人教版七年级数学上册-线段、角

合集下载

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

人教版2024新版七年级数学上册第六章知识梳理2:直线、射线、线段与角

人教版2024新版七年级数学上册第六章知识梳理2:直线、射线、线段与角
2.等角的余角相等. ∵∠1+∠2=90°,∠3+∠4=90°,且∠1=∠3, ∴∠2=∠4.
如果两个角的和等于180°,就是

说这两个角互为补角,即其中一个 若∠1+∠2=180°,则∠1、∠2互为补角.
角是另一个角的补角.
补角
性质:1.同角的补角相等. ∵∠1+∠2=180°,∠1+∠3=180°,∴∠2=∠3.
点M在点A的北偏东45°方向,在点C北偏西40°方向.
思维导图
直线、射线、线段与角
直线 射线 线段
两点确定一条直线. 特征:无端点、无限延伸、无法测量. 表示方法:两个大写字母或一个小写字母.
特征:1个端点,向一方无限延伸.
表示方法:两个大写字母,端点在前或一个小写字母.
特征:2个端点,不能延伸,能测量. 表示方法:两个大写字母或一个小写字母. 两点之间线段最短. 比较方法:度量法和叠合法. 线段中点:把一条线段分成两条相等的线段.
方位角
2.等角的补角相等. ∵∠1+∠2=180°,∠3+∠4=180°,且∠1=∠3, ∴∠2=∠4.
考点三 角
方位角
45°
A
45°
O 3km
60° B
M
40°
C
方位角确定点的位置
方法1:利用方位角和观测点到点的距离来定位. 点B在点O南偏东60°方向,且相距3km.
方法2:利用两个方位角来确定,即找到两个合 适的观测点然后按照指定的方位角画出射线,交 点即为所要确定的点的位置.
思维导图

定义:有共同端点的两条射线组成的图形. 表示方法:三个大写字母,端点在中间;数字或希腊字母;
单独一个角可用一个小写字母表示. 度量单位:度、分、秒:1°=60′,1′=60″. 分类:周角、平角、直角、钝角、锐角. 比较方法:度量法和叠合法. 角的计算. 角平分线:一条射线把一个角分成两个相等的角. 余角、补角.

人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案

人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案

专题训练(一) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(二) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(c m ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置;(2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92 cm .专题训练(三) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠C OD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。

人教版七年级数学上册《几何图形初步——直线、射线、线段》教学PPT课件(4篇)

人教版七年级数学上册《几何图形初步——直线、射线、线段》教学PPT课件(4篇)
新人教版数学七年级上第四章
4.2 直线、射线、线段
知识回顾 你还记得这些朋友吗?
直线
射线
线段
知识回顾
概念 名称 直线
射线
线段
延伸方向
可以向两个相反 方向无限延伸 可以向一方无限延伸
不能向任何一方延伸
端点 个数
能否度量

不能
一个
不能
两个

探究一
如果你想将一根细木条固定在墙上, 至少需要几个钉子?
探究四 由直线可以得到线段、 射线
线段是直线上两个点和它们之间的部分


射线是直线上的一点和它一旁的部分

射线、线段、都是直线的一部分.
探究四
试着描述下图中点与直线的位置关系.
l P· O·
a 点 O 在直线 l 上;点 P不在直线 l 上. b 直线 l 经过点 O;直线 l 不经过点 P.
探究四
两点确定一条直线可以用来说明生活中的现象: 2. 植树时,只要定出两个树坑的位置,就能使同一行 树坑在一条直线上.
两点确定一条直线可以用来说明生活中的现象: 3. 射击的时候,你知道是如何瞄准目标的吗?
如图,有哪些方法可以表示下列直线? m
CE 直线 m、直线 CE、直线 EC
表示直线的方法 ①用一个小写字母表示,如直线m; ②用两个大写字母表示,注:这两个大写字
·A ·O
·B
经过两点有一条直线,并且只有一条直线. 简述为:两点确定一条直线.
如果你想将一根木条固定在墙上并使其不能转动,至少 需要几个钉子?你知道这样做的依据是什么吗?
两点 依据:两点确定一条直线
两点确定一条直线可以用来说明生活中的现象: 1. 建筑工人砌墙时,会在两个墙角的位置分别插一根 木桩,然后拉一条直的参考线.

人教版七年级数学上第四单元几何图形初步(教案)

人教版七年级数学上第四单元几何图形初步(教案)
(3)三角形的类型判断:学生对三角形的性质理解不够深入,难以准确判断等腰、等边等特殊三角形;
(4)周长和面积计算的灵活应用:学生在解决实际问题时,容易忽略单位转换和实际情境中的细节;
(5)平行线和垂线的判定:学生对于平行线和垂线的性质理解不深,难以在实际问题中正确应用。
举例:针对线段、射线和直线的难点,可以通过生动的例子和实际操作,让学生理解它们之间的联系与区别;对于角的度量,可以通过制作角模型和开展小组活动,让学生在操作中掌握度量方法;对于三角形类型判断,可以设计不同类型的题目,引导学生发现判断规律;在周长和面积计算方面,可以通过设置实际问题,让学生学会如何将理论知识应用于实际;对于平行线和垂线的判定,可以结合实际图形,让学生通过观察和推理,掌握判定方法。
其次,关于三角形类型判断,虽然大部分学生能够理解并运用所学知识,但仍有一小部分学生对等腰、等边等特殊三角形的性质理解不够深入。我意识到,这可能是因为我在课堂上没有提供足够的变式练习,让学生在不同情境下应用这些性质。因此,我打算在下一节课中,设计更多形式多样的题目,帮助学生巩固这一知识点。
此外,在教学流程中,实践活动和小组讨论的时间安排较为紧张。有些小组在讨论问题时显得有些匆忙,没有足够的时间深入探讨。为了让学生有更充分的思考和实践,我考虑在下次课程中适当延长这两个环节的时间,确保每个学生都有机会参与到讨论和操作中来。
人教版七年级数学上第四单元几何图形初步(教案)
一、教学内容
本节课选自人教版七年级数学上册第四单元《几何图形初步》。教学内容主要包括以表示方法;
3.三角形的分类及性质;
4.周长和面积的计算;
5.平行线和垂线的性质及判定。
二、核心素养目标
1.培养学生的空间观念,使其能够理解几何图形的基本概念,如线段、射线、直线、角、三角形等,并能在实际情境中运用;

