6 x 2-2x解法二:∵ x 2-5x+m 含有x -2 的因式 -3x+m∴ 以x=2代入 x 2-5x+m 得 -3x+622-5×2 +m=0 得m=6 m -6 解法三:设x 2-5x+m 除以x -2 的商是x+a (a 为待定系数)那么 x 2-5x+m =(x+a)(x -2)= x 2+(a-2)x -2a根据左右两边同类项的系数相等,得⎩⎨⎧=--=-m a a 252 解得⎩⎨⎧=-=63m a (本题解法叫待定系数法) 例2 己知:x 4-5x 3+11x 2+mx+n 能被x 2-2x+1整除求:m 、n 的值及商式解:∵被除式=除式×商式 (整除时余式为0)∴商式可设为x 2+ax+b得x 4-5x 3+11x 2+mx+n =(x 2-2x+1)(x 2+ax+b )=x 4+(a-2)x 3+(b+1-2a)x 2+(a-2b)x+b根据恒等式中,左右两边同类项的系数相等,得⎪⎪⎩⎪⎪⎨⎧==-=-+-=-n b m b a a b a 12112152 解得⎪⎪⎩⎪⎪⎨⎧=-==-=4113n m n b a ∴m=-11, n=4, 商式是x 2-3x+4例3 m 取什么值时,x 3+y 3+z 3+mxyz (xyz ≠0)能被x+y+z 整除?解:当 x 3+y 3+z 3+mxyz 能被x+y+z 整除时,它含有x+y+z 因式令x+y+z=0,得x=-(y+z),代入原式其值必为0即[-(y+z)]3+y3+z3-myz(y+z)=0把左边因式分解,得-yz(y+z)(m+3)=0,∵yz≠0, ∴当y+z=0或m+3=0时等式成立∴当x,y(或y,z或x,z)互为相反数时,m可取任何值,当m=-3时,x,y,z不论取什么值,原式都能被x+y+z整除。
数学奥赛辅导 第二讲 整 除
数学奥赛辅导第二讲整除数学奥赛辅导第二讲整除数学奥赛辅导第二讲相乘知识、方法、技能相乘就是整数的一个关键内容,这里仅了解其中的几个方面:整数的相乘性、最大公约数、最轻公倍数、方幂问题.ⅰ.整数的整除性初等数论的基本研究对象就是自然数子集及整数子集.我们晓得,整数子集中可以作加、减至、乘法运算,并且这些运算满足用户一些规律(即为乘法和乘法的结合律和交换律,乘法与乘法的分配律),但通常无法搞乘法,即为,如a,b就是相乘,b?0,则初等数论中第一个基本概念:整数的相乘性.定义一:(带余除法)对于任一整数a和任一整数b,必有惟一的一对整数q,r使得a不一定就是整数.由此带出ba?bq?r,0?r?b,并且整数q和r由上述条件惟一确认,则q称作b除a的不能全然商,r称为b除a的余数.若r?0,则表示b相乘a,或a被b相乘,或表示a就是b的倍数,或表示b就是a的约数(又叫做因子),记作b|a.否则,b|a.任何a的非?a,?1的约数,叫做a的真约数.0是任何整数的倍数,1是任何整数的约数.任一非零的整数就是其本身的约数,也就是其本身的倍数.由相乘的定义,不难得出结论相乘的如下性质:(1)若a|b,b|c,则a|c.(2)若a|bi,则a|?cb,其中ciii?1ni?z,i?1,2,?,n.(3)若a|c,则ab|cb.反之,亦设立.(4)若a|b,则|a|?|b|.因此,若a|b,又b|a,则a??b.(5)a、b互质,若a|c,b|c,则ab|c.1(6)p为质数,若p|a1?a2an,则p必能整除a1,a2,?,an中的某一个.特别地,若p为质数,p|an,则p|a.(7)例如在等式abii1k1nmk中除开某一项外,其余各项都是c的倍数,则这一项也是c的倍数.(8)n个已连续整数中有且只有一个就是n的倍数.(9)任何n个已连续整数之内积一定就是n的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设立大于1的整数a的标准水解式为a?p11?p2?pnn(p1?p2pn为质数,?i 均为非负整数),则a的约数的个数为d(a)??(?i?1).i?1n所有的约数和为:(a)i1npii11.pi?1事实上,由算术基本定理的推断言d(a)??(?i?1ni?1),而各约数的和就是(1pi1nipaii)展开后的各项之和,所以nn?ip1?1?(a)??(1?pipi)??i?1i?1pi?1?i比如,25200=2432527,所以d(25200)?(4?1)(2?1)(2?1)(1?1)?90,25?133?153?172?1?(25200)99944.2?13?15?17?1ⅱ.最大公约数和最小公倍数2定义二:设a、b是两个不全为0的整数.若整数c满足:c|a,c|b,则称c为a,b的公约数,a与b的所有公约数中的最大者称为a与b的最大公约数,记为(a,b).如果(a,b)=1,则称a与b互质或互素.定义三:如果d就是a、b的倍数,则表示d就是a、b的公倍数.a与b的公倍数中最轻的正数称作a与b的最轻公倍数,记为[a,b].最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用(a1,a2,?,an)表示a1,a2,?,an的最大公约数,[a1,a2,?,an]表示a1,a2,?,an的最小公倍数.若(a1,a2,?,an)?1,则表示a1,a2,a3,?,an互质,若a1,a2,?,an中任何两个都互质,则表示它们就是两两互质的.特别注意,n个整数互质与n个整数两两互质就是相同的概念,前者设立时后者不一定设立(比如,3,15,8互质,但不两两互质);似乎后者设立时,前者必设立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于a,b与|a|,|b|有相同的公约数,且(a,b)?(|a|,|b|)(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.似乎,若a,b的标准水解式为a?则pi1nii,,b??pi?i(pi为质数,ai,?i为非负整数)i?1n(a,b)??pimin(?i,?i)①i?1nn[a,b]??piman(?i,?i)②i?1比如3960=2332511,756=22337,则(3960,756)=2232=36,[3960,756]=23335711=83160.谋最大公约数也可以用只身二者乘法,其理论依据就是:定理二:设a、b、c是三个不全为0的整数,且有整数t使得a?bt?c,则a、b与b、c有相同的公约数,因而(a,b)?(b,c),即(a,b)?(b,a?bt).3因为,若d是a、b的任一公约数,则由d|a,d|b和a?bt?c知d|c,即d是b、c的公约数;反之,若d是b、c的任一公约数,d也是a、b的公约数.只身二者乘法:设a、b?n?,且a?b,由利皮扬卡乘法存有??b?r1q2?r2,0?r2?r1,③rn?2?rn?1qn?rn,0?rn?rn?1,??rn?1?rnqn?1?rn?1,rn? 1?0.??因为每进行一次带余除法,余数至少减1,即b?r1rn?rn?1,而b为有限数,因此,必有一个最多不超过b的正整数n存在,使得rn?0,而rn?1?0,故由定理二得:a?bq1?r1,0?r1?b,rn?