最新七年级数学上册角的计算方法归纳总结

合集下载

七上 角的运算技巧

七上 角的运算技巧

七上角的运算技巧一、角的和与差角的和是指两个或多个角的度数之和,可以用以下公式表示:∠A + ∠B = ∠C其中,∠A、∠B和∠C是两个或多个角。

角的差是指两个角的度数之差,可以用以下公式表示:|∠A - ∠B| = ∠C其中,∠A和∠B是两个角,∠C是它们的差。

二、角的互余与互补角的互余是指两个角的度数之和为90°,可以用以下公式表示:∠A + ∠B = 90°其中,∠A和∠B是互余的两个角。

角的互补是指两个角的度数之和为180°,可以用以下公式表示:∠A + ∠B = 180°其中,∠A和∠B是互补的两个角。

三、旋转角的概念旋转角是指一个图形绕着某一点旋转一定角度后所形成的角。

在旋转过程中,旋转中心是固定的,旋转的角度也是确定的。

通过观察和计算,可以找到旋转前后的对应点、线段之间的关系。

四、外角的概念与性质外角是指多边形的一条边与另一条边的延长线所组成的角。

外角的大小等于与它不相邻的两个内角之和,即:∠A = ∠B + ∠C其中,∠A是外角,∠B和∠C是与它不相邻的两个内角。

五、多边形的内角和多边形的内角和是指多边形中所有内角的度数之和。

对于一个n边形,其内角和可以用以下公式表示:S = (n - 2) ×180°其中,S是多边形的内角和,n是多边形的边数。

六、周角的概念与性质周角是指一个完整的圆周所形成的角,其度数为360°。

周角可以用来表示一个完整的循环或周期。

在几何学中,周角常常被用于描述旋转或周期性变化的过程。

七年级上册数学角的比较和运算

七年级上册数学角的比较和运算

七年级上册数学角的比较和运算角的比较与运算是初中数学的基本知识点之一。

角是一个由两条射线共同确定的图形部分,通常用字母表示。

我们可以通过角度来度量角的大小,角度的单位是度。

下面是一些常见的角的比较与运算知识点:
1.角的比较:当两个角的度数相同时,它们被称为相等角。

如果一个
角的度数比另一个角大,那么它们被称为大小关系。

我们可以使用
符号“<”、“>”、“=”来表示角的大小关系。

2.角的运算:我们可以对角进行加、减、乘、除等运算。

例如,如果
有两个角A和B,我们可以将它们相加得到一个新的角C,记作
C=A+B。

同样地,我们也可以将它们相减、相乘、相除来得到新的
角度。

3.角的平分线:如果一条直线将一个角分成两个大小相等的角,那么
这条直线被称为该角的平分线。

平分线的性质是:它将角分成两个
大小相等的角。

6.3.2.2角的运算课件-人教版(2024)数学七年级上册

6.3.2.2角的运算课件-人教版(2024)数学七年级上册
折痕将∠PQR分成两个相等的角.
获取新知
探究点1 角平分线 一般地,从一个角的顶点出发,
C B
把这个角分成两个相等的角的射
线,叫做这个角的平分线.
O
A
几何语言:
因为∠AOB=∠BOC= 1∠AOC, 2
或∠AOC=2∠AOB=2∠BOC,
所以射线OB是∠AOC的平分线.
反之也成立:
因为射线OB是∠AOC的平分线.
2
2
O
A
(2) 如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?
解:因为 OB 平分∠AOC,
所以 ∠BOC=∠AOB = 40°. 因为 OD 平分∠COE,
所以∠COD=∠DOE = 30°,
所以∠BOD =∠BOC+∠COD = 40°+30°= 70°.
(3) 如果∠AOE=140°, ∠COD=30°,那么∠AOB 是多少度?
解:分以下两种情况:
如图,OC在∠AOB内部,OD平分∠AOB,
B D
设∠AOC=2x,∠COB=3x,
C
因为∠AOB=40°, 所以2x+3x=40°,得x=8°,
O
A
所以∠AOC=2x=2×8°=16°.
因为OD平分∠AOB,
所以∠AOD=20°,
所以∠COD=∠AOD-∠AOC=20°-16°=4°.
5.如图,点O在直线AB上.(1)若∠BOC:∠AOC=1:3,求∠BOC的度数; (2)若OD平分∠BOC,∠DOE=90°,OE平分∠AOC吗?为什么?
解:(1)因为∠BOC+∠AOC=180°, ∠BOC:∠AOC=1:3, 所以∠BOC+3∠BOC=180°, 所以∠BOC=45°.