人教版七年级上数学几何初步--线段与角的经典题(含答案)

人教版七年级上数学几何初步--线段与角的经典题(含答案)

几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。

七年级数学人教版(上册)综合专题与线段、角有关的综合题

七年级数学人教版(上册)综合专题与线段、角有关的综合题

(2)如图 2,将图 1 中的三角板绕点 O 以每秒 10°的速度沿逆时 针方向旋转一周.在旋转的过程中,若第 t 秒时,三条射线 OA,OC, OM 构成的角中有相等的角,求 t 的值.
解:(2)分五种情况讨论:
①当∠AOC=∠COM=60°时,旋转角∠BOM=180°-2 ∠AOC=60°,
则 10t=60,解得 t=6.
所以 AB=-1+2t-(-8-t)=3t+7, BC=3+3t-(-1+2t)=t+4. 若 AB=2BC,则 3t+7=2(t+4),解得 t=1.
②若 mBC-AB 的值不随 t 的变化而变化,求 m 的值. 解:(2)②由①知 AB=3t+7,BC=t+4, 所以 mBC-AB=m(t+4)-(3t+7)=(m-3)t+4m-7. 因为 mBC-AB 的值不随 t 的变化而变化, 所以 m-3=0. 所以 m=3.
解:(2)OD 平分∠AOC.理由: 因为∠MON=90°, 所以∠DOM=180°-∠MON=180°-90°=90°. 所以∠DOC+∠MOC=∠MOB+∠BON=90°.
因为 OM 平分∠BOC, 所以∠MOC=∠MOB. 所以∠DOC=∠BON. 因为∠BON=∠AOD, 所以∠DOC=∠AOD. 所以 OD 平分∠AOC.
①当 t 为何值时,点 P 与点 Q 相遇?
解:当运动时间为 t 秒时,点 P 表示的数为 3t-4,点 Q 表示的 数为-2t+20.
①当点 P 与点 Q 相遇时,则 3t-4=-2t+20,
24 解得 t= 5 .
24 所以当 t= 5 时,点 P 与点 Q 相遇.
②当 t 为何值时,点 P 与点 Q 间的距离为 9 个单位长度? 解:②当点 P 与点 Q 的距离为 9 个单位长度时,则 -2t+20-(3t-4)=9 或 3t-4-(-2t+20)=9,

人教版数学七年级上学期:《角》课时练习(含答案)

人教版数学七年级上学期:《角》课时练习(含答案)

4.3角4.3.1角能力提升1.下列说法中正确的是()A.两条射线组成的图形叫做角B.角是一条线段绕它的一个端点旋转而成的图形C.有公共端点的两条线段组成的图形叫做角D.角是一条射线绕着它的端点旋转而成的图形2.如图,O是直线AB上一点,图中小于180°的角的个数为()A.7B.9C.8D.103.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°(第2题图)(第3题图)4.若∠1=75°24',∠2=75.3°,∠3=75.12°,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对5.由2点15分到2点30分,钟表的分针转过的角度是()A.30°B.45°C.60°D.90°6.(1)32.6°=°';(2)10.145°=°'″;(3)50°25'12″=°.7.小明说:我每天下午3:00准时做“阳光体育”活动.则下午3:00这一时刻,时钟上分针与时针所夹的角等于.8.指出图中所示的小于平角的角,并把它们表示出来.★9.如图,从点O引出的5条射线OA,OB,OC,OD,OE组成的图形中共有几个角?创新应用★10.观察下图,回答下列问题.(1)在∠AOB内部任意画1条射线OC,则图①中有个不同的角;(2)在∠AOB内部任意画2条射线OC,OD,则图②中有个不同的角;(3)在∠AOB内部任意画3条射线OC,OD,OE,则图③中有个不同的角;(4)在∠AOB内部任意画10条射线OC,OD,…,则共形成个不同的角.参考答案能力提升1.D2.B3.B时钟上每一大格是30°,2点30分时时针与分针之间是3.5个格,所以夹角为3.5×30°=105°.4.D因为∠1=75°24'=75.4°,所以∠1,∠2和∠3都不相等.5.D6.(1)3236(2)10842(3)50.427.90°8.解:满足条件的角有6个,它们是∠A,∠D,∠ABE,∠ABF,∠DCE,∠DCF.9.解:图形中有∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共10个角.创新应用10.(1)3(2)6(3)10(4)66(1)2+1=3;(2)3+2+1=6;(3)4+3+2+1=10;(4)11+10+9+…+3+2+1=66.第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=. 8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM 的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。

数学人教版七年级上册角(第一课时)

数学人教版七年级上册角(第一课时)