(rn?1,rn)?(rn,rn?1)(r2,r1)?(r1,b)?(a,b).例如,(3960,756)=(756,180)=(180,36)=36.具体算式如下:5(q1)3960(a)756(b)4(q2)3780720180(r1)36(r2)5(q3)1800(r3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质:(1)m?n,则(am,bm)?m(a,b).(2)设c为a,b的公约数,则(,)?abcc(a,b)ab.特别地,若c?(a,b),则(,)?c(3)设a1,a2,?,an是任意n个正整数,如果(a1,a2)?c2,(c2,a3)?c3,?,(cn?1,an)?cn,则(a1,a2,?,an)?cn.因cn|an,cn|cn?1,而cn?1|an?1,cn?1|cn?2,故cn?1|an?1,cn|cn?2,如此以此类推得出结论cn能够整4除an,an?1,?,a1,于是cn就是它们的一个公约数.又设立c为a1,a2,?,an的任一公约数,则c|a1,c|a2,因而c|c2,同理可推出c|c3,如此类推最后可得c|cn.于是c?|c|?cn,故cn就是最大公约数.(4)若(a,b)?c,则一定有整数x和y,使得ax?by?c.特别地,(a,b)?1?存在x,y使得ax?by?1.这可由辗转相除法的③式逆推而得c?rn?ax?by.(5)若(a,b)?1,则(ac,b)?(c,b).(6)a,b?n?①[ak,bk]?k[a,b](k?n?);②m为a,b的任一公倍数,则[a,b]|m;③(a,b)[a,b]?ab,特别地,若(a,b)?1,则[a,b]?ab.①可以由③轻易获得,②可以由最轻公倍数定义得,③根据①、②式言,(a,b)[a,b]?pi1nimin(i,i)piiiab.i?1n(7)设a1,a2,?,an是任意n个正整数.若[a1,a2]?m2,[m2,a3]?m3,?,[mn?1,an]?mn,则[a1,a2,?,an]?mn.这就是一个谋多个整数的最轻公倍数的方法.它需用证明③相似的方法去证明.ⅲ.方幂问题一个正整数n能否表成m个整数的k次方和的问题称为方幂和问题.特别地,当m?1时称为k次方问题,当k?2时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论:(1)平方数的个位数字只可能是0,1,4,5,6,9.(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数5。
七年级数学竞赛讲座02特殊的正整数
七年级数学竞赛讲座02特殊的正整数七年级数学竞赛讲座(二)特殊的正整数一、一、知识要点1、 1、完全平方数及其性质定义1 如果一个数是一个整数的平方,则称这个数是完全平方数。
如:1、4、9、…等都是完全平方数,完全平方数有下列性质:性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个。
性质2 奇完全平方数的十位数一定是偶数。
性质3 偶完全平方数是4的倍数。
性质4 完全平方数有奇数个不同的正约数。
性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数。
2、 2、质数与合数定义2 一个大于1的整数a,如果只有1和a 这两个约数,那么a 叫做质数。
定义3 一个大于1的整数a,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合数。
1既不是质数也不是合数。
3、 3、质数与合数的有关性质(1) (1) 质数有无数多个(2) (2) 2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数。
大于2的质数必为奇数。
(3) (3) 若质数p ∣a ?b ,则必有p ∣a 或p ∣b 。
(4) (4) 若正整数a 、b 的积是质数p ,则必有a=p 或b=p.(5) (5) 唯一分解定理:任何整数n(n>1)可以唯一地分解为:k a k a a p p p n 2121=,其中p 1二、二、例题精讲例1 有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是解设所求的四位数为m 2,它的百位数字为a ,则有m2=1000(a+1)+100a+10(a+2)+(a+3)=1111a+1023=11(101a+93) 因为11是质数,所以11∣(101a+93),而101a+93=11(9a+8)+(2a+5),所以11∣(2a+5),由题意a+3≤9,故a ≤6,从而a=3于是所求的四位数为4356例2 一个四位数有这样的性质:用它的后两位数去除这个四位数得到一个完全平方数(如果它的十位数是0,就只用个位数去除),且这个平方数正好是前两位数加1的平方。
初中数学竞赛教程22、整数的整除性和奇偶性
2013年暑期初一数学竞赛第二十二讲:整数的整除性和奇偶性【例题精选】例1、如果,,a b c 是正整数,a 和b 是奇数,那么23()a b c c +-⋅( )A 、对于c 的所有选择都是奇数;B 、对于c 的所有选择都是偶数;C 、当c 是偶数时为奇数,c 为奇数时为偶数;D 、当c 是奇数时为奇数,c 为偶数时为偶数;1、设a 、b 、c 都是整数,且a b c ++是偶数,试说明a b c +-、b c a +-、c a b +-都 是偶数。
2、若,,a b c 中有两个是奇数,一个是偶数,判断222(2001)(2002)(2003)a b c +⨯+⨯+是 奇数还是偶数?3、设1a ,2a ,…,2011a 是1到2011的整数打乱顺序后,任意一种顺序的排列,请判断 122011(1)(2)...(2011)a a a +⋅+⋅⋅+是奇数还是偶数,并说明理由。
4、甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J 、Q 、K 分别作11、12、13),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?例2、黑板上写上1,2,3,…,1998,按下列规定进行操作:每次擦去其中的任意两个数a和b ,然后写上它们的差(大减小),直到黑板上剩下一个数为止。
问:黑板上剩下的数是奇数还是偶数?为什么?1、黑板上写有1,2,3,…,1997,1998这1998个数,对它们进行如下操作:擦去其中 三个数,再将这三个数和的个位数字补写在黑板上,例如擦去5,13,1998后添6,再如擦去6,6,38后添0,等等。
如果经过998次操作后,黑板上只剩下两个数,一个是25,则另一个数是什么?2、在1,2,3,…,1989之间填上“+”或“—”,求和时可以得到最小的非负数是多少?例3、设有m 只茶杯,开始时杯口都朝上,把茶杯随意翻转,规定每翻转n 只,称为一次翻动,翻动过的茶杯允许再翻。
初一数学竞赛班寒假第2讲 整除问题
