MATLAB与数值分析

合集下载

基于MATLAB的数值分析2PPT课件

基于MATLAB的数值分析2PPT课件
2021/3/9
【例】 clf;t=0.1:.1:3; y=exp(t.*t); semilogy(t,y) grid xlabel('t'); ylabel('exp(t.*t) ');
24
若干特殊图形
x=[1:10]; y=[5 6 3 4 8 1 10 3 5 6]; subplot(2,3,1),bar(x,y),axis([1 10 1 11]) subplot(2,3,2),hist(y,x),axis([1 10 1 4]) subplot(2,3,3),stem(x,y,'k'),axis([1 10 1 11]) subplot(2,3,4),stairs(x,y,'k'), axis([1 10 1 11]) subplot(2,3,5), x = [1 3 0.5 5];explode = [0 0 0
【例】用图形表示离散函数 y(n6)1 。
n=(0:12)'; y=1./abs(n-6); plot(n,y,'r*',…
'MarkerSize',20) grid on
2021/3/9
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
2
4
6
8
10
12
9
坐标轴的控制
axis指令
axis([xmin xmax ymin ymax]): 设定二维图形的x和y坐标的范围;
t=(0:pi/50:2*pi)';
k=0.4:0.1:1;
Y=cos(t)*k;

MATLAB与数值分析课程总结

MATLAB与数值分析课程总结

MATLAB与数值分析课程总结姓名:董建伟学号:2015020904027一:MATLAB部分1.处理矩阵-容易矩阵的创建(1)直接创建注意 a中括号里可以用空格或者逗号将矩阵元素分开 b矩阵元素可以是任何MATLAB表达式,如实数复数等c可以调用赋值过的任何变量,变量名不要重复,否则会被覆盖(2)用MATLAB函数创建矩阵如:a空阵[] b rand/randn——随机矩阵 c eye——单位矩阵 d zeros ——0矩阵 e ones——1矩阵 f magic——产生n阶幻方矩阵等向量的生成(1)用冒号生成向量(2)使用linspace和logspace分别生成线性等分向量和对数等分向量矩阵的标识和引用(1)向量标识(2)“0 1”逻辑向量或矩阵标识(3)全下标,单下标,逻辑矩阵方式引用字符串数组(1)字符串按行向量进行储存(2)所有字符串用单引号括起来(3)直接进行创建矩阵运算(1)注意与数组点乘,除与直接乘除的区别,数组为乘方对应元素的幂(2)左右除时斜杠底部靠近谁谁是分母(3)其他运算如,inv矩阵求逆,det行列式的值, eig特征值,diag 对角矩阵2.绘图-轻松plot-绘制二维曲线(1)plot(x)绘制以x为纵坐标的二维曲线plot(x,y) 绘制以x为横坐标,y为纵坐标的二维曲线x,y为向量或矩阵(2)plot(x1,y1,x2,y2,。

)绘制多条曲线,不同字母代替不同颜色:b蓝色,y黄色,r红色,g绿色(3)hold on后面的pl ot图像叠加在一起hold off解除hold on命令,plot将先冲去窗口已有图形(4)在hold后面加上figure,可以绘制多幅图形(5)subplot在同一窗口画多个子图三维图形的绘制(1)plot3(x,y,z,’s’) s是指定线型,色彩,数据点形的字符串(2)[X,Y]=meshgrid(x,y)生成平面网格点(3)mesh(x,y,z,c)生成三维网格点,c为颜色矩阵(4)三维表面处理mesh命令对网格着色,surf对网格片着色(5)contour绘制二维等高线(6)axis([x1,xu,y1,yu])定义x,y的显示范围3.编程-简洁(1)变量命名时可以由字母,数字,下划线,但是不得包含空格和标点(2)最常用的数据类型只有双精度型和字符型,其他数据类型只在特殊条件下使用(3)为得到高效代码,尽量提高代码的向量化程度,避免使用循环结构(4)为得到最快的运行速度,在循环指令前尽量对数组进行预定义(5)流程控制语句如a break命令可以使包含break的最内层的for或while语句强制终止,跳出循环结构,执行end后面的语句。

数值分析中求解非线性方程的MATLAB求解程序

数值分析中求解非线性方程的MATLAB求解程序

数值分析中求解非线性方程的MATLAB求解程序1. fzero函数:fzero函数是MATLAB中最常用的求解非线性方程的函数之一、它使用了割线法、二分法和反复均值法等多种迭代算法来求解方程。

