利用一次函数解决实际问题

合集下载

4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)

4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)

4.5 一次函数的应用第1课时利用一次比例函数解决实际问题要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费M元,小刚家某月用电290度,交电费153元,求M的值.参考答案预习练习1-17.4预习练习2-1 D2-2大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.或8.(1)s=10t(2)9.根据图形可得:甲的速度是=8(米/秒),乙的速度是:=7(米/秒),∴根据题意得:100-×7=12.5(米).当甲跑到终点时,乙落后甲12.5米.答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入,得解得则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x-7(140<x≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),M=0.75-0.5=0.25.答:M的值为0.25.。

初中数学一次函数的应用

初中数学一次函数的应用

初中数学一次函数的应用一、引言初中数学中,一次函数是一个重要的内容,也是数学思维的基础。

掌握一次函数的应用可以帮助学生更好地理解实际问题,并且培养其解决实际问题的能力。

本教案将以一次函数的应用为主题,通过具体的案例分析,让学生深入了解一次函数在现实生活中的应用。

二、案例分析1. 飞机票价问题假设一架飞机从A城市到B城市,飞行距离为800公里,飞行时间为2小时。

已知该航线的燃油成本为每公里4元,且其他开销为固定费用5000元。

每张机票定价为p元。

假设有x人订购机票,请问如何确定机票的价格才能使航空公司利润最大化?解析:这是一个典型的一次函数应用问题。

设定x为订购机票的人数,p为机票价格。

首先,我们可以列出航空公司的收入函数和成本函数:收入函数:R(x) = px成本函数:C(x) = 800 * 4 + 5000 = 3800利润函数:P(x) = R(x) - C(x) = px - 3800为了使航空公司的利润最大化,我们需要求出利润函数的最大值点。

通过求导可知,利润函数的最大值点即为极值点。

令利润函数的导数为零,得到:P'(x) = p = 0因此,当机票价格为0时,航空公司可以获得最大利润。

但这是不现实的,所以我们需要考虑在满足航空公司成本的情况下,选择一个合理的价格。

2. 高楼坠物问题某座高楼上有一块距离地面h米的平台,设一个物体从此平台自由下落。

已知物体每经过一个时间单位,下落的距离与时间的关系是:每个时间单位下落h/10米。

请问,当物体下落到平台下方10米处时,经过了多少个时间单位?解析:这是一个典型的一次函数应用问题。

根据题意,我们可以列出物体下落的距离与时间的关系为一次函数:距离函数:d(t) = h - (h/10)t为了求解物体下落到平台下方10米处所需的时间单位,我们需要找到方程d(t) = 10的解。

代入距离函数,得到:h - (h/10)t = 10解方程可得:t = (h/10) / (h/10 - 1)这个式子就是物体下落到平台下方10米处所需的时间单位。

方法专题15 利用一次函数解决实际生活中的最值问题

方法专题15     利用一次函数解决实际生活中的最值问题

方法专题15 利用一次函数解决实际生活中的最值问题1.某学校为积极响应政府“三城同创”的号召,绿化校园,计划购买A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数解析式为y= (其中0≤x≤21);(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.2.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地盛产的甲.乙两种原料开发A,B两种商品.为了科学决策,他们试生产A,B两种商品共100千克.已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.设生产A种商品x千克,生产A,B两种商品共100千克的总成本为y元,解答下列问题: (1)求y与x的函数解析式,并求出x的取值范围;(2)当x= 时,总成本y最小.2.为了落实党的“精准扶贫”政策,A,B两城决定向C,D两乡运送肥料以支持农村生产,已知A,B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C,D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨.现C 乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求总运费的最少值;(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?答案:1(1)y=20x+1470 (2) A11,B10费用1690元 2 (1) 24≤x≤86 (2) 863 (1) A,200 B,300 (2)10040 (3)A城运往C乡的运费每吨减少a(0<a<6)元,.y=(20-a)x十25(200- . x)+15(240- x)十24(60+x)=(4-a)x十10040.当0<a<4时,4-a>0,..当x=0时,运费最少是10 040元;当a=4时,运费是10040元;当4<a<6时,4-a<0, .x=200时,运费最少. .当0<a<4时,A城化肥全部运往D乡,B城运往C乡240吨,运往D乡60吨,运费最少;当a=4时,不管A城化肥运往D 乡多少吨,运费都是10 040元;当4<a<6时,A城化肥全部运往C乡,B城运往C乡40吨,运往D乡260吨,运费最少.。