整除问题【知识要点】一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b 不整除a,记作b︱a.二、数的整除性质:(1)对称性:若甲数能被乙数整除,乙数也能被甲数整除,那么甲、乙两数相等。
记作:a|b,b|a,则a=b。
(2)传递性:若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
记作:若a|b,b|c,则a|c。
(2) 若两个数能被一个自然数整除,那么这两个数的和与差都能该自然数整除。
记作:若a|b,a|c,则a|(bc)。
(3) 几个数相乘,若其中有一个因子能被某一个数整除,那么它们的积也能被该数整除。
(4) 若一个数能被两个互质数中的每一个数整除,那么这个数也能分别被这两个互质数的积整除。
记作:若a|b,c|b,(a,c)=1, 则ac|b。
(5) 若一个数能被两个互质数的积整除,那么,这个数也能分别被这两个互质数整除。
记作:若ac|b,(a,c)=1, 则a|b,c|b。
(6) 若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(7) 若a|b,m≠0,则am|bm。
(8) 若am|bm,m≠0,则a|b。
(9)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)三、整除特征(1)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
初中竞赛数学26.整数整除的概念和性质(含答案)
26.整数整除的概念和性质知识纵横对于整数a和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n 称为余数,特别地,当n=0时,即a=bm,便称a被b整除(也称a是b的倍数或b是a的约数),记为b│a.整除有以下基本性质:1.若a│b,a│c,则a│(b±);2.若a│b,b│c,则a│c;3.若a│bc,且(a,c)=1,则a│b,若质数p│bc,则必有p│b或p│c;4.若b│a,c│a,且(b,c)=1,则bc│a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,•末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125•整除的数,•末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.例题求解【例1】一个自然数与13的和是5的倍数,与13的差是6的倍数,•则满足条件的最小自然数是_________. (重庆市竞赛题)思路点拨略解:37【例2】有三个正整数a、b、c,其中a与b互质且b与c也互质,给出下面四个判断:①(a+c)2不能被b整除;②a2+c2不能被b整除;③(a+b)2不能被c整除;④a2+b2不能被c整除,其中,不正确的判断有( ).A.4个B.3个C.2个D.1个 (“希望杯”邀请赛试题)思路点拨举例验证.解:选A 提示:当a=3,b=5,c=2时,①③④都是假命题;当a=3,b=2,c=5,②是假命题.xy是72的倍数,求出所有的符合条件的7位数.【例3】已知7位数12876(第15届江苏省竞赛题)思路点拨 7位数12876xy 能被8,9整除,运用整数能被8,9整除的性质求出x,y 的值.解:提示:因为72│12876xy ,所以8│12876xy ,9│12876xy ,由此得1+2+8+7+x+y+6=24+x+y 是9的倍数,而0≤x+y ≤18,则x+y=3或12,又6xy 必是8的倍数, 6y 必是4的倍数,则y=1,3,5,7或9,当y=1时,x=2,8│216;当y=3时,x=0,8不整除36;8│936;当y=5时,x=7,8不整除756;当y=7时,x=5,8│576;当y=9时,•x=•3,•8不整除396,•所以符合条件的7•位数是1287216,1287576.【例4】(1)若a 、b 、c 、d 是互不相等的整数,且整数x 满足等式(x-a)(x-b)(•x-c)(x-d)-9=0,求证:4│(a+b+c+d).(2)已知两个三位数abc 与def 的和abc +def 能被37整除,证明:六位abcdef 也能被37整除.思路点拨 (1)x-a,x-b,x-c,x-d 是互不相等的整数,且它们的乘积等于9,•于是必须把9分解为4个互不相等的因数的积;(2)因已知条件的数是三位数,•故应设法把六位数abcdef 用三位数的形式表示,以沟通已知与求证结论的联系.解:(1)略;(2)提示:abcdef=abc ×1000+def=abc ×999+(abc+def)【例5】(1)一个自然数N 被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N 的最小值是_______. (北京市竞赛题)(2)若1059、1417、2312分别被自然数x 除时,所得的余数都是y,则x-y 的值等于( ).A.15B.1C.164D.174 (“五羊杯”竞赛题)(3)设N=1990111 个,试问N 被7除余几?并证明你的结论. (安徽省竞赛题)思路点拨 运用余数公式,余数性质,化不整除问题为整除问题.(1)N+1•能分别被2,3,4,5,6,7,8,9,10整除;(2)建立关于x,y 的方程组,通过解方程组求解,(3)从考察11,111,…,111111被7除的余数入手.解:(1)N+1为2~10的公倍数,要使N 最小,取N+1为它们的最小公倍数23×5×33•×7=2520,故所求N 的最小值为2520-1=2519.(2)设已知三数被自然数x 除时,商数分别为a,b,c,则由此得x为358,859,1253的公约数,x=179,进而求得y=164.(3)111111=7×15873,而1990=6×331+4,故只须考察1111被7除的余数,1111=•7×158+5,故N被7除余5.学力训练一、基础夯实a是3的倍数,那么a是________.1.如果五位数12342.如果从5,6,7,8,9这5个数中,选出4个组成一个四位数,使它能被3,5,7整除,•那么这些数中最大的是_______.ab能被198整除,那么a=________,b=_______.3.已知整数13456(第17届江苏省竞赛题)4.在1,2,3,…,2000这2000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除. (2000年“五羊杯”竞赛题)5.能整除任意3个连续整数之和的最大整数是( ).A.1B.2C.3D.6 (第15届江苏省竞赛题)6.除以8和9都是余1的所有三位数的和是( ).A.6492B.6565C.7501 C.7514被15整除,则n的最小值等于( ).7.若20022002200215n个2002A.2B.3C.4D.58.有棋子若干,三个三个地数余1,五个五个地数余3,七个七个地数余5,•则棋子至少有( ).A.208个B.110个C.103个D.100个9.