使用fzero函数可以很方便地求解单变量非线性方程和非线性方程组。

例如,要求解方程f(x) = 0,可以使用以下语法:``````2. fsolve函数:fsolve函数是MATLAB中求解多维非线性方程组的函数。

它是基于牛顿法的迭代算法来求解方程组。

使用fsolve函数可以非常方便地求解非线性方程组。

例如,要求解方程组F(x) = 0,可以使用以下语法:``````3. root函数:root函数是MATLAB中求解非线性方程组的函数之一、它采用牛顿法或拟牛顿法来求解方程组。

使用root函数可以非常方便地求解非线性方程组。

例如,要求解方程组F(x) = 0,可以使用以下语法:``````4. vpasolve函数:vpasolve函数是MATLAB中求解符号方程的函数。

它使用符号计算的方法来求解方程,可以得到精确的解。

vpasolve函数可以求解多变量非线性方程组和含有符号参数的非线性方程。

例如,要求解方程组F(x) = 0,可以使用以下语法:```x = vpasolve(F(x) == 0, x)```vpasolve函数会返回方程组的一个精确解x。

5. fsolve和lsqnonlin结合:在MATLAB中,可以将求解非线性方程转化为求解最小二乘问题的形式。

可以使用fsolve函数或lsqnonlin函数来求解最小二乘问题。

例如,要求解方程f(x) = 0,可以将其转化为最小二乘问题g(x) = min,然后使用fsolve或lsqnonlin函数来求解。

具体使用方法可以参考MATLAB官方文档。

6. Newton-Raphson法手动实现:除了使用MATLAB中的函数来求解非线性方程,还可以手动实现Newton-Raphson法来求解。

数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法1、调用函数--f.Mfunction y=f(x)%------------------------------------------------------------函数1 y=sqrt(4-sin(x)*sin(x));%------------------------------------------------------------函数2 %y=sin(x)/x;%if x==0% y=0;%end%------------------------------------------------------------函数3 %y=exp(x)/(4+x*x);%------------------------------------------------------------函数4 %y=(log(1+x))/(1+x*x);2、复合梯形公式--tixing.M%复合梯形公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;T=0;for k=1:n;T=0.5*h*(f(x(k))+f(x(k+1)))+T;endT=vpa(T,8)3、复合Simpson公式--simpson.M%复合Simpson公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;S=0;for k=1:n;xx=(x(k)+x(k+1))/2;S=(1/6)*h*(f(x(k))+4*f(xx)+f(x(k+1)))+S;endS=vpa(S,8)4、Romberg算法--romberg.M%Romberg算法clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');num=0:n;R=[num'];h=b-a;T=h*(f(a)+f(b))/2;t(1)=T;for i=2:n+1;u=h/2;H=0;x=a+u;while x<b;H=H+f(x);x=x+h;endt(i)=(T+h*H)/2;T=t(i);h=u;endR=[R,t'];for i=2:n+1for j=n+1:-1:1if j>=it(j)=(4^(i-1)*t(j)-t(j-1))/(4^(i-1)-1);elset(j)=0;endendR=[R,t'];endR=vpa(R,8)R(n,n)5、变步长算法(以复化梯形公式为例)--tixing2.M%复合梯形公式,确定最佳步长format longclear alla=input('请输入积分下限:');b=input('请输入积分上限:');eps=input('请输入误差:');k=1;T1=(b-a)*(f(a)+f(b))/2;T2=(T1+(b-a)*(f((a+b)/2)))/2; while abs((T1-T2)/3)>=epsM=0;n=2^k;h=(b-a)/n;T1=T2;x=a:h:b;for i=1:n;xx=(x(i)+x(i+1))/2;M=M+f(xx);endT2=(T1+h*M)/2;k=k+1;endT=vpa(T2,8)n=2^k。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。

实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。

一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。

MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。

二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。

三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。

2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。

3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。

四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。

2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。

3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。

五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。

数值分析实验报告matlab

数值分析实验报告matlab

数值分析实验报告matlab数值分析实验报告引言:数值分析是一门研究利用计算机数值方法解决数学问题的学科,它在科学计算、工程设计、金融分析等领域具有重要的应用价值。