4.3角(第一课时)教学目标:(1)掌握角的静态定义以及动态定义.(2)掌握角的三种表示方法.(3)通过类比,使学生理解和掌握角的度量单位,并能进行单位换算.学情分析角这一节知识是建立在射线、线段等相关知识的基础上.学生在小学时对角已经有了粗浅的知识,可以从实物中发现一些角,并且初步了解角的分类,知道有锐角、钝角以及平角等.初中阶段学生开始对角进行严格的定义,准确地度量角的大小,比较角的大小;高中阶段还要对角进行推广,进而学习孤度制和三角函数,从而对于角的认识层次不断螺旋式上升.角的概念、角的表示方法、角的度量以及比较角的大小,这一部分是建立有关角的知识体系的基础,在学生学习角的过程中,起到了承上启下的作用.本节在已有的知识基础上,学生将进一步地认识角,理解角的静态和动态两种描述方法以及角的几种表示方法和角的度量.本节课以适当的实例帮助学生理解角的概念,让学生发现生活中还有哪些物体具有角的形象.学生在小学没有涉及过角的表示,初一阶段学生是第一次用数学符号语言对角进行表示,学生需要一个感知、体会、辨析和运用的过程,所以角的表示以及角的度量是本节课的重点.教学中对角的呈现方式多种多样,根据角的不同选取适当的表示方法.之后又介绍了角的度量,并且进行了角度的换算,最后以钟表问题让学生掌握钟表时针、分针、秒针所形成的夹角,从而也让学生再次掌握角度的单位换算.教学重点:角的表示和角的度量单位换算教学难点:角的度量单位换算教学过程:1.从实际背景中感知角的形象在我们日常生活中,角无处不在.通过观察钟表时针与分针所成的角、楼梯的拐角等实例引出今天课题.在小学我们学过角,从这节课开始我们还要更深入、更具体地研究角.问题1 通过观察以上图形,你找出关于角的图形吗?过程:学生观察生活中的图片从而找到记忆中的角.设计意图:通过学生观察,展现学生现有的对角的理解水平.问题2 根据小学对角的认识,你能任意画一个角的图形吗?设计意图:通过学生动手画角,让学生积极参与活动,调动学生的积极性,利用实物投影展示学生的作品.2.抽象出角的定义问题3 你能给出角的一个定义吗?定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.设计意图:通过活动给出定义,有利于培养学生的抽象概括能力.问题4 你能否说出角的构成元素及其位置关系吗?重点强调:(1)构成角的两个要素是顶点和两边.(2)每个角都有两条边,这两条边是射线.(3)角的两边有公共端点.设计意图:引导学生观察并归纳角的共同点,培养学生思考问题的科学性和严谨性.问题5 角的边画出部分越长,角就越大吗?角的大小与什么有关?设计意图:通过提问,再次让学生明白角的两边不是线段而是射线,射线是可以无限延伸的.3.探究角的表示问题6 在实际应用中如何来表示一个角呢?角的表示符号“∠”角的表示方法一般有三种:1、用三个大写字母或用一个大写字母.问题7 能把∠ BOC记作∠O吗?为什么?注意:用三个大写字母表示时,中间字母是顶点字母;用一个大写字母表示时,这个字母是顶点字母,且顶点处只能有一个角.2、用一个数字加弧线表示.并在角的内部靠近角的顶点处画一弧线.3、用一个希腊字母加弧线表示.并在角的内部靠近角的顶点处画一弧线. 问题8 能把∠AOB记作∠1吗?为什么?注意:用一个数字或一个希腊字母表示角时必须在图上标出才可使用,且一般用于表示单独的角.设计意图:学生熟悉角的几种表示方法,并且掌握每一种方法需要注意的事项. 问题9 将图中的角用不同的方法表示出来,并填写下表.设计意图:学生进一步掌握角的各种表示方法.问题10 如图,回答下列问题.(1)∠ABD与∠ABC是同一个角吗?(2)图中能用一个大写字母表示的角有哪几个?(3)以点A为顶点的角有哪几个?设计意图:学生能够掌握对于复杂的图形该如何表示一个角.4.探究角的第二定义创设情境:教师用几何画板展示射线绕其端点旋转.问题11 你能根据旋转给出角的一个定义吗?设计意图:角的旋转观点是学生比较难理解的地方因此用几何画板展示,让学生直观地看到角的形成,使学生更易概括出角的动态定义.定义:角是一条射线绕其端点旋转所形成的图形.射线OA叫做角的始边,射线OB 叫做角的终边.师生活动:教师用几何画板展示角的形成过程,学生仔细观察.问题12 从角的第二定义出发,旋转射线OA可以得到哪些特殊角?设计意图:教师用几何画板展示平角、周角形成过程.学生通过几何画板的展示更加直观体会平角和周角的概念.问题13 线段有长度,可以用尺子去度量,角有大小,用什么去度量角呢?角的度量单位又是什么呢?它们之间有什么怎么的运算关系呢?把一个周角360等分,每一份就是1度的角,记作1°.把1度的角60等分,每一份叫做1分的角,记作1′.把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.如∠α的度数是48度56分37秒,记作∠α=48°56′37″.设计意图:学生掌握角的度量以及角度的换算.问题14 填空1、度、分、秒之间的转换1°=_______′ 1′=_________″ 1°=__________″1′=______ ° 1″=_________ ′ 1″= __________ °2、单位转换例1:把5.38°化成度分秒表示。

线段、角中的分类讨论思想(人教版七年级上册数学)

线段、角中的分类讨论思想(人教版七年级上册数学)