(1)证明:形如abcabc的六位数一定能被7,11,13整除.(2)若4b+2c+d=32,试问abcd能否被8整除?请说明理由.xy是99的倍数,求代数式950x+24y+1的值.10.已知7位自然数6242711.已知a,b是整数,求证:a+b,ab,a-b这三个数之中,至少有一个是3的倍数.二、能力拓展12.五位数abcde是9的倍数,其中abcd是4的倍数,那么abcde的最小值是____.13.一个三位自然数,当它分别被2,3,4,5,7除时,余数都是1,那么具有这个性质的最小三位数是______;最大三位数是_______. (第15届“希望杯”邀请赛试题)14.今天是星期日,从今天算起,第1111天是星期_____.2000个115.用自然数n去除63、91、130,所得到的3个余数的和为26,则n=________.(北京市“迎春杯”竞赛题)16.今有自然数带余除法算式:A÷B=C…8,如果A+B+C=2178,那么A=( ).A.2000B.2001C.2071D.210017.有1997盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,…,1997,然后将编号为2的倍数的灯线拉一下;再将编号为3的倍数的灯线拉一下;最后将编号为5的倍数的灯线拉一下,3次拉完后亮着的灯数为( ).A.1464盏B.533盏C.999盏D.998盏(《学习报》公开赛试题)18.19972000被7除的余数是( ).A.1B.2C.4D.619.n为正整数,302被n(n+1)除所得商数q及余数r都是正值,则r的最大值与最小值的得( ).A.148B.247C.93D.12220.某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,•从0001到9999,如果号码的前两位数字之和等于后两位数字的和,则称这张购物券为“幸运券”,试证明:这个商场所发的购物券中,所有幸运券的号码之和能被101整除.(“祖冲之杯”邀请赛试题)21.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一列,•发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.22.将糖果300粒、饼干210块和苹果163个平均分给某班同学,余下的糖果、•饼干和苹果的数量之比是1:3:2,问该班有多少名同学?三、综合创新23.已知质数p、q使得表达式21pq+及23qp-都是自然数,试确定p2q的值.24.重排任一个三位数三个数位上的数字,得到一个最大的数和一个最小的数,•它们的差构成另一个三位数(允许百位数字为0),再重复以上的过程,问重复2003•次后所得的数是多少?证明你的结论. (2004年武汉市选拨赛试题)答案1.2或5或82.97653.8,0 提示:原数能被2,9,11整除4.267 提示:自然数n 能同时被2和3整除,相当于n 能被6整除,有333个,•其中能被5整除的便能被30整除,有66个.5.C6.A 提示:n-1能被8和9整除,因此n-1是72的倍数,在3位数中,符合条件的n•是2×72+1,2×73+1,…13×72+1.7.B 8.C 提示:设有棋子n 个,则n+2能被3,5,7整除9.(1)提示: abcabc =1001×(100a+10b+c)=7×11×13×(100a+10b +c); (2) bcd =•96b+8c+(4b+2c+d)=8(12b+c+4).10.提示:因9│62427xy 且11│62427xy ,故9│(6+2+x+y+4+2+7),且11│[(6+•x+4+7)-(2+y+2)],又0≤x+y ≤18且-9≤x-y ≤9,得62x y x y +=⎧⎨-=-⎩或159x y x y +=⎧⎨-=⎩, 解得24x y =⎧⎨=⎩或123x y =⎧⎨=⎩(不合题意舍去) 把x=2,y=4代入得,原式=1997.11.对于a 、b,若至少有一个是3的倍数,则ab 是3的倍数,若a 、b 都不是3的倍数,则有:(1)当a=3m+1,b=3n+1时,a-b=3(m-n);(2)当a=3m+1,b=3m+2时,a+b=3(m+n+1);(3)当a=3m+2,b=3n+1时,a+b=3(m+n+1);(4)当a=3m+2,b=3n+2时,a-b=3(m-n).12.10008 13.421,84114.三提示:因111111=15873×7,2000=333×6+2故1112000个1被7除的余数与11被7除的余数相同.15.提示:设自然数n除63、91、130时,商分别为x、y、z,余数分别为a、b、c,•那么63=nx+a ①,91=ny+b ②,130=nz+c ③,①+②+③得 284=n(x+y+z)+(a+b+c),而a+b+c=26,则n(x+y+z)=258=2×3×43,故n=2,3,6,43,86,129或258.16.A 提示:A=BC+8代入得BC+B+C+8=2178,(B+1)(C+1)=2171=13×167,则1131167BC+=⎧⎨+=⎩或1167113BC+=⎧⎨+=⎩,两者都得A=166×12+8=200017.C 18.C19.A 提示:r为偶数,n(n+1)只能取6,12,20,30,42,56,•72,•90,110,132,156,182,210,240,272.20.提示:显然号码为9999是幸运券,除此之外,其余所幸运券可两两配对,•和为9999,因为9999=99×101,故所有幸运券号码之和也能被101整除.21.1~9组成的最大九位数是987654321,但这个数不是11的倍数.经分析所求数的奇位数字和为25,偶位数字和为20,987652413为所求.22.根据被除数、除数、商、余数关系列出方程组,可求得该班有同学为23人.23.提示:先设p≥q,则有1≤23qp-=2×qp-3p<2,于是只能23qp-=1,即p=2q-3,而这时21pq+=45pq-=4-5q,要21pq+为自然数,只能q=5,从而p=7,再设p<q,这时1≤21pq+=2×pq+1q<3,于是我们有以下两种情况:①21pq+=1,q=2p+1,此时23qp-=41pp-,得p=1,不合题意;②21pq+=2,2p+1=2q,左边为奇数,右边为偶数,矛盾.故p2q=72×5=245.24.(1)三个数位上的数字全相同,所得的数为0,(2)三个数位上的数字不全相同,所得的数为495证明:(1)显然成立,下面证(2).若三个数位上的数字不全相同,不妨设这个三位数为abc,其中a≥b≥c,且a≥c+1,abc-cba=99(a-c)=100(a-c-1)+10×9+(10+c-a) 故所得的三位数中必有一个9,而另两个数字之和为9,共有五种可能:990,981,972,963,954,易验证上述五个数经过不超过10次操作得到495.。
初一寒假数学竞赛班-[7445]讲义-11-整除上
【例2】设n是整数,如果n2的十位数字是7,那么n2的个位数 字是什么?
