最新12章胶体与大分子溶液汇总

合集下载

物化 第十二章 胶体化学

物化  第十二章 胶体化学

二、 胶体系统的分类
1、按胶体溶液的稳定性可分为两类 憎液溶胶:难溶物分散在介质中,有很大 的相界面,易聚沉,是热力学上不稳定、 不可逆体系。 亲液溶胶: 大分子分散在合适的溶剂中, 是热力学稳定、可逆体系。
2、按分散相和分散介质的聚集状态可分为
气溶胶、液溶胶和固溶胶三大类
分散介质 分散相 气 液 液 固 气 液 固 气 液 固 名 称 实 例

(液 )气 溶 胶 (固 )气 溶 胶 (气 )液 溶 胶 -泡 沫 (液 )液 溶 胶 -乳 状 液 (固 )液 溶 胶 -悬 浮 液 (气 )固 溶 胶 (液 )固 溶 胶 (固 )固 溶 胶
云、雾、油烟 烟尘、粉尘 肥皂泡沫 牛奶、含水原油 AgI 溶 胶 、 油 墨 泡沫塑料 珍珠、蛋白石 有色玻璃、合金
热力学不稳定性 :胶核粒子有互相聚集而降低 其表面积的趋势
因为粒子小,比表面大,表面自由能高,是热力 学不稳定体系,有自发降低表面自由能的趋势,即小 粒子会自动聚结成大粒子。
四、胶体的特征
动力稳定性强 散射作用明显 扩散速度慢 渗透压低 不能通过半透膜
五、胶体系统的制备与净化
1、胶体系统的制备
沉降平衡时粒子的高度分布公式
通过沉降速率的测定求算粒子半径
利用在超离心力场中的沉降平衡测定胶团或大分子物质的摩尔质量
14-4 胶体系统的电学性质
1、电动现象
电泳、电渗、沉降电势和流动电势统称为
溶胶的电动现象。
电泳是带电的胶粒在电场作用下作定向移动
若在多孔膜(或毛细管)的两端施加一 定电压,液体将通过多孔膜而定向流动,这 种现象称为电渗。
( z 1)cRT
唐南平衡(Donnan)
NazP NaCl

胶体大分子溶液

胶体大分子溶液

p2
= cRT ( c :mol/m3 )
反渗透:施加外压,使溶剂分 子从溶液一侧透过半透 膜进入纯溶剂一侧
溶剂
溶液
半透膜 (只容许溶剂通过)
例 金溶胶浓度为2 gdm3,介质粘度为0.00l Pas。已知胶粒半 径为 1.3 nm ,金的密度为 19.3103 kgm3 。计算金溶胶在 25C时 (1) 扩散系数,(2) 布朗运动移动0.5 mm的时间,(3) 渗透压。 解 (1) 扩散系数
分散系统的分类
分散系统:一些物质被分散到另一种物质中所形成的系统 分散相: 非连续形式存在的被分散的物质 分散介质:连续相形式存在的物质 分类:
分散系统 分散相半径/m
均相系统 (真溶液)
多相系统
小分子溶液
大分子溶液 超微分散系统(溶胶)
< 10-9
10-9-10-7 10-9-10-7
粗分散系统
>10-7
(3) 将浓度2 gdm3转换为体积摩尔浓度, n W W c 4 3 V VM V πr L 3 2 0.01870 4 -3 1 π(1.3 10 9 ) 3 19.3 103 6.023 1023 mol m 3 =cRT=0.018708.314298.16=46.34 Pa
1. 纳米粒子的结构和特性
(1) 小尺寸效应
(2) 表面效应 (3) 量子尺寸效应
(4) 宏观量子隧道效应
2.纳米粒子的制备方法 基本方法与制备憎液溶胶雷同
纳米组装材料的制备技术
(1)自组织技术 (2) 模板合成法
3.纳米技术在药学中的应用
第三节 溶胶的动力性质
动力性质 热运动扩散,布朗运动 重力场重力降沉和平衡