一次函数解决实际问题典型例题

一次函数解决实际问题典型例题

本次课课堂教学内容 一次函数解决实际问题一、学习目标1、掌握一次函数的图像与性质2、能够运用一次函数的性质解决生活中实际问题二、知识梳理1.正比例函数性质:一般地,形如y=kx(k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) 必过点:(0,0)、(1,k ) (2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (4) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2.一次函数及性质一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数k(称为斜率)表示直线y=kx+b (k ≠0)的倾斜程度,b 称为截距 一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) 必过点:(0,b )和(kb-,0) (2)走向: 依据k 、b 的值分类判断,见下图(3)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (5)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.(6)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数3.一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.k>0k<04.正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,).上加下减,左加右减5.直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y轴上同一点: b1=b26.待定系数法一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.7.一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.8.一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.9.一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点. 10.关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;三、例题讲解【考点1 一次函数的应用—方案最优化问题】【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元. (1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x 个,学校购买这批篮球和足球的总费用为y (元),求y 与x 之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y 最小,并求出y 的最小值.【变式1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【例2】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m元(m<250).问怎么安排集装箱这批货物总运输费最少?【考点2 一次函数的应用—行程问题】【例3】甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B 地出发沿相同路线匀速驶向A地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数.(2)求甲车从B地返回A地的过程中,y与x的函数关系式(不需要写出自变量x的取值范围).(3)直接写出乙车出发多少小时,两车恰好相距80千米.【变式2】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的图象如图所示:(1)根据图象,分别写出y1、y2关于x的关系式(需要写出自变量取值范围);(2)当两车相遇时,求x的值;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.【例4】甲、乙两车同时从A地出发驶向B地.甲车到达B地后立即返回,设甲车离A地的距离为y1(千米),乙车离A地的距离为y2(千米),行驶时间为x(小时),y1,y2与x 的函数关系如图所示.(1)填空:A、B两地相距千米,甲车从B地返回A地的行驶速度是千米/时;(2)当两车行驶7小时后在途中相遇,求点E的坐标;(3)甲车从B地返回A地途中,与乙车相距100千米时,求甲车行驶的时间.【例5】杭州市水厂的水价调整与阶梯式水价改革方案已出台,自2010年9月1日(用水时间)起执行,为鼓励居民节约用水,对居民生活用水实行水费阶梯制(见表).…“一户一表”用水量不超过17立方米超过17立方米且不超过30立方米的部分单价(元/立方米) 2.40 3.35 …小芳家十月份用水x立方米.(1)当x≤17时,小芳家这月付水费多少元?(2)若小芳家这月用水20立方米,应付水费多少元?(3)若小芳家这月付了水费60.9元,她家该月用水多少立方米?【例6】某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015设超市每天从甲养殖场调运鸡蛋x斤,总运费为W元.(1)超市每天从乙养殖场调运鸡蛋(1200﹣x)斤(用含x的代数式表示).(2)求W与x的函数关系式.(3)如果合理安排调运,可以节省运费,每天最少需总运费2610 元(直接填空).【例7】如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1 B.x<﹣1 C.x≥3 D.x≥﹣1【变式】如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b13<x时,x的取值范围为.四、课堂检测1.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y295250=x B.y300250=x C.y295250=x+5 D.y300250=x+52.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点 B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等 D.从出发到13.7秒的时间段内,乙队的速度慢3.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+84.某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15 B.9:20 C.9:25 D.9:305.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.46.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.8.某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目空调彩电进价(月/台)5400 3500售价(月/台)6100 3900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?9.快车和慢车分别从甲、乙两地同时出发,匀速相向而行,快车到达乙地后,慢车继续前行,设出发x小时后,两车相距y千米,图中折线表示从两车出发至慢车到达甲地的过程中y 与x之间的函数关系式,根据图中信息,解答下列问题.(1)甲、乙两地相距千米,快车从甲地到乙地所用的时间是小时;(2)求线段PQ的函数解析式(写出自变量取值范围),并说明点Q的实际意义.(3)求快车和慢车的速度.本次课课后练习1.一次函数y 1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2 C.b1>b2D.当x=5时,y1>y22.如图所示,直线l1:y32=x+6与直线l2:y52=-x﹣2交于点P(﹣2,3),不等式32x+6 52->x﹣2的解集是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣23.等腰三角形周长为20cm,底边长y cm与腰长x cm之间的函数关系是()A.y=20﹣2x B.y=20﹣2x(5<x<10)C.y=10﹣0.5x D.y=10﹣0.5x(10<x<20)4.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是.5.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.6.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05 mL.若小明同学在洗手时,没有把水龙头拧紧,当小明离开xh后水龙头滴了ymL水,则y与x之间的函数关系式为_______.7.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.8.某农产品店利用网络将优质土特产销往全国,其中销售的核桃和花生这两种商品的相关信息如下表.根据下表提供的信息,解答下列问题:商品核桃花生规格1kg/袋2kg/袋利润10元/袋8元/袋(1)已知今年上半年,该店销售上表规格的核桃和花生共3000kg,获得利润21000元,求上半年该店销售这种规格的核桃和花生各多少袋?(2)根据之前的销售情况,估计今年下半年,该店还能销售上表规格的核桃和花生共2000kg,其中,核桃的销售量不低于600kg.假设今年下半年,销售上表规格的核桃为x(kg),销售上表规格的核桃和花生获得的总利润为W(元),写出W与x之的函数关系式,并求下半年该店销售这种规格的核桃和花生至少获得的总利润.9.2019年元旦期间,某商场打出促销广告,如表所示:优惠条件一次性购物不超过200元一次性购物超过200元优惠办法一律按九折优惠其中200元仍按九折优惠超过200元部分按八折优惠小颖一次性购物x元,实际付款y元(1)写出y与x之间的函数关系式及自变量x的取值范围;(2)这次购物小颖实际付款196元,问:所购物品的原价是多少元?10.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.。