角的比较和运算 课件(共20张PPT) 华师大七年级数学上册

角的比较和运算   课件(共20张PPT)  华师大七年级数学上册
已知角. 难点:角的平分线的应用.
线段 定义 类比

定义
表示 表示
大小 运算
大小 运算
叠合法 度量法 和、差、倍、分 叠合法 度量法 和、差、倍、分
合作探究
1 角的大小
类比线段长短的比较,你认为该如何比较两个角 的大小?
结论:角的大小比较:度量法、叠合法

C
C
C

法 O'
D
O'
结B

D
D C
O'
第三章 图形的初步认识
3.6 角
2 角的比较和运算
华师版七年级(上)
教学目标
1. 运用类比的方法,学会比较两个角的大小,丰富对角 的大小关系的认识,会分析图中角的和差关系.
2. 借助三角板拼出不同度数的角,认识角的平分线及角 的等分线,会画角的平分线.
重点:比较角的大小,认识角的平分线,做一个角等于
B C
从一个角的顶点引出一条射线,
把这个角分成两个相等的角,这条
射线叫做这个角的平分线.
O
A
几何语言
因为 OC 是∠AOB 的角平分线, 所以∠AOC=∠BOC = 1 ∠AOB
2 或∠AOB =2∠BOC=2∠AOC
试一试
D
类比:仿照角平分线的结论,你能写出
C
B
角的三等分线的结论吗?
O
A
因为射线 OB、OC 是 ∠AOD 的三等分线,
所以 ∠AOD = 3∠AOB = 3∠BOC = 3∠COD,
∠AOB =∠BOC =∠COD = ∠AOD.
例1 如图,已知点 O 为直线 AB 上一点,OM,ON 分别 是∠AOC,∠BOC 的平分线,求∠MON 的度数. [解析] 首先应确定∠MON 的转化 问题:∠MON=∠MOC+∠CON, 再结合角平分线的定义,易得到 ∠MOC+∠CON= 1 2∠AOB.