第 1 页 共 1 页 “线段、角”中的分类讨论思想当题目中没有给出具体的图形,而根据题意又可能出现多种情况,解题时需根据题意画出示意图,再利用图形的直观性不重、不漏地分情况讨论.例1 已知C 为线段AB 的中点,点D 在直线AB 上,并且满足AD=2BD ,若CD=6 cm ,求线段AB 的长. 解析:题目中没有给出图形,需先根据条件画出图形,再根据图形计算,画图时会发现有两种情况:点D 在线段AB 上,如图1,设BD=x cm ,则AD=2x cm ,根据AB=AD+BD=2x+x ,再由点C 为线段AB 的中点,可得BC=21AB ,由CD =BC−BD =23x−x =6,可得x=12,所以AB=3x=36(cm );点D 在线段AB 的延长线上,如图2,设BD=x cm ,AD=2BD ,可得BD=AB=x cm ,根据点C 为线段AB 的中点,可得BC=21AB=21x cm ,由CD=BC+BD=21x+x=6 cm ,可得x=4,所以AB=4 cm . 综上所述,线段AB 的长为4 cm 或36 cm .例2 已知∠AOB=80°,射线OC 在∠AOB 内部,且∠AOC=20°,∠COD=50°,射线OE ,OF 分别平分∠BOC ,∠COD ,则∠EOF 的度数是___________.解析:根据题意,可知分OD 在∠AOB 内和OD 在∠AOB 外两种情况,画出图形,根据角的和差关系和角平分线的定义求解.如图3,OD 在∠AOB 内.因为∠AOB=80°,∠AOC=20°,所以∠BOC=60°.因为OE 平分∠BOC ,所以∠EOC=30°.因为OF 平分∠COD ,∠COD=50°,所以∠FOC=25°.所以∠EOF=∠EOC-∠COF=5°.如图4,OD 在∠AOB 外.因为∠AOB=80°,∠AOC=20°,所以∠BOC=60°.因为OE 平分∠BOC ,所以∠EOC=30°.因为OF 平分∠COD ,∠COD=50°,所以∠FOC=25°.所以∠EOF=∠EOC+∠COF=30°+25°=55°.综上,∠EOF 的度数是5°或55°.故填5°或55°.。

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结第四章图形的初步认识1、几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

2、线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

3、直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点之间,线段最短。

4、角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线二、基础知识巩固1、如图所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。

(1)(2)(3)2、(1)过一个已知点的直线有多少条?答:(2)过两个已知点的直线有多少条?答:(3)过三个已知点的直线有多少条?答:(4)经过平面上三点A,B,C中的每两点可以画多少条直线?请画出图来。

(5)根据(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线,会有什么样的结果?如果不能画,请简要说明理由;如果能画,请画出图来。

3、(1)计算:①27°42′30″+1070′;②63°36′-36.36°。

(2)用度、分、秒表示48.12°。

(3)用度表示50°7′30″。

4、小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离。

5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?6、如图,经过直线a外一点p的4条直线中,与直线a平行的直线有___,共有__条.∠A与∠C__________.7、如图,如果AB∥CD,那么8、如图中几何体的展开图形是()A B C D9、如图是某些几何体的表面展开图,则这些几何体分别是 图1: 图2: 图3:10、若要使图中平面展开图按虚线折叠成正方体后,相对面上 两个数之和为6,x=_ ___,y=______.11、俯视图为圆的立体图形可能是________或___________。

人教七年级数学上册《几何图形初步》课件(共42张PPT)

人教七年级数学上册《几何图形初步》课件(共42张PPT)

如下图:OC是∠AOB的平分线,则有 ∠AOC=∠BOC= ∠AOB ∠AOB=2 ∠AOC= 2∠BOC
类似地,还有角的三等分线等。 通过折纸作角的平分线
4.余角和补角
(1)概念 如果两个角的和等于90°(直角),就说这两个角
互为余角。如∠3=35°,∠4=55°,那么∠3和∠4互为余角

如果两个角的和等于180°(平角),就说这两个角互 为补角。如下图∠1+∠2=180°,则∠1和∠2互为补角
同理分别规定出“西北” 、“西南”方向。
(1)方位角的表示 ----------通常先写北或南,再写偏东还是偏西 。例如:“北偏东35°”;“ 南偏西60°”等。
(2)方位角的应用
经常用于航空、航海、测绘中,领航员常用地图和罗盘进 行方位角的测定。
在下图中,射线OA、射线OB、射线OC、射线OD分别表示
3.角的四种表示方法
表示方法
图标
用三个大写的字母
A
表示
B
C
用一个顶点的字母 表示
o
用希腊字母表示
α
用一个数字表示
1
记法
注意事项
ABC 顶点字母在中间
o
顶点处只有 一个角时
α 在靠近顶点处
画弧线, 注上数字 或希腊字母 1
4.角的符号 用“ ” 表示 5.角的分类
小于号是“< ”
锐角: 大于0度而小于90度的角
4.线段的大小和比较
度量法
(1)线段的长短比较 叠合法
(2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点。
例如:点B是线段AC的中点
...
则有: AB=BC= AC
ABC