本实验报告旨在通过使用MATLAB软件,探索数值分析的基本原理和方法,并通过实际案例加深对数值分析的理解。

一、误差分析在数值计算中,误差是无法避免的。

误差分析是数值分析中的重要一环,它帮助我们了解数值计算的准确性和稳定性。

在实验中,我们通过计算机模拟了一个简单的数学问题,并分别计算了绝对误差和相对误差。

通过比较不同算法的误差大小,我们可以选择最适合的算法来解决实际问题。

二、插值与拟合插值和拟合是数值分析中常用的方法,它们可以通过已知的数据点来推导出未知数据点的近似值。

在本实验中,我们通过MATLAB的插值函数和拟合函数,分别进行了插值和拟合的实验。

通过比较不同插值和拟合方法的结果,我们可以选择最适合的方法来处理实际问题。

三、数值积分数值积分是数值分析中的重要内容,它可以用来计算曲线下的面积或函数的积分值。

在实验中,我们通过MATLAB的数值积分函数,对一些简单的函数进行了积分计算。

通过比较数值积分和解析积分的结果,我们可以评估数值积分的准确性和稳定性,并选择最适合的积分方法来解决实际问题。

四、常微分方程的数值解法常微分方程是数值分析中的重要内容,它可以用来描述许多自然现象和工程问题。

在实验中,我们通过MATLAB的常微分方程求解函数,对一些简单的微分方程进行了数值解法的计算。

通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。

五、线性方程组的数值解法线性方程组是数值分析中的经典问题,它在科学计算和工程设计中广泛应用。

在实验中,我们通过MATLAB的线性方程组求解函数,对一些简单的线性方程组进行了数值解法的计算。

通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。

电子科大matlab与数值分析第二次上机实践报告

电子科大matlab与数值分析第二次上机实践报告

2、新建一个新仿真模块; 3、在source工具模块找到sine wave正弦波信号,拖入仿真模块;在 sinks工具模块中找到scope示波器,用线把它们连在一起,如下图。
4、双击示波器,调正参数如图
5、双击示波器,点开始方针,波形如图
题目(二) 2. 产生传递函数: 题目分析: 本题考察传递函数及其参数设置 解题步骤: 1、 在Continuous找到Transfer Fcn传递函数和Zero-Pole零—极点 增益模型,分别拖入仿真模块; 2、 设置参数如图
Gain,Sum,Product等工具。难点是方框图的设计。 解题步骤:
1、 如图建立模型
2、打开File->Model Properties->Callbacks->InitFcn,设置 参数如图
3、设置XY Graph取值范围如图
3、 双击两个示波器,点击开始仿真,调整波形,结果 如下
心得体会
Matlab上机实践报告
实践内容:Simulink的建模与仿 真。
学院: 姓名: 学号: 指导老师: 实践日期:
题目(一) 1. 产生幅值、频率为2,基准为0.5的正弦波信号。
题目分析: 本题知识对simulink的基本操作,用于对simulink操作窗口的熟悉和了 解。 解题步骤: 1、在matlab中打开simulink工具箱;
Simulinkห้องสมุดไป่ตู้有强大的仿真功能,它适应面广(线性、非线性系统;
离散、连续及混和系统),结构和流程清晰,仿真精细、提供大量函数 模块。
这次上机实验,我熟悉了matlab中simulink工具箱的基本用法,能 够运用simulink工具箱实现一些简单的仿真试验。如信号发生器的参数 控制,仿真模块图的构建等。

数值分析与matlab——08_fourier

数值分析与matlab——08_fourier

4
600 400 200 0
Chapter 8. Fourier Analysis
600
800
1000
1200
1400
1600
Figure 8.3. FFT of the recorded signal p = abs(fft(y)); f = (0:n-1)*(Fs/n); plot(f,p); axis([500 1700 0 600]) The x-axis corresponds to frequency. The axis settings limit the display to the range of the DTMF frequencies. There are seven peaks, corresponding to the seven basic frequencies. This overall FFT shows that all seven frequencies are present someplace in the signal, but it does not help determine the individual digits. The touchtone program also lets you break the signal into eleven equal segments and analyze each segment separately. Figure 8.4 is the display of the first segment.
1
0ห้องสมุดไป่ตู้
−1
1
2
3
4
5
6
7
8
9
Figure 8.2. Recording of an 11-digit telephone number This signal is noisy. You can even see small spikes on the graph at the times the buttons were clicked. It is easy to see that eleven digits were dialed, but on this scale, it is impossible to determine the specific digits. Figure 8.3 shows the magnitude of the FFT, the finite Fourier transform, of the signal, which is the key to determining the individual digits. The plot was produced with