最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。

七年级上册数学角的解题技巧

七年级上册数学角的解题技巧

七年级上册数学角的解题技巧
1. 角的比较:
(1)度量法:用度量工具测量两个角的大小,度数大的角大。

(2)叠合法:把两个角的顶点和一边叠合在一起,另一边落在叠合边所在直线上,从而比较角的两边和夹角的大小。

(3)推理法:根据角的定义和性质,通过逻辑推理比较角的大小。

2. 角的和、差、倍、分:
(1)角的和:两个角相加,得到一个新的角,记作∠AOB。

(2)角的差:一个角减去另一个角,得到一个新的角,记作∠AOB - ∠BOC。

(3)角的倍:一个角乘以一个正整数n,得到一个新的角,记作n∠AOB。

(4)角的分:一个角除以一个正整数n,得到一个新的角,记作∠AOB/n。

3. 余角和补角:
(1)余角:如果两个角的和等于90°,则这两个角互为余角。

(2)补角:如果两个角的和等于180°,则这两个角互为补角。

4. 对顶角:
(1)定义:两条直线相交时,相对的两个角叫做对顶角。

(2)性质:对顶角相等。

5. 方位角:
(1)定义:从正北方向顺时针旋转到目标方向的角度叫做方位角。

(2)计算:方位角 = 目标方向与正北方向的夹角。

苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的换算及运算;2. 掌握借助三角尺或量角器画角的方法,并熟悉角大小的比较方法;3. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握余角、补角及对顶角的概念及性质,会用其性质进行有关计算;6.了解方位角、钟表上有关角,并能解决一些实际问题.【要点梳理】要点一、角的概念及表示1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:角也可以看成是一条射线绕着它的端点旋转到另一个位置所成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:在表示角时,要在靠近角的顶点处加上弧线,再注上相应数字或字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角、补角、对顶角1.余角与补角(1)定义:一般地,如果两个角的和是一个直角,那么这两个角互为余角,简称互余,其中一个角叫做另一个角的余角.类似地,如果两个角的和是一个平角,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.(2)性质:同角(等角)的余角相等.同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一个锐角的补角比它的余角大90°.2.对顶角(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.要点诠释:(1)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.(2)只有两条直线相交时,才能产生对顶角.两条直线相交时,除了产生对顶角外,还会产生邻补角,邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线. (2)性质:对顶角相等.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是 ( )A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】写出图中(1)能用一个字母表示的角;(2)以B为顶点的角; (3)图中共有几个角(小于180°).【答案】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.类型二、角度制的换算2. 把25.72°用度、分、秒表示; (2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2)130300.560'⎛⎫'''=⨯=⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈°所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】 (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫⎪⎝⎭°=33.41°【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算.类型三、角的比较与运算3.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:如图,(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.4. 如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又因为OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【角 397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80︒,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC=12×80︒=40︒ .即∠MON=40︒.类型四、余角、补角、对顶角5.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•崇左)下列各图中,∠1与∠2互为余角的是()A. B.C.D.【答案】C.解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.类型五、方位角及钟表上有关角问题6.(2015•浦东新区三模)已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于.【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A,B的方位,注意东南方向是45度是解答此题的关键.7.计算: 4时15分时针与分针的夹角.【答案与解析】解法一:如下图,设4时15分时针与分针的夹角为∠α(注:夹角指小于180°的角),时针转过的角度为:30°×4+0.5°×15,分针转过的角度为:6°×15,所以∠α=30°×4+0.5°×15-6°×15=37.5°.解法二:如上图,∠AOC=30°×1=30°,∠BOC=0.5°×15=7.5°.所以∠AOB=37.5°.即4时15分时针与分针的夹角为37.5°.【总结升华】求钟表中时针与分针的夹角有两种方法:第一种方法利用时针与分针的每分钟转速求解,比如解法一;第二种方法直接根据图形求夹角,如解法二.。

初一上册数学知识点总结【最新5篇】

初一上册数学知识点总结【最新5篇】

初一上册数学知识点总结【最新5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初一上册数学知识点总结【最新5篇】军事科学研究战争和军事技术,以及国家安全和国际关系等。

2.5 角和角的度量 课件(共27张PPT)冀教版七年级数学上册

2.5 角和角的度量 课件(共27张PPT)冀教版七年级数学上册

角度的换算

定义
表示方法
同学们再见!
授课老师:
时间:2024年9月1日
(1) 将 14.28°用度、分、秒表示;
高级单位化低级单位乘 60.
知3-练
感悟新知
解: 先把 18″化成分, 18″= () ′× 18 = 0 .3′,5 7′+ 0 . 3′= 5 7 . 3′.再把 57 . 3′化为度, 57.3′= () °× 57 . 3 = 0 . 955 ° ,所以 45 ° 57′ 18″= 45 . 955 ° .
B
感悟新知
知3-讲
知识点
角的度量与单位换算
3
1. 度量角的方法 度量角的工具是量角器,用量角器(图 2.5-4)量角的步骤:(1) 对中(角的顶点对准量角器的中心);(2) 重合(角的一条边与量角器的零度刻度线重合);(3) 读数(读出角的另一条边所指向的度数) .
感悟新知
知3-讲
2. 角的度量单位 度、分、秒是常用的角的度量单位 . 把一个周角 360 等分,每一份就是 1 度的角,记作 1 ° ;把 1 度的角 60 等分,每一份叫作 1 分的角,记作 1′;把 1 分的角 60等分,每一份叫作 1 秒的角,记作 1″ .
“动”态的观点
角可以看作是一条射线绕着其端点从一个位置旋 转到另一个位置所形成的图形
起始位置的射线叫作角的始边,终止位置的射线叫作角的终边
感悟新知
知1-讲
特别解读1. 构成角的要素是顶点、两边,且两边都是射线 .2. 角的大小与所画边的长短无关,只与构成角的 两边张开的幅度有关.3. 平角的两边成一条直线,但不能说平角就是一条直线;周角的两边重合形成一条射线,但不能说周角就是一条射线 .4. 在不特别说明的情况下,初中阶段我们说的角都是小于平角的角.