第十二章 学习小结

第十二章 学习小结

第十二章胶体与大分子溶液 6 + 2 学时本章概略地阐明溶胶的制备及其性质,以及大分子溶液的性质。

▲基本要求:1、了解分散体系的基本特性。

2、了解胶体的动力性质、光学性质与电学性质。

3、了解胶体粒子带电原因、胶团结构、双电层结构和电动电动势的概念。

4、了解胶体的稳定性与聚沉作用。

5、了解大分子溶液性质及分子量的测定方法。

7、理解什么是唐南平衡,如何准确地用渗透压法测定大分子物质的相对分子量8、了解大分子溶液的粘度及粘均分子量。

★基本内容:1、胶体的分类、基本特性、溶胶的制备和净化。

2、胶体的动力学性质。

布朗运动与扩散、沉降与沉降平衡。

3、胶体的光学性质:丁铎尔效应、瑞利公式。

*乳光的偏振性、*光散射测分子量4、胶体的电学性质电泳和电渗现象、胶粒带电原因、胶团结构、双电层结构和电动电势。

5、胶体的稳定性和聚沉作用:胶体的稳定性、影响聚沉作用的一些因素、电解质聚沉能力的规律、胶体稳定性的DLVO理论。

6、大分子溶液特征:7、大分子溶液渗透压与唐南平衡。

8、大分子溶液几种粘度及粘均分子量测量。

9、盐析与胶凝。

★重点:溶胶的定义与基本性质,溶胶的制备与胶团结构式表示,溶胶的动力学性质,溶胶的光学性质,胶粒的双电层结构, ζ电势与电动现象,胶体的稳定性与聚沉规律,大分子溶液的特性,大分子溶液渗透压和唐南平衡及其计算,。

★难点:溶胶与大分子溶液的特性与区别,溶胶的光学性质及自然现象解释,胶团的双电层结构,电动现象与ζ电势计算,胶团稳定的DLVO 理论,唐南平衡的计算。

★ 主要公式及其适用条件1. 胶体系统及其特点胶体:分散相粒子在某方向上的线度在1~100 nm 范围的高分散系统称为胶体。

对于由金属及难溶于水的卤化物、硫化物或氢氧化物等在水中形成胶体称憎液溶胶(简称为胶体)。

憎液溶胶的粒子均是由数目众多的分子构成,存在着很大的相界面,因此憎液溶胶具有高分散性、多相性以及热力学不稳定性的特点。

2. 胶体系统的动力学性质(1) 布朗运动体粒子由于受到分散介质分子的不平衡撞击而不断地作不规则地运动,称此运动为布朗运动。

14章_胶体与大分子溶液-总结

14章_胶体与大分子溶液-总结
这就是斐克第二定律。
溶胶的渗透压
Π
n RT V
沉降平衡
N2 1 4 3 exp r ( 粒子 介质 ) gL( x2 x1 ) N1 RT 3
高度分布公式
9 dx dt r 2 ( 粒子 介质 ) g
恒定速度沉降速率
Tyndall效应和Rayleigh公式
胶团的结构
例1:AgNO3 + KI→KNO3 + AgI↓ 过量的 KI 作稳定剂 胶团的结构表达式 : [(AgI)m nI–,(n-x)K+]x– xK+ 胶核 胶粒(带负电) 胶核 胶粒 胶团的图示式:
胶团
胶团(电中性)
AgNO3 + KI→KNO3 + AgI↓
[(AgI)m n Ag+ (n-x)NO3–]x+ x NO3–
通过大量观察,得出结论:粒子越小,Brown运
动越激烈。其运动激烈的程度不随时间而改变,但随 温度的升高而增加。
认为Brown运动是分散介质分子以不同大小和方
向的力对胶体粒子不断撞击而产生的。 当半径大于5 m,Brown运动消失。
Brown运动的本质
RT t x L 3 r

电势。
溶胶的稳定性
动力学稳定性 抗聚结稳定性 由于溶胶粒子小,Brown运动激烈, 胶粒之间有相互吸引的能量Va和相互排 在重力场中不易沉降,使溶胶具有动力稳定性
斥的能量Vr,总作用能 为Va+Vr。如图所示:
溶剂化层的影响
0
Va Vr
d
粒子间相互作用与其距离的关系曲线
胶体是在相当长的时间里稳定存在???
SiO2+H2O→H2SiO3→SiO32-+2H+ [(SiO2)m· nSiO32-· 2(n-x)H+]2x-· 2 xH+ 用NH4VO3和浓HCl作用,可制得稳定的V2O5溶胶