Matlab与数值分析实验

Matlab与数值分析实验

>> sum
法 2: >>a=1:100; >>sum=a*a’
法 3: >>n=1;
>>sum=0;
>> while n<=100
sum=sum+n*n;
n=n+1;
end
-6-
>> sum * 选择语句
if expression() statements;
[else statements;]
end 例:编写函数文件 demo3 实现 sgn 函数功能
例 2:编写命令文件 demo1 完成以下操作
-4-
建立数组 a=[1,2,3,...,20],b=[1,3,5,...,39],并求 a,b 内积 操作 1) 主窗口点击新建按钮 2) 在弹出的文本编辑窗口添加 a=1:20 b=1:2:39 sum=a*b'
3) 单击保存按钮 将文件命名为 demo1 保存在例 1 新建文件夹中
4) 在 Command Window 中输入 demo1 并回车 例 3:编写函数文件 demo2,返回输入变量的内积
操作:1) 新建 M 文件,编辑如下: function sum=demo2(a,b) sum=a*b';
2) 保存文件在查询目录下,注意不要修改默认名 3) 在 Command Window 中输入
操作:1)新建 M 文件,并编辑如下 function val=demo3(x) if x>0 val=1; elseif x<0 val=-1; else val=0; end 2) 将文件保存在查询目录内 3) >>demo3(0) >>demo3(90) >>demo3(-12)

matlab_examples(数值分析)

matlab_examples(数值分析)
方程求根数值实验
Experiments in Finding Root of Equation
计算方法课程组
华中科技大学数学与统计学院
1
方程求根 —二分法
一、实验目的
1) 熟悉Matlab编程 ; 2) 应用 Matlab实现二分法,牛顿迭代法等求根算法 ;
二、二分法
基本思想: 二分法通过不断搜索有根区间,最终收缩为一 点。算法简单、容易且保证算法收敛。
答案: x=1.3247
f(x)=-7.6580e-005
5


参看范例代码(.m文件) 独立完成如下编程内容:
6
2
方程求根 —二分法
function [xvect,xdif,fx,nit]=bisect(fun,a,b,toll,nmax)
% % % % % % % % % % 求根算法:二分法 [xvect,xdif,fx,nit]=bisect(fun,a,b,toll,nmax) fun 求根函数名 [a,b] 最初的有根区间的范围 toll 精度,默认为10e-5 nmax 最大迭代次数 xvect 返回所得根 xdif 返回缩小的根区间的长度 fx 返回函数值 nit 返回满足要求的迭代次数
bisect _main.m
x=1:0.01:2;
y=x.^3-x-1; plot(xห้องสมุดไป่ตู้y);hold on;
运行结果:
plot(x,zeros(size(x)),'r-.');
fun=inline('x^3-x-1');
[xvect,xdif,fx,nit]=bisect(fun,1,2,0.005,100);
disp((['

数值分析与matlab——01_intro

数值分析与matlab——01_intro

1.1. The Golden Ratio
3
The positive root is the golden ratio. If you have forgotten the quadratic formula, you can ask Matlab to find the roots of the polynomial. Matlab represents a polynomial by the vector of its coefficients, in descending order. So the vector p = [1 -1 -1] represents the polynomial p(x) = x2 − x − 1 The roots are computed by the roots function. r = roots(p) produces r = -0.61803398874989 1.61803398874989 These two numbers are the only numbers whose reciprocal can be computed by subtracting one. You can use the Symbolic Toolbox, which connects Matlab to Maple, to solve the aspect ratio equation without converting it to a polynomial. The equation is represented by a character string. The solve function finds two solutions. r = solve(’1/x = x-1’) produces r = [ 1/2*5^(1/2)+1/2] [ 1/2-1/2*5^(1/2)] The pretty function displays the results in a way that resembles typeset mathematics. pretty(r) produces [ 1/2 ] [1/2 5 + 1/2] [ ] [ 1/2] [1/2 - 1/ a vector with two components, the symbolic forms of the two solutions. You can pick off the first component with phi = r(1)