七年级数学上册专题第10讲与角度有关的计算重点、考点知识总结及练习

七年级数学上册专题第10讲与角度有关的计算重点、考点知识总结及练习

第10讲与角度有关的计算⎧⎪⎪⎨⎪⎪⎩角的概念及度分秒的换算角平分线的定义与角度有关的计算余角和补角对顶角及邻补角知识点1:角的概念以及度分秒的换算1.有公共端点的两条射线组成的图形叫做角,这个公共端点就是角的顶点,这两条射线是角的两条边。

角通常用三个字母及符号“∠”来表示,在不引起混淆的情况下,角还可以用它的顶点字母来表示.2.用量角器测量角度时一定要做到两对齐:量角器的中心和角的顶点对齐、量角器的0刻度线和角的一条边对齐.3.角的常用度量单位是度、分、秒.1°的 为1分,记作1′,即1°=60′.1′的 为1秒,记作1″,即1′=60″.【典例】1.下列四个图中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的是( )A. B. C. D.【方法总结】所有的角都可以用顶点处的字母和表示两条射线的另外两个字母来表示;当某个角的顶点处只有1个角(两条射线)时,该角可以用“∠”和顶点字母来表示。

160160【随堂练习】1.(2018•藁城区模拟)如图,点A在点O的北偏西30°的方向上,AB⊥OA.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A北偏东30°方向上C.点B在点O北偏东60°方向上D.点B在点O北偏东30°方向上2.(2017秋•仙游县期末)时钟显示为8:30时,时针与分针所夹的角是()A.90°B.120°C.75°D.84°3.(2017秋•门头沟区期末)把2.36°用度、分、秒表示,正确的是()A.2°21'36'' B.2°18'36'' C.2°30'60'' D.2°3'6''4.(2017秋•农安县期末)计算:56°17′+12°45′﹣16°21′×4.知识点2:角平分线的定义1.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

初一数学角的度数计算方法

初一数学角的度数计算方法

初一数学角的度数计算方法
在初中数学中,角的度数是一个常见的概念。

角的度数指的是角所对应的弧度或弧长与圆心角的大小之间的比例。

以下是一些计算角的度数的方法:
1. 用圆规测量角度:可以使用圆规测量角度,具体方法是将圆规的一端放在角的顶点处,另一端放在角的另一个端点处,然后旋转圆规,直到它与角的另一个端点相交。

然后,测量圆规两端之间的距离,并将其除以圆的半径,即可得到角的度数。

2. 使用三角函数计算角度:如果已知角的一个边和它对应的弧度或弧长,可以使用三角函数(如正弦、余弦和正切)来计算角的度数。

具体方法是,根据已知的边长和弧度或弧长,使用三角函数计算出角的正弦、余弦或正切值,然后使用反三角函数(如反正弦、反余弦或反正切)来计算角度。

3. 使用三角形的内角和公式计算角度:三角形的内角和总是等于180度。

因此,如果已知三角形中的两个角度,可以使用内角和公式来计算第三个角度。

具体方法是,将两个已知角度相加,然后从180度中减去它们的和,即可得到第三个角度的度数。

4. 使用角度的比例关系计算角度:如果已知两个角度之间的比例关系,可以使用比例关系来计算它们的度数。

具体
方法是,将比例关系中的两个角度相加,然后将它们的和除以比例关系中的比例系数,即可得到一个角度的度数。

这些方法都是初中数学中常用的计算角的度数的方法。

需要注意的是,在使用这些方法时,要仔细检查计算过程和结果,确保准确无误。

北师大版七年级上册数学[角(提高版)知识点整理及重点题型梳理]

北师大版七年级上册数学[角(提高版)知识点整理及重点题型梳理]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习角(提高)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1. 角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O ,边是射线OA 、OB .(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】(2015春•成武县期末)下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4.(2016春•龙口市期中)如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM﹣∠CON=45°.(4)从上面的结果中,发现:∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O是直线AC上一点,OD平分∠AOB,OE在∠BOC内,且∠BOE=12∠EOC,∠DOE=70°,求∠EOC的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得: 1180127022x x x --+= , 解得: 80x = .∠EOC =2∠BOE =80°.类型四、方位角5.(2015•浦东新区三模)已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 .【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键.类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线?【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线. 【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则:① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍.举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间?【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得: 6x-0.5x =110×2,解之得x =40.答:此人外出购物用了40分钟的时间.。