人教版七年级上册数学第4章 几何图形初步 归类特训 线段、角的计算的四种常见类型

人教版七年级上册数学第4章 几何图形初步 归类特训 线段、角的计算的四种常见类型

解:设AC=x cm,则CD=2x cm,DE=3x cm,EB=4x cm.
由题意得12x+2x+3x+2x=15,解得 x=2. 所以 x+32x=5,即 PQ 的长为 5 cm.
9.在一条直线上顺次取A,B,C三点,已知AB=5cm,点 O是线段AC的中点,且OB=1.5cm.求线段BC的长.
因为 M 为 AB 的中点,所以 MB=12AB=12×20=10(cm). 所因以为MNN为=MBCB的+中BN点=,10所+以4=B1N4=(c12mB)C.=12×8=4(cm).
综上,线段MN的长为6 cm或14 cm.
(2)根据(1)中的计算过程和结果,设AB=acm,BC=bcm, 且a>b,其他条件都不变,求MN的长度(直接写出结 果).
11.如图,OM平分∠AOB,ON平分∠COD.若∠MON= 50°,∠BOC=10°,求∠AOD的度数.
解:设∠COD=2x,∠AOB=2y, 由题意得∠CON=x,∠BOM=y. 又∠MON=∠NOC+∠BOC+∠BOM=50°, 即x+10°+y=50°,故x+y=40°. 所以∠AOD=∠COD+∠BOC+∠AOB=2x+10°+2y =10°+2(x+y)=10°+2×40°=90°.
(3)若C在线段AB的延长线上,且满足AC-CB=bcm,M, N分别为AC,BC的中点,你能猜想出MN的长度吗? 请画出图形,写出你的结论,并说明理由.
解:如图所示. MN=12b cm.理由如下: 因为点 M,N 分别是 AC,BC 的中点, 所以 MC=12AC,NC=12BC. 所以 MN=MC-NC=12AC-12BC=12(AC-BC)=12b cm.
解:当停靠站设在A区时,所有员工步行到停靠站的路程之和 为30×0+15×100+10×(100+200)=4500(m). 当停靠站设在B区时,所有员工步行到停靠站的路程之和为 30×100+15×0+10×200=5000(m). 当停靠站设在C区时,所有员工步行到停靠站的路程之和为 30×(100+200)+15×200+10×0=12000(m). 因为4500<5000<12000,所以停靠站的位置应设在A区.

2024年新人教版七年级数学上册 6.2.2 线段的比较与运算(课件)

2024年新人教版七年级数学上册 6.2.2   线段的比较与运算(课件)

3.线段的长短比较: (1)线段长短比较的实质是线段的长度的比较. (2)线段长短的比较方法:
①度量法(数):用刻度尺量出线段的长度,根据长度大小来比较, 长度大的线段较长,长度相等时两线段相等. ②叠合法(形):比较两条线段AB与CD的长短,可以把线段AB移 到线段CD上,使点A与点C重合,点B与点D在重合点的同一侧.
3.(1)两点的所有连线中,__线__段_最__短______.简单说成: __两__点__之_间__,__线__段__最_短____________.
(2)连接两点的线段的长度,叫作这两点间的___距__离____.
例1.如图,已知线段a、b,尺规作图:
(1)画一条线段AC=a+b;(根据下列作法画出图形)
知识点4:线段的中点及等分点(难点)
1.线段的中点:如图,点M在线段AB上,AM=BM,点M叫作线 段AB的中点.
应用:因为点M是线段AB的中点,所以AM=BM=
1 2
AB,
AB=2AM=2BM.
2.线段的等分点:
如图①所示,B,C是线段AD上的两点,
且AB=BC=CD=
1 3
AD或AD=3AB=3BC=3CD,
活动导入
同学们,请你在草稿纸上画一条线段AB. 你能在草稿纸上作出一条同样大小的线段吗? 你是怎么做的?
情境导入 同学们,请你们观察这三组图形,你能比较出每组图形中线段a和b 的长短吗?
a b
事实上,这三组图形中,线段a和b的长度是相等的. 很多时候,眼见未必为实,准确比较线段的长短还 需要更加严谨的办法.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点1:线段的画法及长短比较(重点)
1.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图, 这就是尺规作图.