八年级数学下册《利用一次函数解决实际问题》教案、教学设计

八年级数学下册《利用一次函数解决实际问题》教案、教学设计
(2)运用任务驱动法,设计具有挑战性的任务,激发学生的探究欲望;
(3)采用启发式教学法,引导学生通过观察、分析、归纳,发现一次函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:以生活中的一次函数实例引入新课,让学生感受到数学与生活的紧密联系;
(2)探究:引导学生通过小组讨论、自主探究,从实际问题中抽象出一次函数关系;
3.探究性作业:鼓励学生自主探究一次函数的性质,发现规律,提高学生的探究能力和创新意识。
例题:研究一次函数y=kx+b(k、b为常数,且k≠0)的图像,探讨k、b的取值对图像的影响。
4.小组合作作业:安排一些需要团队合作完成的作业,培养学生的团队协作能力和沟通能力。
例题:小组合作设计一个一次函数应用实例,并撰写解题报告,分析解题过程。
3.一次函数在实际问题中的求解方法。
总之,在本节课的教学过程中,我将注重启发式教学、分层教学和师生互动,努力提高学生的学习兴趣和积极性,确保教学目标的实现。
五、作业布置
为了巩固本章节所学知识,检验学生对一次函数的理解和应用能力,我设计了以下几类作业:
1.基础知识巩固题:包括一次函数的定义、性质、图像等方面的练习,旨在帮助学生巩固一次函数的基本概念。
例题:已知一次函数y=2x+3,求该函数的斜率和截距。
2.实际问题应用题:设计一些与生活息息相关的问题,让学生运用一次函数知识解决,提高学生解决实际问题的能力。
例题:某商店进行打折促销活动,原价为100元的商品,每增加1元,折扣力度增加0.01。请列出商品价格与折扣力度之间的关系,并计算在哪个价格区间购买最划算。
(三)情感态度与价值观
1.增强数学在实际生活中的应用意识,认识到数学知识在解决实际问题中的重要性;

冀教版数学八年级下册《利用一次函数解决实际问题》教学设计3

冀教版数学八年级下册《利用一次函数解决实际问题》教学设计3

冀教版数学八年级下册《利用一次函数解决实际问题》教学设计3一. 教材分析冀教版数学八年级下册《利用一次函数解决实际问题》是学生在掌握了函数基本概念和一次函数的性质的基础上进行学习的内容。

本节课通过生活中的实例,让学生了解一次函数在实际问题中的应用,培养学生的应用意识和解决实际问题的能力。

教材中给出了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的性质,具备了一定的数学思维和解决问题的能力。

但部分学生对实际问题的理解不够深入,将其与数学知识联系起来的能力较弱。

因此,在教学过程中,需要关注这部分学生的学习需求,引导他们将数学知识与实际问题相结合。

三. 教学目标1.知识与技能:使学生了解一次函数在实际问题中的应用,掌握利用一次函数解决实际问题的方法。

2.过程与方法:通过实例分析,培养学生将实际问题转化为数学问题的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的应用意识和解决实际问题的能力。

四. 教学重难点1.重点:一次函数在实际问题中的应用。

2.难点:如何将实际问题转化为数学问题,并运用一次函数解决。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题情境,引导学生主动探究;以典型案例为载体,让学生参与分析、讨论和解决问题;小组合作学习,培养学生团队协作能力和沟通能力。

六. 教学准备1.准备相关的案例和实际问题,用于引导学生分析和讨论。

2.准备PPT,展示教学内容和步骤。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:某商店举行打折活动,原价为100元的商品,打8折后的价格是多少?引导学生思考如何用数学知识解决这个问题。