人教版(2024)数学七年级上册 6.3.1 角的概念

人教版(2024)数学七年级上册 6.3.1  角的概念

新知导入
情境导入
同学们,假如时间可以倒退或前进,你们最希望可以停留在哪 个时间段?(出示实物表盘) 请同学们观察时针与分针一直是什么关系?构成了什么图形? 同学们,时针与分针构成了角,在我们的生活中,还有哪些物 体包含着角?
视频导入
请同学们观看一段视频:
活动导入
请同学们在草稿纸上画一个点,将这个点无限向右移动,会形成
1″=610′,1′=610°,
1″=3
1 600°
注:(1)以度、分、秒为单位的角的度量制,叫作角度制. (2)角的度、分、秒是六十进制的,这与计量时间的时、分、 秒的进制是一样的. (3)角的大小与边的长短无关,只与构成角的两边张开的程 度大小有关.
知识点3:用角表示方位(重点) 方位角是表示方向的角,在实际问题中常会遇到.
小组讨论
1.判断下列说法是否正确,对的打“√”,错的打“×”.
(1)两条射线组成的图形叫作角;( × ) (2)角的两边是两条射线;( √ ) (3)平角是一条直线;( × ) (4)周角是一条射线.( × )
2.将图中的角用不同方法表示出来,填在下表中.
用数字或小写 ∠1
希腊字母表示
用三个大写英
∠BCE (或
文字母表示 ∠FCE)
∠2 ∠3 ∠4 ∠α ∠β ∠BCA ∠BAD ∠ABC ∠BAC ∠ABF
3.计算: (1)1.45°=__8_7___′=___5__2_2_0_″; (2)1 800″=__3_0___′=____0_.5__°; (3)58.37°=__5_8____°___2_2___′___1_2__″; (4)15°32′24″=_1_5_._5_4__°=___5_5_9_4_4___″.

【新】七年级上册 数学 人教版 几何图形的初步 角度及其计算【例题+练习题】

【新】七年级上册 数学 人教版 几何图形的初步 角度及其计算【例题+练习题】

角度1. 知识要点回顾1、角:由公共端点的两条射线所组成的图形叫做角。

2、角的表示法(四种):(1)用三个大写英文字母表示任意一个角(角的顶点必须写在中间,其它两个字母可以调换位置);(2)用一个大写英文字母表示一个独立..的角(在一顶点处只有一个....角); (3)加弧线、标数字表示一个角 (在一个顶点处有两个以上角时,建议使用此法); (4)加弧线、标小写希腊字母表示一个角。

3、角的度量单位及换算●1个周角=2个平角=4个直角=360° ●1°=60′=3600″●用一副三角尺能画的角都是15°的整数倍 4、角的分类∠β 锐角 直角 钝角平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。

·如图,射线OB 是∠AOC 的平分线,则有∠AOB=∠BOC=21∠AOC 或 2∠AOB=2∠COB=∠AOC用几何语言表示就是:∵OB 平分∴∠AOB=∠BOC=21∠AOC(或 2∠AOB=2∠COB=∠AOC )类似的,从一个角的顶点出发,把这个角分成相等的n 个角的射线,叫做这个角n 等分线。

6、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角。

其中∠1是∠2的余角,∠2是∠1的余角。

(2)若∠1+∠2=180°,则∠1与∠2互为补角。

其中∠1是∠2的补角,∠2是∠1的补角。

(3)余(补)角的性质:等角的补(余)角相等。

7、方向角 (1)正方向(2)北(南)偏东(西)方向 (3)东(西)北(南)方向用角度表示方向:一般以正北、正南为基准,用向东或向西旋转的角度表示方向,如图所示,OA 方向可表示为北偏西60º 。

几何语言2.例题剖析例11、计算:56695376)1('︒+'︒757123(2)180'''︒-︒(3)'"562512︒=_________° (4)36.52°=_____°______′______″2、2点30分时,时钟与分钟所成的角为度.3、60°=____平角;32直角=______度;65周角=______度。