二、整数的整除性 在整数范围内,有; 整数+整数=整数 整数-整数=整数 整数×整数=整数 但是,整数除以整数不一定得整数。由已讲的整除定义 知,如果整数a除以整数b得到的商也是整数,则称整数b 整除整数a。
关于整数的整除性有以下的性质:
⑵若a是自然数,则10|a1991-a1987
【例5】有一个1987位数A能被9整除,它的各位数字的和为a ,a的各位数字的和为b,b的各位数字的和为c,求c 等于什么?
2
⑴如果a|b,a|c,那么a|(b±c) 如2|6,2|4,则2|(6+4), 2|(6-4)
⑵如果a|b,b|c,那么a|c 如3|6,6|12,3也整除12
⑶如果b|a,则bm|am,其中m为非零整数 如3|6,7·3也整除6·7
⑷如果a|b,则a|nb,其中n为整数 如3|6,3也整除5·6
⑸若bm|am,则b|a,其中m为非零整数 如2·5 |4·5,2也整除4
⑹若a|b1,a|b2,…,a|bn,则a|(b1+b2+…+bn) 如2|4,2|6,2|12,2也整除4+6+12=22
⑺n个连续整数之积必能被1×2×3×…×n所整除 如6×7×8=1×2×3×7×8,∴1×2×3|6×7×8
【例3】若62 427 +1)(2n+1)(n为整数)
定义 设a、b是整数,且b≠0,若有整数q和r,使得a=b·q+r, 其中0<r<|b|,那么就称b不整除a,记作:b a 此时,称q为a除以b的(不完全)商,称r为a除以b的余数。
由以上两个定义,得到下面的定理: 定理:设a,b是整数,且b≠0,则有唯一一组整数q和r,
满足 a=bq+r,其中0≤r<|b|, 显然,当r=0时,b整除a;当r≠0时,b不整除a 换句话说,若用整数n作除数,其余数r有n种可能的情况 ,即r=0,1,……,n-1。
数学奥赛辅导 第二讲 整除
数学奥赛辅导 第二讲整除知识、方法、技能整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数.由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z c b c a b a i ni i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p ⋅⋅⋅ 则p 必能整除n a a a ,,,21 中的某一个.特别地,若p 为质数,.|,|a p a p n 则(7)如在等式∑∑===mk k ni i b a 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c 的倍数.(8)n 个连续整数中有且只有一个是n 的倍数. (9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设大于1的整数a 的标准分解式为n n p p p p p p a n <<<⋅= 211(21ααα为质数,i α均为非负整数),则a 的约数的个数为∏=+=ni i a d 1)1)(α(.所有的约数和为:∏=+--=ni ii p p a i 1111)(ασ. 事实上,由算术基本定理的推论知∏=+=ni i a d 1)1()(α,而各约数的和就是∏=+++ni i i ipa p 1)1( 展开后的各项之和,所以∏∏==--=+++=ni ni i i i p p p p a ii11111)1()(αασ 例如,25200=24·32·52·7,所以90)11)(12)(12)(14()25200(=++++=d , 999441717151513131212)25200(2335=--⨯--⨯--⨯--=σ.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示n a a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.显然,若b a ,的标准分解式为i ni i n i i p p b p a ii(,11∏∏====βα为质数,i i a β,为非负整数),则∏==ni i i i p b a 1),min(),(βα ①∏==n i man i i i p b a 1),(],[βα ②例如 3960=23·32·5·11, 756=22·33·7,则 (3960,756)=22·32=36,[3960,756]=23·33·5·7·11=83160. 求最大公约数也可以用辗转相除法,其理论依据是:定理二:设a 、b 、c 是三个不全为0的整数,且有整数t 使得c bt a +=,则a 、b 与b 、c 有相同的公约数,因而),(),(c b b a =,即).,(),(bt a b b a -=因为,若a d 是、b 的任一公约数,则由b d c d c bt a b d a d 是即知和,||,|+=、c 的公约数;反之,若b d 是、c 的任一公约数,a d 也是、b 的公约数.辗转相除法:设a 、b a N b >∈*且,, 由带余除法有⎪⎪⎪⎭⎪⎪⎪⎬⎫=+=<<+=<<+=<<+=+++----.0,,0,,0,,0,111111212221111n n n n n n n n n n n r r q r r r r r q r r r r r q r b b r r bq a ③ 因为每进行一次带余除法,余数至少减1,即11+>>>>n n r r r b ,而b 为有限数,因此,必有一个最多不超过b 的正整数n 存在,使得0≠n r ,而01=+n r ,故由定理二得:).,(),,(),(),(11211b a b r r r r r r r r n n n n n ======-+()例如,(3960,756)=(756,180)=(180,36)=36. 具体算式如下:5(q 1) 3960(a ) 756(b ) 4(q 2) 3780 720 180(r 1) 36(r 2) 5(q 3) 1800(r 3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质:(1)),(),(,b a m bm am N m =∈则.(2)设b a c ,为的公约数,则.),(),(cb a cb c a =特别地,若1),(),,(==cbc a b a c 则.(3)设n a a a ,,,21 是任意n 个正整数,如果n n n c a c c a c c a a ===-),(,,),(,),(1332221 ,则n n c a a a =),,,(21 .因21121111|,|,|,|,|,|--------n n n n n n n n n n n n c c a c c c a c c c a c 故而,如此类推得出n c 能整除n n n c a a a 于是,,,,11 -是它们的一个公约数.又设n a a a c ,,,21 为的任一公约数,则21|,|a c a c ,因而2|c c ,同理可推出3|c c ,如此类推最后可得n c c |. 于是n c c c ≤≤||,故n c 是最大公约数.(4)若c b a =),(,则一定有整数y x 和,使得c by ax =+. 特别地,⇔=1),(b a 存在1,=+by ax y x 使得. 这可由辗转相除法的③式逆推而得by ax r c n +==. (5)若),(),(,1),(b c b ac b a ==则. (6)*∈N b a , ①)(],[],[*∈=N k b a k bk ak ;②b a m ,为的任一公倍数,则m b a |],[;③ab b a b a =],)[,(,特别地,若ab b a b a ==],[,1),(则.