七年级上册数学线段与角必做好题附答案详解

七年级上册数学线段与角必做好题附答案详解

七年级上册数学线段与角必做好题附答案详解一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?2.已知如图(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).9.(1)在∠AOB内部画1条射线OC,则图1中有个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说理由.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外),理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠=∠,(ⅱ)∠+∠=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=140°.那么根据,可得∠BOC=度.②如果,求∠EOF的度数.23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=,∠BOD=;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?七年级上册数学线段与角必做好题附答案详解参考答案与试题解析一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?【解答】解:(1)AB上有3个点时,线段总数共有3=条;AB上有4个点时,线段总数共有6=条;AB上有5个点时,线段总数共有10=条;…AB上有n个点时,线段总数共有:,故当线段AB上有6个点时,线段总数共有=15条;(2)当线段AB上有n个点时,线段总数共有:;(3)当n=100时,线段总数共有=4950条.2.已知如图(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点;(2)归纳,猜想,30条直线相交,最多有435个交点.【解答】解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【解答】解:4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有10条线段;(2)如果线段AB上有9个点,则图中共有55条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【解答】解:(1)1+2+3+4==10,故答案为:10.(2)1+2+3+4+5+6+7+8+9+10==55,故答案为:55.(3)1+2+3+4+…+n+1=,故答案为:.5.阅读:在直线上有n个不同的点,则此图中共有多少条线段?通过分析、画图尝试得如下表格:图形直线上点的个数共有线段的条数两者关系210+1==1330+1+2==3460+1+2+3==6…………n问题:(1)把表格补充完整;(2)根据上述得到的信息解决下列问题:①某学校七年级共有20个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?②乘火车从A站出发,沿途经过10个车站方可到达B站,那么在A,B两站之间需要安排多少种不同的车票?【解答】解:(1)图形直线上点的个数共有线段的条数两者关系210+1==1 330+1+2==3460+1+2+3==6…………n 0+1+2+3+…+(n﹣1)==;(2)①把每一个班级看作一个点,则=190(场);②由题意可得:一共12个车站看作12个点,线段条数为=66(条),因为车票有起点和终点站之分,所以车票要2×66=132(种).6.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=4cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.7.如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.【解答】解:(1)∵AB=10cm,CD=4cm,∴AC+BD=AB﹣CD=10﹣4=6cm,∵M、N分别为AC、BD的中点,∴AM+BN=AC+BD=(AC+BD)=3cm,∴MN=AB﹣(AM+BN)=10﹣3=7cm;(2)根据(1)的结论,AM+BN=AC+BD=(AC+BD)=(a﹣b),∴MN=AB﹣(AM+BN)=a﹣(a﹣b)=(a+b).8.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.9.(1)在∠AOB内部画1条射线OC,则图1中有3个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有6个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有10个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有66个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【解答】解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角.故答案为:.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°(3分)∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°(8分)∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)故答案为75°.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=60°.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.【解答】解:(1)∵∠AOB=120°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=120°+30°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=75°﹣15°=60°,(2)当∠AOB=120°,∠BOC=β°时,∴∠MON=∠MOC﹣∠NOC=(120+β)°﹣°=60°;(3)由(1)(2)可知:∴∠MON=∠MOC﹣∠NOC=(α+β)°﹣β°=α°.∠MON的度数始终等于∠AOB角度的一半.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.【解答】解:∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵∠BOC=4∠AOD,∴∠BOC=2∠AOC,∵∠BOC+∠AOC=180°,∴3∠AOC=180°,∴∠AOC=60°,∴∠COD=∠AOC=30°,∠BOC=2∠AOC=120°∴∠BOD=150°,∵OE平分∠BOD,∴∠EOD=∠BOE=75°,∴∠COE=∠DOE﹣∠COD=75°﹣30°=45°.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.【解答】解:(1)∵∠AOB=90°,∠BOC=40°∴∠AOC=∠AOB+∠BOC=90°+40°=130°.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=×130°=65°,∠COD=∠BOC=×40°=20°.∴∠DOE=∠COE﹣∠COD=65°﹣20°=45°;(2)∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=α+β.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=(α+β),∠COD=∠BOC=β.∴∠DOE=∠COE﹣∠COD=(α+β)﹣β=α+β﹣β=α;(3)∠DOE的大小与∠BOC的大小无关,即∠DOE=∠AOB.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.【解答】解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.【解答】解:设这个角为x°,根据题意得:90﹣x=(180﹣x)﹣20,解得:x=40.故这个角的度数为40°.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),则(90°﹣x+180°﹣x)﹣×180°=1,x=67°.答:这个角为67°20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD和∠AOB互余.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠AOC=∠BOD,(ⅱ)∠AOD+∠COB=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?【解答】解:(1)(ⅰ)∠AOC=∠BOD,理由是:∵∠AOB=∠DOC=90°,∴∠AOB+∠COB=∠DOC+∠COB,∴∠AOC=∠DOB,故答案为:AOC,BOD.(ⅱ)∠BOC+∠AOD=180°,理由是:∵∠AOB=∠DOC=90°,∴∠BOC+∠AOD=360°﹣90°﹣90°=180°,故答案为:AOD,COB.(2)两个结论仍然成立,理由如下:(ⅰ)∵∠AOC+∠BOC=∠AOB=90°,∠BOD+∠BOC=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD.(ⅱ)∵∠BOC+∠AOD=∠BOC+∠AOC+∠COD=∠AOB+∠COD,又∵∠AOB=∠COD=90°,∴∠BOC+∠AOD=180°.22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠AOC、∠EOF、∠BOD(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠COE=∠BOF;③∠AOD=∠COB.(3)①如果∠AOD=140°.那么根据对顶角相等,可得∠BOC=140度.②如果,求∠EOF的度数.【解答】解:(1)根据图形可得:∠AOC、∠EOF、∠BOD都是∠AOF的余角;(2)∠AOC=∠EOF=∠BOD,∠COE=∠BOF,∠AOD=∠COB,∠AOF=∠DOE;(3)①对顶角相等,∠BOC=∠AOD=140°.②∠EOF=X°,则∠AOD=5x°,由∠EOF+∠DOE=90°,∠DOE+∠BOD=90°,∴∠BOD=∠EOF=x°,又∠AOD+∠BOD=180°,所以x+5x=180,解得x=30,∠EOF=30°23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.【解答】解:(1)∠AOE=∠DOC;∵∠AOC=∠BOD=90°,∴∠DOC=∠AOB,∵OE是∠AOB的平分线,∴∠AOE=∠AOB=∠DOC;(2)由(1)得,∠DOC=∠AOB=2∠AOE,∵∠AOC=90°,∠COE=75°,∴∠AOE=90°﹣75°=15°,∴∠DOC=2∠AOE=30°,∴∠AOD=∠AOC+DOC=90°+30°=120°.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=50°,∠BOD=40°;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.【解答】解:(1)∵∠COE与∠EOD互余,∠COE=40°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠AOE=100°,∴∠BOD=∠AOB﹣∠AOD=40°,故答案为:50°;40°;(2)∵∠COE=α,且∠COE与∠EOD互余,∴∠EOD=90°﹣α,∵OE平分∠AOD∴∠AOD=2(900﹣α),∴β+2(900﹣α)=1400解得,β=2α﹣40°.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?【解答】解:(1)∠α+∠β=180°﹣∠ACB =180°﹣90°=90°;(2)∵∠β=32°,由(1)可得:∠α=90°﹣∠β=58°,则∠α的补角=180°﹣∠α=122°.。