2.呈现(10分钟)讲解一次函数的概念和性质,以及如何将实际问题转化为数学问题。

以商品打折为例,展示一次函数在解决实际问题中的应用。

一次函数解决实际问题的步骤

一次函数解决实际问题的步骤

一次函数解决实际问题的步骤
解决实际问题时,我们需要对一次函数进行彻底理解和正确运用。

首先,需要将实际问题抽象化,找出问题中的自变量和因变量,它们之间的关系就是一次函数的关系。

其实,自变量和因变量就是我们生活、工作中常说的“因素”和“结果”,二者之间的函数关系就是我们常说的“原因和结果”。

一次函数的解决步骤分为以下几个阶段:
一、抽象化。

将实际问题抽象成数学模型。

这一步主要是识别相关的变量,并将它们形式化。

经过抽象处理后的问题,表述方式更为精确,便于详细分析。

二、建立函数方程。

分析问题,找出变量之间的关系,建立一次函数关系式。

这个公式就是我们的数学模型,帮助我们理解问题并找到解决方案。

三、解出函数。

使用相关知识,如一次函数的性质、解法等,求出一次函数的解。

四、根据获取的结果,将其转化为实际问题中的答案。

这就是将数学模型的解转化回实际语境的过程。

五、验证结果。

对于解决实际问题,我们需要检验解决方案是否可行。

将结果带入原问题中,看是否能得到合理的解答。

六、总结经验。

回顾并掌握解决问题的过程和方法,为解决类似问题积累经验。

这就是解决实际问题的一次函数步骤,希望大家能通关实践,熟练掌握这些步骤,更好的运用一次函数解决实际问题。

初中数学知识点总结:利用一次函数解决实际问题

初中数学知识点总结:利用一次函数解决实际问题

知识点总结
应用一次函数知识解决最值问题
一次函数中的自变量取值范围是全体实数,其图象是一条直线,所以此函数既没有最大值,也没有最小值,但由于在实际问题中,所列函数表达式中自变量往往有一定的限制,故就有了最大或最小值,在求函数最值时,就先求出函数表达式,并确定出增减性,再根据题目条件确定出自变量的取值范围,然后结合增减性确定出最大值或最小值。

常见考法
(1)根据图象获取信息解决问题;
(2)设计一个方案,比较哪个方案更优。

误区提醒
(1)不能正确的建立一次函数模型;
(2)忽视变量的实际意义。

【典型例题】(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).。

一次函数解决实际问题的一般步骤

一次函数解决实际问题的一般步骤

一次函数解决实际问题的一般步骤一、引言在我们的日常生活和工作中,常常会遇到各种各样的实际问题需要解决。

而数学中的一次函数则是一种常用的工具,可用来解决实际问题。

本文将深入探讨一次函数解决实际问题的一般步骤,帮助读者更好地理解和运用这一数学工具。

二、了解一次函数的基本概念在讨论一次函数解决实际问题的一般步骤之前,我们需要首先了解一次函数的基本概念。

一次函数是指函数的自变量的最高次数为1的一种函数,通常表示为y = kx + b。

其中,k为斜率,b为常数项。

一次函数的图像为一条直线,通过斜率和常数项可以确定直线的斜率和截距,进而分析其特性和规律。

三、实际问题的建模与分析解决实际问题首先需要将问题进行数学建模,将实际问题转化为数学问题。

在建模过程中,我们可以运用一次函数来描述和分析问题。

某物品的售价与销量之间的关系、运动物体的位移与时间之间的关系等都可以用一次函数来建模。

在建模的基础上,我们需要对实际问题进行深入的分析和探讨。

我们可以通过观察数据、制作表格、绘制图表等方法,分析一次函数的斜率、截距以及函数的变化趋势。

这些分析将有助于我们更好地理解实际问题,并为后续的解决提供依据。

四、一次函数解决实际问题的一般步骤1. 确定问题在解决实际问题时,我们首先需要确定问题的具体内容和要解决的核心。

我们可能需要确定要分析的变量、需要测量的数据等。

2. 建立模型在确定问题后,我们需要根据实际情况建立一次函数的数学模型。

通过观察数据或实际情况,我们可以确定函数的斜率和截距,进而建立数学模型。

3. 分析模型建立数学模型后,我们需要对模型进行深入的分析,探讨其特性和规律。

这包括分析斜率和截距的意义、函数的变化趋势等。

4. 解决问题我们可以利用建立的一次函数模型来解决实际问题。

根据已知条件,我们可以通过函数模型来预测未知数值、分析问题趋势等,为实际问题的解决提供数学支持。

五、个人观点和总结在实际问题解决中,一次函数作为数学工具能够有效地帮助我们建立模型、分析问题、预测趋势等。

利用一次函数解决问题

利用一次函数解决问题

利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。

它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。

一次函数的图像是一条直线,具有许多应用领域。

本文将介绍如何利用一次函数解决问题。

一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。

它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。

下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。

他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。

解:我们可以先通过已知数据构建一个一次函数。

选择时间作为自变量 x,距离作为因变量 y。

现在我们来求解 a 和 b 的值。

已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。

现在可以利用求得的一次函数来解决问题。

当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。

二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。

下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。

已知当生产数量为 1000 时,需要 4 小时。

而当生产数量为2000 时,需要 8 小时。

现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义 ◆类型一 费用类问题一、建立一次函数模型解决问题1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A.1个B.2个C.3个D.4个四、分类讨论思想4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5 km?二、分段函数问题6.暑假期间,小刚一家乘车去离家380 km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5 h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得{14m +(20-14)n =49,14m +(18-14)n =42,解得{m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y ={2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得{20k +b =160,40k +b =288,解得{k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y ={8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴{x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得{2000m +n =2000,4000m +n =3400,解得{m =0.7,n =600,所以y 乙={x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5 km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3 h 或1.5 h 两人恰好相距5 km.6.解:(1)从小刚家到该景区乘车一共用了4 h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得{k +b =80,3k +b =320,解得{k =120,b =-40.∴y =120x -40(1≤x ≤3).(3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得{2k +b =450,3.5k +b =0,解得{k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。