胶体与大分子溶液7要点

胶体与大分子溶液7要点
10% NaCl溶液后不引起聚沉,所需高分子的最少质量称为金值,一般 用mg表示。
上一内容
下一内容
回主目录
返回
2020/10/1
上一内容
下一内容
回主目录
返回
2020/10/1
14.8 大分子概说
三种分散体系性质的比较 大分子分类
上一内容
下一内容
回主目录
返回
2020/10/1
一. 三种分散体系性质的比较
r /0
sp
0 0
r
1
sp
/
c
1 c
0 •
0
[] clim0csp
lim
c0
r
c
上一内容
下一内容
回主目录
返回
2020/10/1
三. 用粘度法测定摩尔质量
当温度、聚合物和溶剂体系选定后,大分子溶液的粘度仅与浓度 和聚合物分子的大小有关。
特性粘度是几种粘度中最能反映溶质分子本性的一种物理量,由于
溶液类型 性质
憎液溶胶
胶粒大小
1~100nm
分散相存在单元 多分子组成的胶

能否透过半透膜
不能
是否热力学稳定体 系
不是
丁铎尔效应

粘度
小,与介质相似
对外加电解质
敏感
聚沉后再加分散介 质
不可逆
大分子溶 液
1~100nm
单分子
不能

微弱 大 不太敏感
可逆
小分子溶液
<1nm 单分子
能 是 微弱 小 不敏感 可逆
数均摩尔质量
质均摩尔质量
Z均摩尔质量
粘均摩尔质量
上一内容

《胶体与大分子溶液》课件

《胶体与大分子溶液》课件

胶体与大分子溶液的应用
胶体与大分子溶液在许多领域发挥着重要作用,如药物传递、化妆品、涂料 和食品工业。了解其应用有助于推动科学和工程的发展。
胶体的分类和性质
胶体可以根据分散相和连续相的特性进ห้องสมุดไป่ตู้分类,例如凝胶、溶胶和乳液等。胶体具有许多独特的性质,如稳定 性、表面活性和光学特性。
大分子溶液的形成与性质
大分子溶液的形成涉及溶质分子与溶剂分子之间的相互作用。这种溶液具有高分子量、粘弹性和独特的输运性 质,对生物医学、材料科学等领域具有广泛的应用。
胶体是由微小的粒子分散在连续介质中形成的稳定体系。它们具有高度的界 面活性和可控性,对于许多行业具有重要的应用价值。
大分子溶液的概念
大分子溶液是指由大分子链组成的溶液,这些溶质分子的尺寸通常比溶剂分 子大得多。大分子溶液在科学研究和工业生产中有着广泛的应用。
胶体与大分子溶液的区别与联 系
尽管胶体和大分子溶液都是由微小的分散相组成的,但它们的粒子大小、形 态和相互作用方式不同。胶体和大分子溶液之间存在着密切的联系,并且在 某些方面有着相似的特性。
《胶体与大分子溶液》 PPT课件
欢迎来到《胶体与大分子溶液》PPT课件!本课程将带您深入了解胶体与大 分子溶液的定义、特性、区别和联系,以及它们在实际应用中的作用。
课程介绍
在本课程中,我们将探索胶体与大分子溶液的世界。您将了解它们的基本概 念、研究方法和重要性,为后续的学习打下坚实的基础。
胶体的定义和特性