人教版七年级数学上册《 第四章 几何图形初步 》教案

人教版七年级数学上册《 第四章 几何图形初步 》教案

人教版七年级数学上册《第四章几何图形初步》教案一. 教材分析《第四章几何图形初步》是人教版七年级数学上册的一章重要内容,主要介绍了平面几何图形的性质和分类,包括线段、角、三角形、四边形等基本几何图形的性质和判定。

本章内容是学生进一步学习几何的基础,对于培养学生的空间观念和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认知也有一定的了解。

但是,学生对于几何图形的性质和分类还不够清晰,对于证明和推理的能力还有待提高。

因此,在教学过程中,需要注重引导学生从直观到抽象的思维过程,培养学生的空间想象能力和逻辑推理能力。

三. 教学目标1.了解和掌握基本几何图形的性质和分类。

2.能够运用几何知识解决一些实际问题。

3.培养学生的空间观念和逻辑思维能力。

四. 教学重难点1.重点:基本几何图形的性质和分类。

2.难点:对于几何图形的证明和推理。

五. 教学方法1.情境教学法:通过实际问题,引导学生思考和探索,激发学生的学习兴趣。

2.直观教学法:通过实物模型和图形,帮助学生直观地理解几何图形的性质。

3.推理教学法:引导学生运用逻辑推理的方法,证明几何图形的性质。

六. 教学准备1.准备相关的实物模型和图形,如线段、角、三角形等。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量线段长度、计算角度等,引导学生思考和探索,激发学生的学习兴趣。

2.呈现(10分钟)教师通过实物模型和图形,向学生介绍线段、角、三角形等基本几何图形的性质。

引导学生通过观察和操作,发现和总结几何图形的性质。

3.操练(10分钟)教师给出一些练习题,让学生运用所学的几何知识进行解答。

教师可以通过多媒体教学设备,展示学生的解答过程,并进行讲解和指导。

4.巩固(10分钟)教师通过一些实际问题,让学生运用所学的几何知识进行解决。

教师可以引导学生进行小组讨论和交流,帮助学生巩固所学的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( C) AB - CD = AC + BD
( D) AD - AC = CB - DB
2. 平面内有两两相交的三条直线, 如果说最多有 m个交点, 最少有 n 个交点 . 那么 m-n 的值是( ).
( A) 1 ( B) 2 ( C) 3 ( D) 4
3. 从点 O发出的 5 条射线,可以组成的角最多有(
余角的两倍”是错误的 .
思维训练 2 下面画图是错误的,正确的应该怎么画 .
已知线段 a、 b、 c( a > b )画一条线段等于 a - b + c.
揭示思路: 画一条线段等于已知线段 a ,怎样画?画一条线段等于两条已知线段
画一条第线段等于两条已知线段 a 、 b(a > b )的差,怎样画?
[ 心中有数 ] 本章概念多,它又是以后学习的基础,要注意培养概括、阅读和表达能力,需要注意检查的
概念有:有关直线的公理和性质,有关线段的公理,角和角的分类,线段中点和角平分线等
.
[ 动手动脑 ]
1. 下列关系式与图形所表示的条件,不相符的是(
).
( A) AB + CB = AD - BC
( B) AC + CD = AB - BD
上述 5 个说法都是错误的 .
学习必备
欢迎下载
根据直线、射线、线段的特征和属性,可以规纳为:直线没有端点,向两方无限延伸;射线有一个端
点,向一方无限延伸,它们的长度都不能度量,不能比较长短,直线不能延长
. 所以( 1)( 2)( 3)都不
正确 . 只有线段可以延长,可以度量,可以比较长短,射线只能向一方延长
28. 如图 1-19 ,AC=BD,E 为 CD的中点,求证: E 为 AB的中点 .
29. 如图 1-20 ,∠ AOD=∠BOE, OC是∠ DOE的平分线,求证: OC是∠ AOB的平分线 .
图 1-19
图 1-20
30.B 、C 两点把线段 AD分成 2:3:4 三部分, M是线段 AD的中点, CD=12厘米,求( 1) MC的长;( 2) AB:BM的值 .
.
( A)点 Q必在线段 MN的延长线上 ( B)点 Q必在线段 NM的延长线上
( C)点 Q必在线段 MN外
( D)点 Q必在线段 MN上
23. 已知线段 AB,在 AB的延长线上取一点 C,使 BC=3AB,在 BA的延长线上取一点 D,使 DA=2AB,求
(1) 线段 AC等于线段 AB的几倍? ( 2)线段 AB等于线段 DB的几分之几?
[ 错例研究 ]
思维训练 1 下列说法错在什么地方 .
( 1)延长射线 OP; ( 2)画一条长 5cm的直线;
( 3)一条直线上从左至右依次有 A、 B、 C三个点,则射线 AC比射线 BC长;
( 4)直线可看成平角;
揭示思路:直线、射线、线段各有什么特征?什么是平角?什么是互余的角?什么是互补的角?
.
(A)B
是线段 AC的中点,则
1 BC= AC
( B)直线上一点和
2
叫射线
( C)一条射线把一个角分成两个角,这条射线叫这Байду номын сангаас角的
17. 如图 1-16 ,∠ AOB=∠COD=∠ BOE,那么相等的角有
对.
(A)2
(B)3
(C)4
(D)5
18 .在同一平面内有 4 个不重合的点,经过每两点作一直线,
最多可作直线的条数是
.
(A)4
(B)5
(C)6 (D)7
19. 如图 1-17 ,把一个平角分成若干个角, 其中锐角有
个.
(A)5
(B)5
(C)7
(D)8
它一旁的部分 平分线
学习必备
欢迎下载
20. 如果 A、 B、 C 三点在同一直线上, A 到 B 的距离是 8 厘米, B 到 C 的距离是 3 厘米,那么 A、 C 两
画一条线段等于已知线段 a.
画一条射线 AC,在射线 AC上用圆规截取 AB= a .
AB 就是所要求画的
线段 .
已知线段 a
a,b 的和,怎么画?
画一条线段等于两条已知线段 a、 b 的和 . 画一条直线,在直线上画一条线段 AB= a,再在 AB的延长线上画线段 线段 AC= a + b.
BC= b,
(1)2 a - b
( 2) 2 ( a - b )
6. 已知线段 AB = 18 cm , M是 AB中点, C 是 AB 上一点,
且 AC = 5BC, 求 MC的长 .
7. 若∠ A 与∠ B 的和为 180 度,且∠ A:∠ B = 1 : 2,求∠
A - 1 ∠B 的度数 . 3
8. ∠ AOC = 30°,∠ BOC = 120°, OD平分∠ AOC,
( 3)线段 DB等于线段 DC的几分之几?
24. 计算 180 °-110 ° 37′35″
25. 计算 171 °43°÷ 5
图 1-18
26. 如图 1-18,A 、O、 E 三点在一条直线上,∠ AOC=∠ BOD=105°,∠ BOC=50°,求∠ DOE的度数 .
27. 线段 AB=54cm, C 是 AB的中点, D 是 AC上的一点,且 CD=2AD, E 是 BC的中点,求线段 DE的长 .
为所要求的线段 . 减去的线段要从整体线段的一端去减,不能从
中间去减 .
[ 创新园地 ] 将两块直角三角板叠在一起, 使直角的顶点重合于 O(如
图)
( 1)∠ AOB + ∠ DOC是多少度?能确定吗?
( 2)∠ AOD与∠ COB 是什么关系?
( 3)∠ AOB与∠ DOC 是什么关系?
三、智能显示
[ 思维基础 ] 概念 图形
学习必备
欢迎下载
线段、角
直线
I 直线、射线、线段 射线
A
B
L
O
A
L
线段
A
B
a
画法及表示法 端点
延长线 基本性质
过 A、 B 两点画直线 AB 或直线 L,
直线 AB 或直线 L
画射线 OA 射线 OA 射线 L