6.3.1角的概念(1)(课件)-初中数学人教版(2024)七年级上册

6.3.1角的概念(1)(课件)-初中数学人教版(2024)七年级上册

OB 的方向是南偏东70°,这里“北偏西30°”和“南偏东70°”叫作方位
角.方位角是以南北为起始线,一般表述为南(北)偏东(西)多少度.
(2)方位角的特殊情形:方位角的东北方向表示北偏东45°;西北方
向表示北偏西45°,东南方向表示南偏东45°,西南方向表示南偏西
45°. 7.如图,请按要求解答下列问题:
(2)用量角器画79°的角.
解:(2)79°的角如图2所示.
5. 按照要求画出下列度数的角:
(1)用三角尺画90°的角;
解:(1)90°的角如图1所示.
(2)用量角器画140°的角.
解:(2)140°的角如图2所示.
方位角
6. (1)方位角:在航行、测绘等工作中,经常以正南或正北方向为基
准,描述物体运动的方向,如图,射线 OA 的方向是北偏西30°,射线
个角的图形是(
B
)
A.
B.
C.
D.
2. 【人教七上P172练习T2改编】请将图中的角用不同方法表示出来,
并填写下表:
第一种表示
∠ ABE
∠ ABC
第二种表示
∠α
∠1


∠ ACF
∠3

∠ BAC
∠A

角的度量和换算
3. (1)1周角= 360 °,1平角= 180 °;
(2)1周角= 2 平角= 4 直角;

角的计数与规律探究
9. (1)在∠ AOB 内部画1条射线 OC ,则图1中有 3 个不同的角;

(2)在∠AOB内部画2条射线OC,OD,则图2中有
6
个 不同的

角;
(3)在∠ AOB 内部画3条射线 OC , OD , OE ,则图3中有 10 个不

6.3.1 角的概念【新课标版】七年级上册数学

6.3.1  角的概念【新课标版】七年级上册数学

角的度量
度、分、秒
1°=60′,1′=60″
课堂小结
方位角
北 西北
45° 45°
西
45°45°
西南 南
东北 八 大 方
东位
东南
课后作业 完成课后练习题.
探究新知
学生活动二 【一起探究】 角的表示方法
如图,还能把∠AOB 1. 用三个大写字母表示,如: ∠AOB
记作∠O 吗?为A什么? 或∠BOA;
(注意必须把顶点字母放在中间)
C
或用一个大写字母表示,如:∠O ;
O
B
当两个或两个以上的角共用一个顶点
时,不能用一个大写字母表示.
探究新知
2. 用一个数字表示, 如∠1;

远望一号

远望二号
巩固练习

60°

远望一号
30°

远望二号
当堂训练
1. 下列语句正确的是 ( D )
A. 两条直线相交,组成的图形叫做角 B. 两条有公共端点的线段组成的图形叫做角 C. 两条有公共点的射线组成的图形叫做角 D. 从同一点引出的两条射线组成的图形叫做角
当堂训练
2. 下列说法不正确的是 ( B ) A. ∠AOB 的顶点是O B. 射线BO,AO分别是∠AOB的两条边 C. ∠AOB的边是两条射线 D. ∠AOB与∠BOA表示同一个角
当堂训练
6.垃圾打捞船 A 和 B 都停驻在湖边观测湖面,从 A 船发现 它的北偏东60°方向有白色漂浮物, 同时,从 B 船也发 现该白色漂浮物在它的北偏西30°方向. (1) 试在图中确定白色漂浮物C的位置;
北 60°
C