MATLAB数值分析与应用

MATLAB数值分析与应用

读书笔记
这是《MATLAB数值分析与应用》的读书笔记模板,可以替换为自己的心得。
精彩摘录
这是《MATLAB数值分析与应用》的读书笔记模板,可以替换为自己的精彩内容摘录。
谢谢观看
06
3.6 Fourier 逆变换
05
3.5 Fourier变 换
3.7 Laplace变换 3.8 Laplace逆变换
3.9本章小结 3.10上机操作习题
1
4.1 Jacobi 迭代
2
4.2 GaussSeidel迭代
3
4.3逐次超松 弛迭代法
4 4.4 Gauss消
元法计算线性 方程组
5 4.5列主元消
5
5.10上机操作 习题
01
6.1不动点 迭代法
02
6.2 GaussSeidel迭 代
04
6.4简化的 牛顿迭代法
06
6.6 Broyden 第二方法
03
6.3非线性 方程组的牛 顿迭代法
05
6.5拟牛顿 法 (Broyden 方法)
01
6.7 DFP方 法
02
6.8 BFS方 法
03
6.9最速下 降法
03
7.3 Rayleigh 加速方法
04
7.4修正的 Rayleigh 加速方法
06
7.6 QR方 法
05
7.5反幂法
1
7.7拟上三角 阵的QR方法
2
7.8 MATLAB 中的eig方法
3
7.9广义特征 值问题
4
7.10本章小结
5
7.11上机操作 习题
8.1拉格朗日插值法 8.2牛顿插值法
8.3插值中的龙格现 象