一次函数在实际问题中的应用

一次函数在实际问题中的应用

一次函数在实际问题中的应用一次函数,也称为线性函数,是数学中的基础函数之一,其形式为y = kx + b,其中k和b为常数。

一次函数在实际问题中的应用广泛,它可以用来描述和解决各种与线性关系相关的情境和难题。

本文将通过几个实际问题的案例,来说明一次函数在实际问题中的应用。

案例一:速度和时间的关系在我们日常生活中,经常会遇到需要计算速度和时间关系的问题。

例如,一个汽车以等速度行驶,假设它的初始位置是0,每小时行驶60公里,我们可以用一次函数来表示汽车的位置与时间的关系。

设汽车行驶的时间为x小时,它的位置为y公里。

根据题目中给出的条件,我们可得一次函数的表达式为y = 60x。

这是一个典型的一次函数,其斜率k为60,常数b为0。

通过这个一次函数,我们可以计算出汽车在任意时间点的位置,从而回答与汽车行驶距离相关的问题。

案例二:成本和产量的关系在工业生产中,成本和产量之间通常存在着一定的线性关系。

假设某公司生产商品的成本与产量成正比,我们可以利用一次函数来描述这种关系。

设产量为x单位,成本为y单位。

根据题目给出的条件,可知产量和成本之间的关系是y = kx + b,其中k为单位产量对应的成本,b为固定成本。

通过这个一次函数,我们可以计算出不同产量对应的成本,进而进行成本和效益的分析。

案例三:温度和时间的关系在自然科学中,温度和时间之间的关系是一个常见的一次函数应用问题。

假设某地区的温度以一定的速率逐渐升高,我们可以用一次函数来描述温度和时间之间的关系。

设时间为x小时,温度为y摄氏度。

根据题目中给出的条件,我们可以得到一次函数的表达式y = kx + b,其中k为温度随时间变化的速率,b为初始温度。

利用这个一次函数,我们可以预测未来某个时间点的温度,或者计算过去某个时间点的温度。

综上所述,一次函数在实际问题中的应用十分广泛,它可以用来描述和解决与线性关系相关的问题。

通过建立一次函数模型,我们可以数学地表示和分析诸如速度、成本、温度等实际情境,从而得出有用的结论和决策。

(完整版)利用一次函数解决实际问题(含答案)

(完整版)利用一次函数解决实际问题(含答案)

利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。

因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。

一次函数的应用举例-

一次函数的应用举例-

一次函数的应用举例一次函数是最简单,最基本的函数之一,它有着极为广泛的应用.现以近几年的一些中考题为例说明一次函数的应用.一、用于解决现实生活中的问题例1 “五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s (千米)与时间t (时)的关系可用图中的曲线来表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时? (2)求出返程途中,s (千米)与时间t (时)的函数关系式并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总量为35升,汽车每行驶1千米耗油 升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议(加油所用时间忽略不计).分析:(1)可直接从图象上看出来;(2)设函数关系式为=s b kt +,再用代点入式法求解即可; (3)是个开放性问题,答案不唯一,只要所提建议合理即可. 解:(1)由图象可看出,小明全家在旅游景点游玩了4小时.(2)设=s b kt +,代入点(14,180)和(15,120),得1418015120k d k d +=⎧⎨+=⎩解得60-=k ,1020=b ,故=s 102060+-t . 令=s 0,得17=t ,即小明全家到家是当天下午5时.(3)合理化建议:①9时30分前必须加一次油;②若8时30分前加满油箱,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量不得少于25升.点评:这是一道贴近生活实际的函数图象的“审读—理解—应用”问题,将行程问题91与一次函数的图象有机结合起来,构思巧妙,设计新颖.由于本题的信息由图象结出,故应仔细审视图象并在此基础上建立数学模型,进而运用相关的数学基础知识和数学基本思想进行解决.二、用于解决“方案设计型”问题例2 东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了两种优惠方法.甲:买一支毛笔赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法小组购买这种毛笔10支,书法练习本x (x ≥10)本.(1)写出每种优惠方法实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式.(2)若商场允许可任选一种优惠方法购买,也可同时用两种优惠方法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.分析:读懂题意是解决本题的基础,在此基础上建立数学模型——一次函数模型是解决本题的关键.解:(1)由题意,得y 甲=2005+x ,y 乙=2255.4+x .(2)当x =60时,y甲=500,y 乙=495,故任选一种优惠方法购买时,乙方法省钱.当同时选用两种方法购买时,设用甲方法购买m 支毛笔,获赠m 本练习本;用乙方法购买(10-m )支毛笔,(60-m )本练习本,则付款金额4952%90)]60(5)10(25[25+-=⨯-+-+=m m m m y . 由题意知m ≤10,故当=10时,y 有最小值,y最小495475495102<=+⨯-=,故用甲方法购买10支毛笔,用乙方法购买50本练习本最省钱.点评:这是一道实际应用题,首先要进行数学抽象,把它转化为一次函数问题,然后利用一次函数的性质及自变量的取值范围来解决.一次函数b kx y +=本没有最大值或最小值,但当自变量x 的取值受某种条件制约(如本例中m 只能取不超过10的整数)时,一次函数就有最大值或最小值了.三、用于解决“决策型”问题例3 某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,它们提供的信息见下表.解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A 、B 两市的距离(精确到个位);(2)若A 、B 两市的距离为s 千米,且这批水果在包装与装卸及运输过程中的损耗为300元/小时,则要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)包装与装卸及运输费用与A 、B 的距离有关.设距离为x 千米,分别写出三家公司的费用,利用所给等量关系列方程可求出x .(2)由题意知总费用是距离s 的函数,故应分别求出选各公司所需总费用与s 的函数关系式,然后通过比较来判断应选哪家公司.解:(1)设A 、B 两市的距离为x 千米,则各公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司(10x +700)元, 由题意,得(8x +1000)+(10x +700)=2(6x +1500), 故x ≈217,即A 、B 两市的距离约为217千米. (2)设选择各公司所需总费用分别为y 甲、y 乙、y 丙, 由表格信息可知各公司包装与装卸及运输所需时间分别为: 甲公司(60s +4)小时,乙公司(50s+2)小时,丙公司(100s +3)小时, 故y 甲=6s +1500+(60s+4)×300=11s +2700,y 乙=8s +1000+(50s+2)×300=14s +1600, y 丙=10s +700+(100s+3)×300=13s +1600. 因s >0,故y 乙>y 丙恒成立,故只需比较y 甲与y 丙的大小. 因y 甲-y丙= -2s +1100=0时,s =550,故:①当s <550千米时,y 甲>y 丙,又y 乙>y 丙,故此时可选丙公司较好; ②当s =550千米时,y 甲=y 丙,又y 乙>y 丙,故此时可选甲公司或丙公司; ③当s >550千米时,y 乙>y 丙>y 甲,故此时选甲公司较好.点评:这又是一道利用一次函数解决实际问题的应用题.其中根据题意和表格信息建立一次函数模型是解题关键.从以上几题可看出,一次函数是解决实际问题的重要数学模型之一,善于读懂图象、表格并从图象的形状、位置、发展变化趋势等信息中获取相关的数据、性质、规律,再将其转化为数学问题加以解决是解决此类问题的关键.。