溶液与胶体知识点总结

溶液与胶体知识点总结

溶液与胶体知识点总结一、溶液的概念及特点1. 溶液是两种或两种以上的物质均匀地混合在一起所形成的一种新物质。

其中,溶解于溶剂中的物质称为溶质,用来溶解其他物质的溶液称为溶剂。

溶质和溶剂共同组成的溶液称为多组分溶液。

2. 溶液的特点(1)均匀性:溶质在溶剂中均匀分布,形成均匀的溶液。

(2)透明性:溶液是透明的,因为溶质和溶剂的颗粒大小相仿,不能散射可见光。

(3)不能析出:溶液在一定条件下是稳定的,不会因物理条件的改变而析出溶质。

(4)不可过滤:溶质颗粒尺寸小,不能通过常规的过滤器进行分离。

3. 溶解度溶解度是指单位质量的溶剂在一定温度下能溶解最大量溶质,通常用溶质在100g溶剂中的溶解质量来表示。

溶解度随温度的变化而变化,温度升高,通常溶解度增大;温度降低,溶解度减小。

溶解度常常用曲线表示。

二、溶液的分类1. 按溶质的溶解度分为饱和溶液、过饱和溶液和不饱和溶液。

(1)饱和溶液:在一定温度下,加入的溶质全部溶解在溶剂中所得到的溶液。

(2)过饱和溶液:在一定温度下,加入的溶质全部溶解,待溶液冷却后,溶液中不能溶解的溶质再原料形成颗粒,导致溶液过饱和。

(3)不饱和溶液:在一定温度下,加入的溶质不能全部溶解在溶剂中所得到的溶液。

2. 按溶剂的性质分为气体溶液和固体溶液。

气体溶液:溶质与溶剂之间的相互作用力弱,不稳定,易溢出和失去溶质。

如二氧化碳溶于水;固体溶液:溶质与溶剂之间有较强的相互作用力,如常见的金银二十合金等。

三、溶液的制备方法1. 固体溶解于液体中:将固体溶质加入至液体溶剂中,搅拌并加热或者冷却,待溶质溶解于液体中形成溶液。

2. 液体溶解于液体中:两种液体混合后形成的一种新的液体。

3. 气体溶解于液体中:气体呈溶解状态,如二氧化碳溶解于水。

4. 溶液的浓度和稀释:溶液的浓度常用质量分数、摩尔浓度、体积分数等表示,可以通过加入溶剂或溶质来改变溶液的浓度。

四、胶体的概念及特点1. 胶体是介于溶液和悬浮液之间的一种新形态的分散系统,是由微粒或宏观大分子均匀地分散在另一种物质中所得到的一种新物质。

物理化学:第十二章 胶体化学(2)

物理化学:第十二章  胶体化学(2)
van der Waals 吸引力:EA -1/x2 双电层引起的静电斥力:ER ae-x
总作用势能:E = ER + EA
粒子的平动能=(3/2) RT <Emax时,溶胶稳定; >Emax时,溶胶不稳定
ER 势 能
E
Emax
0
x
第二最小值
EA 第一最小值
EA曲线的形状由粒子本性决定,不受电解质影响; ER曲线的形状、位置强烈地受电解质浓度的影响。 电解质浓度对胶体粒子势能的影响:
2. 扩散双电层理论
常用名词: 双电层: 质点表面电荷与周围介质中的反离子
构成的电层;
表面电势0:带电质点表面与液体的电势差: 电势: 固、液两相发生相对运动的边界处与液
体内部的电势差。
1) 亥姆霍兹平板电容器模型
0
1879年,亥姆霍兹 首先提出在固液两相之 间的界面上形成双电层 的概念。
0
x
电泳或电渗实验证明:溶胶的分散质和分散 介质都带电,且所带的电性是不同的。
在电泳实验中,当溶胶粒子向负极迁移时,说 明胶粒带正电,此溶胶称为正溶胶;当溶胶粒子向 正极迁移时,说明胶粒带负电,此溶胶称为负溶胶
在电渗实验中,则正好相反。当介质向负极迁移 时,说明胶粒带负电,此溶胶称为负溶胶;当介质向 正极迁移时,说明胶粒带正电,此溶胶称为正溶胶。
本体之间的电势差
Stern 模型:固定 层+扩散层
固体表面 Stern面 滑动面
电势
0
0
--- 热力学电势,固体 表面与溶液本体的电
势差与溶液中电位离
子的浓度有关。
---- Stern电势。 Stern面与溶液本体的
电势差
距离
---- 电动电势(Zata电 势)滑动面与溶液本 体的电势差其值取决 于可动层的厚度