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。

本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。

二、实验内容(一)误差分析在数值计算中,误差是不可避免的。

通过对给定函数进行计算,分析截断误差和舍入误差的影响。

例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。

(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。

2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。

(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。

2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。

(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。

三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。

```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。

(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。

数值分析在生活中的应用举例及Matlab实现

数值分析在生活中的应用举例及Matlab实现

一、最小二乘法,用MATLAB实现1. 数值实例下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。

下面用MATLAB编程对上述数据进行最小二乘拟合。

下面用MATLAB编程对上述数据进行最小二乘拟合2、程序代码x=[1:1:30];y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1];a1=polyfit(x,y,3) %三次多项式拟合%a2= polyfit(x,y,9) %九次多项式拟合%a3= polyfit(x,y,15) %十五次多项式拟合%b1=polyval(a1,x)b2=polyval(a2,x)b3=polyval(a3,x)r1= sum((y-b1).^2) %三次多项式误差平方和%r2= sum((y-b2).^2) %九次次多项式误差平方和%r3= sum((y-b3).^2) %十五次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%hold onplot(x,b2, 'g') %用绿色线画出x,b2图像%hold onplot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%3、数值结果不同次数多项式拟合误差平方和为:r1=67.6659r2=20.1060r3=3.7952r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。

4、拟合曲线如下图二、 线性方程组的求解( 高斯-塞德尔迭代算法 )1、实例: 求解线性方程组(见书P233页)⎪⎪⎩⎪⎪⎨⎧=++=-+=+-3612363311420238321321321x x x x x x x x x 记A x=b, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=363320,,12361114238321b x A x x x任取初始值()()Tx0000=,进行迭代。

数值分析matlab数值试验

数值分析matlab数值试验

实验一:误差传播及算法稳定性实验1.21、试验程序:function charpt1_2% 误差传播及算法稳定性实验clc;clear all;promps={'请选择递推关系式,若选E1=1/e,En=1-nEn-1,请输入1,若选EN=0,En-1=(1-En)/n,请输入2:'};I=1;while Iresult=inputdlg(promps,'charpt1_2',1,{'1'});Nb=str2num(char(result));if ((Nb~=1)|(Nb~=2))I=0;endend%%%%%%%%%%%%%%%%%I=1;while Iresult=inputdlg('请输入递推步数 n>=1:','charpt1_2',1,{'10'});steps=str2num(char(result));if (steps>0)&(steps==fix(steps)) %% 如果steps大于0且为整数I=0;endend%%%%%%%%%%%%%%%%%result=inputdlg('请输入计算中所采用的有效数字位数n:','charpt1_2',1,{'5'});Sd=str2num(char(result));format long %% 设置显示精度result=zeros(1,steps); %% 存储计算结果err=result; %% 存储计算的绝对误差值func=result; %% 存储用quadl计算的近似值%%%%%%%%%%%%%%%%%%% 用quadl计算积分近似值for n=1:stepsfun=@(x) x.^n.*exp(x-1);func(n)= quadl(fun,0,1);end%%%%%%%%%%%%%%%%%%% 用自定义算法计算if(Nb==1)digits(Sd);result(1)=subs(vpa(1/exp(1)));for n=2:stepsresult(n)=subs(vpa(1-n*result(n-1)));enderr=abs(result-func);elseif(Nb==2)digits(Sd);result(steps)=0;for n=(steps-1):-1:1result(n)=subs(vpa((1-result(n+1))/(n+1)));enderr=abs(result-func);end%%%%%%%%%%%%%%%%%%% 输出结果数值及图像clf;disp('库函数计算值:');disp(sprintf('%e ',func));disp('递推值:');disp(sprintf('%e ',result));disp('误差值:');disp(sprintf('%e ',err));if(Nb==1)plot([1:steps],result,'-rs',[1:steps],func,':k*',[1:steps],err,'-.bo' );elseif(Nb==2)plot([steps:-1:1],result,'-rs',[steps:-1:1],func,':k*',[steps:-1:1],e rr,'-.bo');endxlabel('第n步');ylabel('计算值');legend('自定义算法结果','库函数计算结果','误差值');grid on2、试验结果:选择递推关系式1,递推步数为10,有效数字为5位,计算结果如下:库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-0011.