一次函数的实际应用(经典)

一次函数的实际应用(经典)

一次函数的应用用一次函数解决实际生活问题:常见类型:(1)求一次函数的解析式;(2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等.一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题探究类型之一利用一个一次函数的方案选择例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?类似性问题1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低?2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表:设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?探究类型之二利用两个一次函数的方案选择例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式.(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.探究类型之三利用一次函数与不等式的关系进行方案选择例4 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是___________________,乙种收费的函数关系式是___________________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类似性问题1、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式.(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.2、某工厂有甲种原料130 kg,乙种原料144 kg. 现用这两种原料生产出A,B 两种产品共30件. 已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元. 设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.探究类型之四利用一次函数与图像解决问题。

利用一次函数解实际问题

利用一次函数解实际问题

利用一次函数解实际问题在解实际问题时,一次函数是一种常用的数学工具。

一次函数的一般形式可以表示为y = ax + b,其中a和b是常数,x是变量。

通过解析一次函数的图像、斜率和截距,我们可以应用它来解决各种实际问题。

本篇文章将探讨一次函数在解实际问题中的应用。

1. 速度和距离的关系在物理学中,速度和距离之间存在着重要的关系。

假设一个物体以恒定速度v移动,我们可以使用一次函数来描述它的距离随时间的变化情况。

设物体在t秒时的距离为d,则有d = vt,其中v是速度。

这个方程恰好是一次函数的形式,其中斜率a等于速度v,截距b等于0。

通过解析这个一次函数,我们可以计算出物体在不同时间点的位置。

例如,假设一辆汽车以每小时60英里的速度匀速行驶。

我们可以利用一次函数来表示汽车行驶的距离和时间之间的关系。

设时间为x小时,则距离可以表示为d = 60x。

通过这个一次函数,我们可以计算出汽车在不同时间点的行驶距离,从而解决与汽车行驶距离相关的问题。

2. 成本和销售额的关系在经济学中,成本和销售额之间存在着紧密的联系。

假设某个公司生产一种商品,成本和销售额之间可以使用一次函数来描述。

设成本为C,销售额为R,可以表示为R = aC + b,其中a是单位成本,b是固定成本。

通过解析这个一次函数,我们可以计算出不同成本下的预期销售额。

这对于企业决策和盈亏分析非常重要。

例如,假设单位成本为10美元,固定成本为100美元。

我们可以使用一次函数R = 10C + 100表示销售额和成本之间的关系。

通过解析这个一次函数,我们可以计算出不同成本水平下的销售额,从而帮助企业做出合理的经营决策。

3. 温度和时间的关系在气象学中,温度和时间之间存在着一定的关系。

假设某地的温度每小时下降3摄氏度,我们可以使用一次函数来表示温度和时间之间的关系。

设时间为x小时,温度为T,可以表示为T = -3x + b,其中b是初始温度。

通过解析这个一次函数,我们可以计算出不同时间点的预期温度。

专题:利用一次函数解决实际问题 含答案

专题:利用一次函数解决实际问题 含答案

专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元). 答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。