30°
A

七年级数学上册角的计算方法归纳总结

七年级数学上册角的计算方法归纳总结

七年级数学上册角的计算方法归纳总结1、七年级上学期数学第四章:几何图形中角的计算基本理解问题一:图中有几个角?答:三个,∠BAC,∠CAD,∠BAD问题二:这三个角之间有什么联系?答:∠BAC+∠CAD=∠BAD,∠BAD−∠BAC=∠CAD∠BAD−∠CAD=∠BAC问题三:如果射线AC是∠BAD的角平分线,那么∠BAC=∠CAD =12∠BAD问题四:如果∠BAC:∠CAD=2:3,∠BAD=500,求其他的角解:设∠BAC的度数为2x, 则∠CAD的度数为3x2x+3x=50解得x=10则∠BAC=2x=200, ∠CAD=3x=3002、角的计算①直接计算典型例题1、如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.解:因为∠AOB=90°,OE平分∠AOB所以∠BOE=12∠AOB=450因为∠EOF=60°所以∠BOF=∠EOF−∠BOE=150因为OE平分∠AOB所以∠COB=2∠BOF=300所以∠AOC=∠AOB+∠COB=1200分析:正推:将题目所给的条件联系起来,通过一个条件(已知)或者两个条件(已知)联合可以推出哪些(未知),最后联系已知和推出来的未知联合在一起,看能否得出结论。

反推:又或者倒推题目,要求出所求的问题,求出知道哪些,进而求出这些所需要的条件是什么,再看看题目已经知道的条件是什么,还需要什么变式训练:1、如下图所示,已知∠AOC=∠BOD=800,∠BOC=350,求∠AOD的度数DCBO A2、O是直线上一点,OC 是任一条射线,OD、OF分别是∠AOC和∠BOC的平分线。

(1)请你直接写出图中∠BOD的补角,∠BOE的余角。

(2)当∠BOF=25°时,试求∠DFE和∠AOD的度数分别是多少。

3、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)请你数一数, 图中有_______个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.②方程的思想典型例题1、如图,O是直线AB上一点,∠AOC=∠BOD,射线OE 平分∠BOC,∠EOD=42°,求∠EOC的大小.解:设∠AOC的度数为x度,则∠BOD的度数也是x度因为∠EOD=42°所以∠BOE=x+420因为射线OE平分∠BOC∠EOC=∠BOE=x+420则x+x+42+x+42=180解得:x=320∠EOC=x+420=740分析:一般用方程思想的题目,给出的角的度数比较少,角与角之间的关系比较多。

七年级上册数学几何题型解题技巧

七年级上册数学几何题型解题技巧

七年级上册数学几何题型解题技巧一、认识基本的几何形状在学习数学几何时,首先要认识基本的几何形状,包括点、线、面、角等。

点是没有大小和形状的,用字母来表示;线是由无数个点连在一起形成的,具有长度但没有宽度;面是由无数个线段围成的区域,有面积但没有体积;角是由两条射线共同起点组成,用角度来表示。

二、熟练掌握几何形状的性质1. 直线和线段的性质:直线没有起点和终点,延伸无限远;线段有起点和终点,长度是有限的。

2. 角的性质:锐角的度数小于90度,直角的度数是90度,钝角的度数大于90度,周角的度数是360度。

3. 四边形的性质:正方形的四条边相等且角为直角;长方形的对边相等且角为直角;菱形的对角线互相垂直且平分对角;平行四边形的对边相等且对角互补。

三、熟练掌握几何图形的计算方法1. 计算周长:周长是封闭图形的边界长度之和,可以通过将各边长度相加得到。

2. 计算面积:面积是封闭图形所覆盖的区域大小,可以通过公式计算,如矩形的面积为长乘以宽。

四、应用几何知识解决实际问题在学习数学几何时,应该注重将所学知识应用到实际问题的解决中。

通过计算地块的面积来确定需要购物的地砖数量;通过计算房间的周长来确定需要购物的踢脚线长度等。

通过以上几个方面的学习和掌握,我们能够更好地解决七年级上册数学几何题型的问题,提高解题的准确性和效率。

希望同学们能够努力学习,加强练习,掌握数学几何的基本知识,奠定良好的数学基础。

熟练掌握几何形状的性质是解决几何问题的关键。

在解题过程中,我们需要利用几何形状的性质来进行推理和计算。

在解决三角形的问题时,我们需要掌握三角形内角和的性质,即三角形内角和等于180度。

这样就能够利用已知角度推导出未知角度,从而解决问题。

对于平行线和相交线所形成的角度关系也需要有所了解,例如同位角相等、内错角互补等性质,这些都是解决复杂几何问题的利器。

除了几何形状的性质外,我们还需要掌握一些常见的几何定理和公式。

正方形的对角线相等,菱形的对角线垂直且平分对角,这些定理可以帮助我们判断图形的性质,进而解决相关问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档