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708800e-001 1.456000e-0011.264000e-001 1.152000e-001 7.840000e-0022.944000e-001 -1.944000e+000误差值:5.588280e-007 1.117662e-006 3.352927e-006 1.341222e-0056.705713e-005 4.023702e-004 2.816427e-003 2.253226e-002 2.027877e-001 2.027877e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为5位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708900e-001 1.455300e-001 1.267900e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.117662e-006 3.352927e-006 3.412224e-006 2.942873e-006 1.237016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值选择递推关系式1,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678790e-001 2.642420e-001 2.072740e-001 1.709040e-001 1.454800e-001 1.271200e-001 1.101600e-001 1.187200e-001 -6.848000e-002 1.684800e+000 误差值:4.411720e-007 8.823378e-007 2.647073e-006 1.058778e-0055.294287e-005 3.176298e-004 2.223573e-003 1.778774e-002 1.600923e-001 1.600923e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642410e-001 2.072770e-001 1.708930e-001 1.455360e-001 1.267860e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.176622e-007 3.529274e-007 4.122239e-007 3.057127e-006 1.637016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值3、结果分析:很明显第二种递推式结果要比第一种好,式1在第七步后有明显误差,而式2在第三步后基本与近似解一致。

第六章MATLAB数据分析与功能函数

第六章MATLAB数据分析与功能函数

A=
8
1
6
3
5
7
4
9
2
>> [Y,I]=sort(A,2,'descend') Y=
861 753 942 I= 132 321 213
10 点击图形窗口的Tool\Data Statistics,对数据进行分析
6.1.2 用于场论的数据分析函数
1.两个向量点积运算dot 2. 两个向量叉积运算cross
7. 求积与累乘积 (和前面所有的数相乘放在现在的位置)
prod(X):返回向量X各元素的乘积。 prod(A):返回一个行向量,其第i个元素是A的第i列的元素乘积。 prod(A,dim):当dim为1时,该函数等同于prod(A);当dim为2时,返回一个 列向量,其第i个元素是A的第i行的各元素乘积。 cumprod(X):返回向量X累乘积向量。 cumprod(A):返回一个矩阵,其第i列是A的第i列的累乘积向量。 cumprod(A,dim):当dim为1时,该函数等同于cumprod(A);当dim为2时, 返回一个向量,其第i行是A的第i行的累乘积向量。
数据序列求和与求积的函数是sum和prod,其使用方法类似。设X是 一个向量,A是一个矩阵,函数的调用格式为: sum(X):返回向量X各元素的和。 sum(A):返回一个行向量,其第i个元素是A第i列的元素和。 sum(A,dim):当dim为1时,该函数等同于sum(A);当dim为2时,返回一 个列向量,其第i个元素是A的第i行的各元素之和。 cumsum(X):返回向量X累加和向量。 cumsum(A):返回一个矩阵,其第i列是A的第i列的累加和向量。 cumsum(A,dim):当dim为1时,该函数等同于cumsum(A);当dim为2时 ,返回一个矩阵,其第i行是A的第i行的累加和向量。

(完整word版)matlab数值分析例题

(完整word版)matlab数值分析例题

1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组,1231231234748212515x x x x x x x x x -+=⎧⎪-+=-⎨⎪-++=⎩(1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。

(2)若收敛,编程求解该线性方程组.解(1):A=[4 -1 1;4 —8 1;-2 1 5] %线性方程组系数矩阵A =4 -1 1 4 -8 1 —2 1 5>> D=diag(diag(A))D =4 0 0 0 —8 0 0 0 5〉〉 L=—tril (A,-1) % A 的下三角矩阵L =0 0 0 —4 0 0 2 —1 0〉〉U=-triu(A,1)% A的上三角矩阵U =0 1 —10 0 —10 0 0B=inv(D)*(L+U)% B为雅可比迭代矩阵B =0 0.2500 —0。

25000.5000 0 0.12500。

4000 —0.2000 0〉〉r=eigs(B,1)%B的谱半径r =0。

3347 〈1Jacobi迭代法收敛。

(2)在matlab上编写程序如下:A=[4 —1 1;4 -8 1;—2 1 5];〉〉b=[7 —21 15]';>〉x0=[0 0 0]’;〉〉[x,k]=jacobi(A,b,x0,1e—7)x =2。

00004.00003。

0000k =17附jacobi迭代法的matlab程序如下:function [x,k]=jacobi(A,b,x0,eps)% 采用Jacobi迭代法求Ax=b的解%A为系数矩阵%b为常数向量%x0为迭代初始向量%eps为解的精度控制max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A));%求A的对角矩阵L=-tril(A,—1); %求A的下三角阵U=—triu(A,1); %求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;k=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;k=k+1;if(k〉=max1)disp(’迭代超过300次,方程组可能不收敛’);return;endend2、设有某实验数据如下:(1)在MATLAB中作图观察离散点的结构,用多项式拟合的方法拟合一个合适的多项式函数;(2)在MATLAB中作出离散点和拟合曲线图。

matlab数值分析实验报告

matlab数值分析实验报告

matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。