一个

可向一方延长
两点确定一条直线,两 条直线相交只有一个 交点
OE平分∠ BOC, 求∠ EOD的度数 .
专题检测
一、填空题
1.
长度,叫做两点间距离 .
2.

都是直线的一部分 .
3. 已知 AB=a厘米, CD=b厘米,若 a=b,则 AB CD, 若 a>b,则 AB CD ,若 CD>AB,a b.
4. 已知线段 AB=8,延长 AB到 C,使 AC=3AB, M、 N 为 AB、 BC的中点,则 NM= .
.
角与直线、射线的意义不同 . 一条直线不是一个平角,平角是有公共端的两条射线组成的,两条射线
恰好在一条直线上,直线不是两条射线,它也没有端点
.
单独说一个角是余角,是补角是没有意义的
. 互余的角和互补的角说的是两个角的关系
. 如果两个角
互为余角时,一个角是另一个角的余角 . 两个角互为补角时,一个角是另一个角的补角 . 所以说“补角是
,补角是 .
11. 如图 1-12 ,∠ BOC= - = - = - - .
图 1-11 .
图 1-12
图 1-13
图 1-14
图 1-15
12. 如图 1-13 中有
个角,把它们表示出来
.
13. 下列各角中 57°、 35° 12′、 125°、 90°、 137° 29′、 35° 6′ 12″、 5° 21′ 35、120°、175°
画一条线段等于两条已知线段 a、 b( a > b )的差 . 在直线上画线段 AB = a , 再在线段 AB 上画线段 AC或 BC等 b. BC 或 AC就是所要求的线段 .
BC= a - b
∴本例 a - b + c 正确的画图是 a + c - b
AC = c - b
学习必备
欢迎下载
即 CD = a + c - b = a - b + c .
42′是锐角
个,钝角的有
个.
二、选择题
14. 如图 1-14 中共有线段
条.
(A)3
(B)4
(C)5
(D)6
15. 下列说法正确的是
.
( A)由两条射线组成的叫角
( B)射线就是周角,直线就是平角
( C)如图 1-5 中∠ AOB可以用∠ O表示 ( D)∠ AOB和∠ BOA是同一个角
16. 下面说法错误的是
点的距离是 .
( A)11 厘米 ( B)5 厘米 ( C) 5 或 11 厘米 ( D)无法确定
21. 从 2 时整到 4 时 30 分,时针转过的角度为
.
(A)25 °
(B)65 °
(C)75 °
(D) 135°
22. 点 M与点 N的距离为 20 厘米,有一点 Q,如果 QM+QN=2厘0 米,那么下列结论正确的是
II 角
连结 AB 线段 AB 或线段 a
两个 可向两方延长
两点之间线段最短
思维训练 4 选择填空
画一个钝角∠ AOB,然后以 O为顶点,以 OA为一边,在角的内部画一条射线 OC,使∠ AOC=90° .
根据上述题目要求,画出了下列四个图形 . 请问哪个图形符合题目的要求 . 正确答案是(

揭示思路:什
).
( A)4 个 (B) 5 个 ( C) 7 个 ( D) 10 个
相关文档
最新文档