实际问题中应用一次函数

实际问题中应用一次函数

实际问题中应用一次函数在实际问题中,应用一次函数一次函数是指具有形如y = kx + b的函数,其中k和b是常数。

一次函数在实际问题中有着广泛的应用,能够帮助我们描述和解决各种与线性关系相关的问题。

本文将讨论实际问题中应用一次函数的一些例子。

例子一:货币兑换问题假设我们需要将某一种货币A兑换成货币B。

已知兑换率为k,即1单位的A可以兑换成k单位的B。

如果我们有x单位的货币A,那么兑换成货币B后的数量y可以通过一次函数来表示:y = kx这个函数的斜率k代表着货币A兑换成货币B的比例关系。

通过这个一次函数,我们可以方便地计算出任意数量的货币A可以兑换成多少货币B。

例子二:速度与距离问题假设一个物体以常数速度v匀速运动,我们想要知道它在t秒内所经过的距离。

根据速度与距离之间的线性关系,我们可以使用一次函数来描述这个问题。

设物体在t秒内所经过的距离为d,则根据物体匀速运动的特性,我们有:d = vt + b其中b是物体在时刻t = 0时的起始位置。

这个一次函数可以帮助我们计算出在不同的时间内物体所行走的距离,从而更好地理解匀速运动的特性。

例子三:物体的增长问题在某些情况下,物体的增长与时间的关系可以由一次函数来描述。

举个例子,假设我们在观察某种细菌的增长情况。

已知在t小时后,细菌的数量为N个。

如果我们假设细菌的增长服从指数增长规律,那么可以使用一次函数来近似描述这个关系。

假设细菌在t小时后的数量为N(t),则可以表示为:N(t) = kt + b其中k代表细菌的增长速率,b代表初始时刻细菌的数量。

通过这个一次函数,我们可以估计出不同时间点上细菌的数量,从而更好地了解细菌的生长趋势。

结论一次函数在实际问题中的应用非常广泛,可以帮助我们描述和解决与线性关系相关的各种问题。

无论是货币兑换问题、速度与距离问题还是物体的增长问题,一次函数都能提供简洁而有效的描述和计算方法。

通过学习和应用一次函数,我们可以更好地理解和解决实际问题中的各种线性关系。

利用一次函数解决实际问题

利用一次函数解决实际问题

利用一次函数解决实际问题2023年了,随着科学技术的不断发展,我们的生活变得越来越便捷。

在这个充满竞争的世界里,数学技能成为越来越重要的一项能力。

而对于一个需要经常解决实际问题的人来说,一次函数就是一个非常重要的数学工具。

一次函数是一种常见的数学函数,通常可以写成形如 y = ax + b 的形式。

其中,a 和 b 都是常数,而 x 是变量。

在实际问题中,我们可以使用一次函数来描述各种关系,从而解决一些实际问题。

举一个简单的例子,假设你是一名投资者,你想研究某家公司的股票价格变化情况。

通过观察历史数据,你发现公司的股票价格与该公司的收益有很强的相关性。

于是你可以使用一次函数来描述这种关系,从而预测未来的股票价格。

在这种情况下,我们可以将公司的收益作为 x 轴,股票价格作为y 轴。

然后我们可以通过拟合数据点来确定这个函数的系数。

具体地,我们可以找到一个最合适的 a 和 b,使得函数 y = ax + b 最好地描述了这种关系。

除了投资领域之外,在其他领域中也可以使用一次函数来解决实际问题。

比如,在营销领域中,我们可以使用一次函数来描述销售额与广告投入之间的关系。

在工程领域中,我们可以使用一次函数来描述材料的强度与温度之间的关系。

总之,一次函数是一个非常重要的数学工具,可以帮助我们解决各种实际问题。

当我们遇到实际问题时,如果我们能够正确地使用一次函数来描述各种关系,那么我们就能够更好地预测未来,以及更好地解决各种实际问题。

在未来的世界中,数学技能将会变得更加重要,而对于一次函数的掌握将会成为我们成功的必要条件之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.该函数图象向上平移一个单位后,会与x 轴正半轴有交点
一例(次8a函:为数如常图下数像和图)性,的质直交线 点在l:y第四- 32象x 限3,与则直a线可y能=a是
()
A.1<a<2
B.-2<a<0
C.-3≤a≤-2
D.-10<a<-4
一次函数图像和性质
例9:在平面直角坐标系中,线段AB的端点
A. x>0 B. 0<x<1 C. 1<x<2 D. x>2
一次函数与方程(组)不等式的关系
例4:如图过点(0,-2)直线l1:y1=kx+b 与直线l2:y2=x+1交于点P(2,m) (1)写出使得y1<y2的x的取值范围; (2)求点P的坐标和直线l1的解析式.
一次函数与方程(组)不等式的关系
坐标A(-2,4),B(4,2),直线 y kx 2
与线段AB有交点,则k的值不可能是
A.-5
B.-2
C.3
D.5
专项一:一次函数应用--几何型相交,平行,垂直问题
垂直: 例1.如图,直线:y=x+2与y轴交于点A, 将直线绕点A旋转90°后,所得直线的表 达式为( )