①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,=],)[,(b a b a∏∏==+==ni ni i i i iab p pi i 11),min(βαβα.(7)设na a a ,,,21 是任意n 个正整数.若===-],[,,],[,],[1332221n n a m m a m m a a m n ,则n n m a a a =],,,[21 .这是一个求多个整数的最小公倍数的方法.它可用证明③类似的方法来证明. Ⅲ.方幂问题一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论: (1)平方数的个位数字只可能是0,1,4,5,6,9.(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1.(3)奇数平方的十位数字是偶数.(4)十位数字是奇数的平方数的个位数一定是6.(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数.(7)任何四个连续整数的乘积加1,必定是一个平方数. 进一步研究可得到有关平方和的几个结论:定理三:奇素数p 能表示成两个正整数的平方和的充要条件是.14+=m p定理四:设正整数p m n 2=,其中p 不再含平方因数,n 能表示成两个整数的平方的充要条件是p 没有形如34+q 的质因数. 定理五:每个正整数都能表示成四个整数的平方和.这几个定理的证明略.这里重点是介绍有关k 方幂的解法技巧.k 方幂中许多问题实质上是不定方程的整数解问题,比如著名的勾股数问题.赛题精讲例1:证明:对于任何自然数n 和k ,数1042),(3++=k k n n k n f 都不能分解成若干个连续的正整数之积.(1981年全国高中联赛试题)【证明】由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除.因,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解成三个或三个以上的连续自然数的积. 再证),(k n f 不能分解成两个连续正整数的积.由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解.而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明.故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积. 例2: 设p 和q 均为自然数,使得.131911318131211+--+-= q p证明:p 可被1979整除. (第21届IMO 试题)【证明】)131814121(2)1319131211(+++-+++= q p =)6591211()1319131211(+++-++++=)99019891()131816611()131916601(++++++ =1979×)99098911318661113196601(⨯++⨯+⨯两端同乘以1319!得1319!*).(1979N m m qp∈⨯=⨯此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979|.p【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立.牛顿二项式定理和n b a b a b a b a n n n n (|)(,|)(-+--为偶数),n b a b a n n (|)(-+为奇数)在整除问题中经常用到.例3 :对于整数n 与k ,定义,),(112∑=-=nr k r k n F 求证:)1,(n F 可整除).,(k n F(1996加拿大数学竞赛试题)【证明】当m n 2=时,,)12()1,2(21∑=+==mr m m r m F∑∑+=-=-+=mm r k mr k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k mr k mr k mr k r m r r m r由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面, =),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m r上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除.因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除.类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除. 故),(k n F 能被)1,(n F 整除.例4 :求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)777)(b a b a --+能被77整除.(第25届IMO 试题)【解】777)(b a b a --+=)](5)(3)[(7223355b a b a b a ab b a ab +++++=.))((7222ab b a b a ab +++ 根据题设要求(1)(2)知,|,)(|72226ab b a ++即.|7223ab b a ++令,7322=++ab b a 即,343)(2=-+ab b a 即19=+b a ,则.343192-=ab 故可令1,18==b a 即合要求.(第15届美国普特南数学竞赛试题)【评述】数学归纳法在整除问题中也有广泛应用.例5:是否存在1000000个连续整数,使得每一个都含有重复的素因子,即都能被某个素数的平方所整除?【解】存在.用数学归纳法证明它的加强命题:对任何正整数,m 存在m 个连续的整数,使得每一个都含有重复的素因子. 当m =1时,显然成立.这只需取一个素数的平方.假设当m =k 时命题成立,即有k 个连续整数k n n n +++,,2,1 ,它们分别含有重复的素因子k p p p ,,,21 ,任取一个与k p p p ,,,21 都不同的素数1+k p (显然存在),当21,2,1+=k p t 时,)1(22221+++k n p p tp k 这21+k p 个数中任两个数的差是形如)11(2122221-≤≤+k k p a p p ap 的数,不能被21+k p 整除,故这21+k p 个数除以21+k p 后,余数两两不同.但除以21+k p 后的余数只有0,1,…,21+k p -1这21+k p 个,从而恰有一个数)1(2100+≤≤k p t t ,使)1(222210+++k n p p p t k 能被21+k p 整除.这时,()1+k 个连续整数:,1222210++n p p p t k ++n p p p t k 222210 2,…,++n p p p t k 222210 k ,++n p p p t k 222210 (k +1)分别能被2122221,,+k k p p p p 整除,即1+=k m 时命题成立.故题对一切正整数m 均成立.例6:求证:.),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a = (第1届美国数学奥林匹克竞赛试题)【证明】设,,,111∏∏∏======ni ini ini ii p c i p b i p a γβα其中i p 为质数,i i i γβα,,为非负整数,则 ∏==ni i iiip c b a 1),,max(,],,[γβα∏==ni i i i p b a 1),max(,],[ βα∏=∏=ni i iiip c b a 1),,min(,),,(γβα∏==ni i iip b a 1),min(,),( βα因此只需证明2max(),m ax (),m ax (),m ax (),,i i i i i i i i i αγγββαγβα---=2min(),m in(),m in(),m in(),,i i i i i i i i i αγγββαγβα---上式关于i i i γβα,,对称,则不妨设i i i γβα≥≥,于是上式变为:.22i i i i i i i i γγβγαβαα---=---此式显然成立,故得证.