本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。

一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。

在Matlab中,可以使用diff函数来计算函数的导数。

例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。

在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。

例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。

在Matlab中,可以使用\操作符来求解线性方程组。

例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。

通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。

数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。

MATLAB 数值分析

MATLAB 数值分析

13.2
极小化
作图除了提供视觉信息外,还常常需要确定一个函数的其它更多的特殊属性。在许多 应用中,特别感兴趣的是确定函数的极值,即最大值(峰值)和最小值(谷值)。数学上, 可通过确定函数导数(斜率)为零的点,解析上求出这些极值点。检验 humps 的图形在峰 值和谷值点上的斜率就很容易理解这个事实。显然,如果定义的函数简单,则这种方法常 常奏效。然而,即使很多容易求导的函数,也常常很难找到导数为零的点。在这种情况下, 以及很难或不可能解析上求得导数的情况下,必须数值上寻找函数的极值点。MATLAB 提 供了两个完成此功能的函数 fmin 和 fmins。 这两个函数分别寻找一维或 n 维函数的最小值。 这里仅讨论 fmin。有关 fmins 的详细信息,参阅《MATLAB 参考指南》。因为 f(x)的最大 值等于-f(x)的最小值,所以,上述 fmin 和 fmins 可用来求最大值和最小值。如果还不清楚, 把上述图形倒过来看,在这个状态下,峰值变成了谷值,而谷值则变成了峰值。 为了解释求解一维函数的最小值和最大值, 再考虑上述例子。 从图 13.2 可知, 在 xmax=0.7 附 近 有 一 个 最 大 值 , 并 且 在 xmin=4 附 近 有 一 个 最 小 值 。 而 这 些 点 的 解 析 值 为 : x m a x / 4 0.785 和 x min 5 / 4 393 . 。为了方便,用文本编辑器编写一个脚本 M 文件,并用 fmin 寻出数值上极值点,给出函数主体如下: % ex_fmin.m fn=‘ 2*exp(-x)*sin(x) ‘; xmin=fmin(fn , 2 , 5)
% better approximation
自然地,上述两个结果不同。基于对图形的观察,粗略近似可能低估了实际面积。除 非特别精确,没有准则说明哪种近似效果更好。很明显,如果人们能够以某种方式改变单 个梯形的宽度,以适应函数的特性,即当函数变化快时,使得梯形的宽度变窄,这样就能 够得到更精确的结果。 MATLAB 的函数 quad 和 quad8 是基于数学上的正方形概念来计算函数的面积, 这些 积分函数的操作方式一样。为获得更准确的结果,两个函数在所需的区间都要计算被积函 数。 此外, 与简单的梯形比较, 这两个函数进行更高阶的近似, 而且 quad8 比 quad 更精确。 这两个函数的调用方法与 fzero 相同,即 >>area=quad(‘ humps ‘ , -1 , 2) % find area between -1 and 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab
1. 判断如下命题是否正确
(a) 一个问题的病态性如何,与求解它的算法有关系。

× (b) 无论问题是否病态,好的算法都会得到它好的近似解。

× (c) 计算中使用更高的精度,可以改善问题的病态性。

× (d) 用一个稳定的算法计算一个良态的问题,一定会得到它好的近似解。

√ (e) 浮点数在整个数轴上是均匀分布的 × (f) 浮点数的加法满足结合律 × (g) 浮点数的加法满足交换律 × (h) 浮点数构成有限集合 × (i) 用一个收敛的算法计算一个良态的问题,一定会得到它好的近似解 √ 2. 函数sinx 有幂级数展开
利用幂级数计算sinx 的Matlab 程序为
function s = powersin(x)
% POWERSIN. Power series for sin(x).
% POWERSIN(x) tries to compute sin(x) from a power series
s = 0;
t = x;
n = 1;
while s + t ~= s;
s = s + t;
t = -x^2/((n+1)*(n+2))*t;
n = n + 2;
end
(a) 解释上述程序的终止准则;
(b) 对于 ,计算的精度是多少?分别需要计算多少项?
(a) 终止条件为t=0,但是t=-x^2/((n+1)*(n+2))*t 始终不为0,但是在计算中,当t 小于计算精
度时,计算机识别为0,此时计算终止
(b) X=pi/2 n =23, t= -1.2539e-018, s=1.0000
X=11*pi/2 n =75, t= -2.6232e-017, s= -1.0000
X=21*pi/2 n =121, t=6.4693e-018, s=0.9999
3. 考虑数列 ,它的统计平均值定义为 它的标准差 数学上等价于 作为标准差的两种算法,你如何评价它们的得与失?
注意到一式中存在(xi-x)^2,而两个数相减,如果比较接近,计算完差值再平方,就有可能产生误差,而二式中为两个数的平方数相减,能够减少误差。

4. 求
0.1%。

357
sin 3!5!7!x x x x x =-+-+/2,11/2,21/2x πππ=,1,,i x i n =11n
i i x x n ==∑()122111n i i x x n σ=⎡⎤=-⎢⎥-⎣⎦∑1222111n i i x nx n σ=⎡⎤⎛⎫=-⎢⎥ ⎪-⎝⎭⎣⎦∑*(1)1
1102n r e a --≤

要求的sqrt(10)的近似值首位数字a1=3,于是由公式
即10^-(n-1)/(2*3)≤0.1%
n 取整,解得n 最小值为4,于是取四位有效数字,使得相对误差不超过0.1% 即该数的近似值为 3.162
5. 设 ,假定g 是准确的,而对t= 的测量有秒的误差,证明:当t 增大时,S 的绝对误差增大而相对误差却减小。

因为ds=d(1/2*g*t^2)=g*t*dt
因此t 增大时候,s 的绝对误差增大
因为ds/s=g*t*dt/s=g*t*dt/(1/2*g*t^2)=2*dt/t
因此,当dt 固定,t 增加时候,ds/s 减小,即相对误差减小
6. 编程作业: 用MATLAB 编程实现例7的两种方法,写出相应的代码。

第一种方法:
I(1)=1-1/exp(1);
x=1;
N=input('please input N:');
while x<N;
I(x+1)=1-x*I(x);
x=x+1;
end
I
第二种方法:
x=9;
I(9)=(1+1/exp(1))/20;
while x>1;
I(x-1)=(1-I(x))/x;
x=x-1;
end
I
212S gt =0.1±。

相关文档
最新文档