A.y=x-2 B.y=-x+2 C.y=-x-2 D.y=-2x-1
A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0
一次函数图像和性质
例7:一次函数y=(m-1)x+(m-2)的图象 上有点M(x1,y1)和点N(x2,y2),且x1 >x2,下列叙述正确的是( ) A.若该函数图象交y轴于正半轴,则y1<y2 B.该函数图象必过点(-1,-1) C.无论m为何值,该函数图象一定过第四象 限
例5:在平面直角坐标系中,点P的坐标 (m+1,m-1) (1)试判断点P是否在一次函数y=x-2的 图像上,并说明理由 (2)如图:一次函数 y 1 x 3 的图象与x 轴,y轴分别交于点A,B,若2 点P在△AOB 内部,求m的取值范围
专项一:一次函数应用--几何型相交,平行,垂直问题
例2.在平面直角坐标系中,把直线y=2x+4 绕着原点O顺时针旋转90°后,所得的直 线一定经过下列各点中的( )
A.(2,0) B.(2,3) C.(4,2) D.(6,-1)
专项一:一次函数应用--几何型相交,平行,垂直问题
平移平行:
例3:已知点P(1,2)关于x轴的对称点为
专项一:一次函数应用--几何型相交,平行,垂直问题
例5:如图,A(0,1),M(3,2),N(4,4).动点P从点 A出发,沿y轴以每秒1个单位长度的速度向上移 动,且过点P的直线l:y x b也随之移动,设 移动时间为t秒.
(1)当t=3时,求l的解析式; (2)若点M,N位于l的异侧, 确定t的取值范围; (3)直接写出t为何值时, 点M关于l的对称点落在坐标轴 上.
例题2.
一次函数应用--几何面积型问题
总结:
一次函数中的面积问题,无论是求面积还是知面积,都
是按交点坐标→长度→面积的步骤进行,只不过
求面积的题目,结果是一个答案,知面积求k或b的题目, 是根据面积列出方程,然后通过解方程解出k或b,结果 是两个答案。
一次函数与方程(组)不等式的关系
例1:如图:直线y=kx+b(k≠0)经过点 A(-2,4),则不等式kx+b>4的解集为( ) A.x>-2 B.x<-2 C.x>4 D.x<4
一次函数图像和性质
例4:若kb>0,则函数y=kx+b的图象可能是 ()
一次函数图像和性质 2.看解析式
例5:下列关于一次函数y=-2x+1的说法,其 中正确的是( ) A.图象经过第一、二、三象限 B.图象经过点(-2,1) C.当x>1时,y<0 D.y随x的增大而增大
一次函数图像和性质
例6:已知一次函数y=kx-m-2x的图象与y轴 的负半轴相交,且函数值y随自变量x的增大 而减小,则下列结论正确的是( )
P’,且P’在直线y=kx+3上,把直线
y=kx+3的图象向上平移2个单位,所得的
直线解析式是 (

专项一:一次函数应用--几何型相交,平行,垂直问题
例4:如图,在平面直角坐标系中,已知直
线l1:y mx(m 0)与直线l2:y ax b(a 0)
相交于点A(1,2),直线l2与x轴交于点B (3,0) (1)分别求直线l1,l2的 表达式 (2)过动点P(0,n) 且平行于x轴的直线与l1,l2 的交点分别为C,D,当点C 位于点D左方时, 写出n的取值范围
一次函数
一次函数图像和性质 1.看图
例1:在平面直角坐标系中,一次函数
y=kx+b的图象如图所示,则k和b的取值范围
()
A.k>0,b>0
B.k>0,b<0
C.k<0,b>0
D.k<0,b<0
一次函数图像和性质
例2:一次函数y=2x-2的图象可能是图中 ()
一次函数图像和性质
例3:若k≠0,b<0,则y=kx+b的图象可能是 ()
(1)求m的值及l2的解析式; (2)求 的值; S△AOC S△BOC (3)一次函数 y kx 1 的图像为l3,且l1,l2,l3 不能围成三角形, 直接写出k的值.
4.(2017年河北)
一次函数应用--几何面积型问题 知面积
例题1、已知直线y=-x+b与两坐标轴围成的 三角形的面积为2,求b的值。
一次函数与方程(组)不等式的关系
例2:已知y=ax+b和y=kx的图象交于点P
y ax b
则根据图像可得,关于 一次方程组的解是(
)y. kx
的二元
一次函数与方程(组)不等式的关系
例3:如图,函数y=kx+b(k≠0)的图象 经过点B(2,0)与函数y=2x的图象交于点 A,则不等式0<kx+b<2x的解集为( )
专项二:一次函数应用--几何面积型问题 求面积
例1、求直线y=-x+2与两坐标轴围成的 三角形的面积。
Hale Waihona Puke 专项二:一次函数应用--几何面积型问题 求面积
例2.求直线y=-x+2、直线y=3x-2与y 轴围成的三角形的面积。
y1x5 3.(2018年河北)如图,直角坐标系中,一次函数 2 的图像l1,分别与x,y轴交于A,B两点,正比例函数的图像 与l1,l2交于点C(m,4).
相关文档
最新文档