例7:设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,ba b a b a c pp +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =(1985新加坡数学竞赛试题)【证明】由已知得),(,N s t cs ba b a ct b a pp ∈=++=+,两式相乘得,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= 于是,12211-----++-=p p p p p pa t pac t c cs 故.|1-p pa c(1)现用反证法来证明1),(=a c .若,1),(>=k a c 令q 是k 的一个质因子,则有.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1矛盾,故1),(=a c .(2)因为,1),(,|1=-a c pa c p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c =例8:设∑=+=nk n k k S 175)(,求最大公约数).,(3n n S S d =(第26届IMO预选题)【解】能过具体计算可猜想.)2)1((2)21(244+=+++=n n n S n 此式不难用数学归纳法获证. 为求),(3n n S S d =,对n 分奇偶来讨论.(1)当k n 2=时,).)16(812,)12(2()]2)16(6[2,]2)12(2[2(444444+⨯+=++=k k k k k k k k d 由于12+k 和16+k 互质,所以).81,)12((244+=k k d 而当13+=t k 时13,)12(81)12(44+≠+=+t k t k 时,4)12(+k 与81互质.故此时有⎪⎪⎩⎪⎪⎨⎧≥++==+==⨯⨯=⨯=.)0(4666,812;26,8812812812444444t t t n n k t n n n k d 时或当时当 (2)当当12+=k n 时).)23)(12(3[2,)]1)(12[(2(44++++=k k k k d1,1223+++k k k 与因与质,所以).3,)1(()12(2444++=k k k 而当23+=t k 时,23),1(31+≠+=+k k t k 时,1+k 与34互质.故此时有⎪⎩⎪⎨⎧++==++==⨯=⨯+=.)36162)12(2;56,162323)12(2444444时或当时当t t n n k t n n n k d 例9:m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是.1),(=n m (第26届IMO 预选题)【证明】设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m .例10:求所有这样的自然数n ,使得n 222118++是一个自然数的平方.(1980年第6届全俄数学竞赛试题)【证明】(1)当8≤n 时,)122(222118118++⋅++=--n n n N ,因(…)为奇数,所以要使N 为平方数,n 必为偶数.逐一验证8,6,4,2=n 知,N 都不是平方数. (2)当9=n 时,11222289118⨯=++=N 不是平方数.(3)当10≥n 时,)29(288-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不妨假设829-+n =2)12(+k ,则).2()1(210+⨯-=-k k n 由于1-k 和2+k 是一奇一偶,左边为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求.。
《数学竞赛》第三章_数论2012.2
2017/3/22
第三章 数 论
11
3.2 同 余
一、同余的定义和性质
性质
性质
(1) (反身性) (2) (对称性)若 (3) (传递性)若 (4) (同余式相加)若 (5) (同余式相乘)若
2017/3/22
; ,则 , , ,
第三章 数 论
; ,则 ,则 ,则 ;
12
; ;
3.2 同 余
一、同余的定义和性质
2017/3/22 第三章 数 论 3
第三章 数 论
例题
3.1 整数的奇偶性和整除性
一、整数的奇偶性 例1.在1, 2, 3, ⋯, 1999 这1999 个数的前面任
意添上正号或负号, 问它们的代数和是奇数
还是偶数? 例2.设a1 , a2 , ⋯, an 是自然数 1, 2, ⋯, n 的一个 排列, 若n 为奇数,求证: ( a1 - 1) ( a2- 2) ⋯( ann) 为偶数。
2017/3/22 第三章 数 论 15
3. 2 同 余
一、同余的定义和性质 例题 例3.求证:x14 +x24 + x34 + „ + x144 =1599无
整数解. 练习
1. (1898年匈牙利奥林匹克竞赛题)求使 2n+1能被3整除的一切自然数n. 2. 求证31980+41981能被5整除.
例题
练习
习题3.2
5.求19992000被29除的余数.
2017/3/22 第三章 数 论 17
第三章 数 论
3.3 不定方程
不定方程是数论中最古老的分支之一。
历史
古希腊的丢番图(Diophantus)早在公元3世纪就 开始研究不定方程,因此常称不定方程为丢番图方程. 中国是研究不定方程最早的国家.公元5世纪的 《 张丘建算经》中的百鸡问题标志中国对不定方程理 论有了系统研究.秦九韶的大衍求一术将不定方程与同 余理论联系起来. 百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱 三,鸡雏三,直钱一.百钱买百鸡,问鸡翁、母、雏各 几何?”. 费马(Fermat)大定理(当n>2时,xn+yn=zn没有 非平凡的整数解),历经300余年,已由英国数学家安 德鲁 · 维尔斯(A.Wiles )证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义: 设a ,b 是整数,b ≠0.如果有一个整数q ,使得a=bq ,那么称a 能被b 整除,或称b 整除a ,并记作b |a .也称b 是a 的约数,a 是b 的倍数。
如果不存在这样的整数q ,使得a=bq ,则称a 不能被b 整除,或称b 不整除a ,记作b |a .关于整数的整除,有如下一些基本性质:性质1若c b b a |,|,则c a |证明:∵c b b a |,|,∴bq c ap b ==,(q p ,是整数),∴a pq q ap c )()(==,∴c a |性质2 若a |b ,b |a ,则 |a |=|b |.性质3 若c |a ,c |b ,则c |(a ±b ),且对任意整数m ,n ,有c |(m a ±n b ).证明:∵c a b a |,|,∴aq c ap b ==,q b ,(是整数),∴)(q p a aq ap c b ±=±=±,∴|()a b c ±性质4 若b |a ,d |c ,则bd |ac .特别地,对于任意的非零整数m ,有b m |a m性质5 若a =b +c ,且m |a ,m |b ,则m |c .性质6 若b |a ,c |a ,则[b ,c ]|a .特别地,当(b ,c )=1时,bc |a【此处[b ,c ]为b ,c 的最小公倍数;(b ,c )为b ,c 的最大公约数】.性质7 若c |ab ,且(c ,a )=1,则c |b .特别地,若p 是质数,且p |ab ,则p |a 或p |b .性质8 n 个连续整数中,必有一个能被n 整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3 | 12;41,42,43,44中有4 |44;77,78,79,80,81中5 | 80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a |n ,b |n ,且存在整数x ,y ,使得ax +b y=1,证明:ab |n .证明:由条件,可设n=au,n=b v,u,v为整数,于是n=n(ax+b y)= nax+nb y=abvx+abu y= ab(vx+u y)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24 |[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k +4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得3v-5u=17x.①所以17|3v.因为(17,3)=1,所以17|v,即17|9x+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.证明 用反证法.如果a ,b 不都能被3整除,那么有如下两种情况:(1) a ,b 两数中恰有一个能被3整除,不妨设3|a ,3b .令a =3m ,b =3n±1(m ,n 都是整数),于是a 2+b 2=9m 2+9n 2±6n+1=3(3m 2+3n 2±2n)+1,不是3的倍数,矛盾.(2) a ,b 两数都不能被3整除.令a =3m±1,b =3n±1,则a 2+b 2=(3m±1)2+(3n±1)2=9m 2±6m+1+9n 2±6n +1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a ,b 都是3的倍数.例7 已知a ,b 是正整数,并且a 2+b 2能被ab 整除,求证:a =b .先考虑a ,b 互质的情况,再考虑一般情况。
证明 (1)若a ,b 互质,那么由ab |a 2+b 2,得a |a 2+b 2,从而a |b 2,又a ,b 互质,得a =1同理b =1,所以a =b ;(2) 若a ,b 不互质,则设d 为它们的最大公约数,a =a 1d ,b =b 1d ,则a 1,b 1互质,由ab |a 2+b 2,得a 1b 1d 2| d 2(a 12+b 12),从而a 1b 1| (a 12+b 12),由(1)可知a 1=b 1=1所以a =b =d例8 设p 是质数,证明:满足a 2=pb 2的正整数a ,b 不存在.证明 用反证法.假定存在正整数a ,b ,使得a 2=pb 2令(a ,b )=d ,a =a 1d ,b =b 1d ,则(a 1,b 1)=1.所以221a d =221pb d ,21a =21pb所以21|p a ,由于p 是质数,所以1|p a ,令12a pa =,则12a pa =,则2221pa b =同理1|p b ,即a 1,b 1都有p 这个因子,与(a 1,b 1)=1矛盾.例9 若p ,q ,21p q -,21q p-都是整数,并且p >1.求pq 的值. 解 若p =q ,则 212112p p q p p--==- 不是整数,所以p ≠q .不妨设p <q ,于是2121212p q q q q q --≤<<= 而21p q -是整数,故21p q-=1,即q =2p -1, 又214334q p p p p--==-是整数,所以p 只能为3,从而q =5. 所以pq =3×5=15.例10 试求出两两互质的不同的三个自然数x ,y ,z ,使得其中任意两个的和能被第三个数整除. 分析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.解 不妨设x y z <<,于是y z x +,x z y +,x y z+都是自然数,先考虑最小的一个: 12x y z z z z++≤<= 所以+1x y z=,即z x y =+,再考虑x z y +,因为|()y x z +,即 y |(y +2x),所以y |2x ,于是2212x y y y ≤<= 所以21x y=,即2y x =,从而这三个数为x,2x,3x ,又因为这三个数两两互质,所以x=1. 所求的三个数为1,2,3.例11 设n 是奇数,求证:60|6n -3n -2n -1.分析 因为60=22×3×5,22,3,5是两两互质的,所以由性质6,只需证明22,3,5能被6n -3n -2n -1整除即可.对于幂的形式,我们常常利用性质8~性质10,其本质是因式分解.证明 60=22×3×5.由于n 是奇数,利用性质8和性质10,有22|6n -2n ,22|3n +1,所以22|6n -2n -3n -1, 3|6n -3n , 3|2n +1,所以3|6n -3n -2n -1,5|6n -1,5|3n +2n ,所以5|6n -1-3n -2n .由于22,3,5两两互质,所以60|6n -3n -2n -1.【注】我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用2k+1表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0,1,2这三种可能,因此,全体整数可以分为3k ,3k +1,3k +2这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.例12 求证:3n +1(n 为正整数)能被2或22整除,但不能被2的更高次幂整除.证明 按模2分类.若n=2k 为偶数,k 为正整数,则3n +1=32k +1=(3k )2+1.由3k 是奇数,(3k)2是奇数的平方,奇数的平方除以8余1,故可设(3k)2=8l +1,于是3n +1=8l +2=2(4l +1).4l +1是奇数,不含有2的因数,所以3n +1能被2整除,但不能被2的更高次幂整除.若n=2k +1为奇数,k 为非负整数,则3n +1=32k +1+1=3·(3k )2+1 =3(8l +1)+1=4(6l +1).由于6l +1是奇数,所以此时3n+1能被22整除,但不能被2的更高次幂整除.在解决有些整除性问题时,直接证明较为困难,可以用反证法来证.例13 设m 是一个大于2的正整数,证明:对任意正整数n ,都有21|21m n-+ 证明:如果存在正整数n ,使得21|21m n-+,那么取其中最小的那个n , 由于m>2,知n>1,进一步,应有2121m n -≤+,知n m ≥而n=m 时,21|2m -(因为2(21)(21)n n =+--,右边每一项都是2n -1的倍数),矛盾,故n>m于是设21(21)n mq +=-,这里q 是正整数,则 22(21)(21)(21)(1)n m n m m q +=-+-=-+即 2(21)(21)(1)m n m m q --=-+于是 (21)(21)(21)(21)(1)n m m n m m q --++-+=-+得 (21)(21)(2)n m m n m q --+=--因此,21|2+1m n m --,与n 的最小性矛盾,所以,命题成立。