胶体与大分子溶液

胶体与大分子溶液

分散相与分散介质
把一种或几种物 质分散在另一种物质 中就构成分散体系。 其中,被分散的物质 称为分散相 (dispersed phase), 另一种物质称为分散 介质(dispersing medium)。
例如:云,牛奶,珍珠
分散体系分类
分散体系通常有三种分类方法:
按分散相粒子的大小分类:
•分子分散体系 •胶体分散体系 •粗分散体系
分散相粒子的半径在1 nm~100 nm之间的体系。目 测是均匀的,但实际是多相不均匀体系。也有的将1 nm ~ 1000 nm之间的粒子归入胶体范畴。 3.粗分散体系
当分散相粒子大于1000 nm,目测是混浊不均匀体 系,放置后会沉淀或分层,如黄河水。
(2)按分散相和介质聚集状态分类
1.液溶胶 将液体作为分散介质所形成的溶胶。当分散
8.7 溶胶的光学和动力学性质
光学性质
•Tyndall效应 • Rayleigh公式
动力学性质
Tyndall效应
1869年Tyndall发现,若令一束会聚光通过溶胶,从 侧面(即与光束垂直的方向)可以看到一个发光的圆锥 体,这就是Tyndall效应。其他分散体系也会产生一点散 射光,但远不如溶胶显著。
分子溶液十分均匀,这种散射光因相互干涉而完 全抵消,看不到散射光。
溶胶是多相不均匀体系,在胶粒和介质分子上产 生的散射光不能完全抵消,因而能观察到散射现象。
Rayleigh公式
1871年,Rayleigh研究了大量的光散射现象,对 于粒子半径在47nm以下分散体系,导出了散射光总 能量的计算公式,称为Rayleigh公式:
物理化学电子教案
胶体分散系统
8.6 分散系统的分类 8.7 溶胶的光学及动力学性质 8.8 溶胶的电性质 8.9 溶胶的聚沉和絮凝 8.10 溶胶的制备与净化

胶体分散体系和大分子溶液

胶体分散体系和大分子溶液

1. 丁达尔效应
光线射入溶胶后,在入射光的垂直方向可看 到一发光的圆锥体——丁达尔效应。 此现象虽然并非溶胶独有,但是溶胶的这一 现象特别明显。
2. 雷利散射定律
我们称引起丁铎尔效应的散射为雷利散 射,又称经典散射或弹性散射。
24 CV n n I I 0 4 n 2n
多孔塞法
将溶剂与溶液或两种不同浓度的溶液用 孔径为5-15微米的烧结玻璃板上下分开,浓 的在上面。由于玻璃中的液体是不动的,所 以溶质通过玻璃板全是由扩散过程完成的, 没有对流。一定时间后可用任何方法观察浓 度的变化。 但是要注意,只能用具有相同摩尔质量 和形状的物质来求A/l值;同时多孔玻璃孔内 不能有气泡。
3 2 2 2 2 2 2 1 2 1
C——单位体积中质点数
V——单个粒子的体积
n1、n2——分散介质和分散相的折射率
由雷利散射定律可知:
•散射强度与单个粒子体积成正比,入射光波长成反比。因此溶胶的 散射光强,可用于鉴别真溶液和溶胶。 •散射强度与单位体积的粒子数成正比,故溶胶的浓度越大,散射强 度越大。浊度计就是按此原理设计的。 •散射强度与波长四次方成反比,因此波长越短,散射强度越大。可 以解释雾天用黄色灯,天空呈蓝色,日出日落时太阳呈红色。
乳光计原理
当分散相和分散介质等条件都相同时,雷 利公式可改写成:
2 νV IK 4 λ
当入射光波长不变:
c /(V )
代入上式可得:
4 V r 3 3
I K'cr
3
保持浓度相同: 保持粒子大小相同:
I1 r13 3 I 2 r2
I1 c1 I 2 c2
如果已知一种溶液的散射光强度和粒 子半径(或浓度),测定未知溶液的散射 光强度,就可以知道其粒径(或浓度), 这就是乳光计。

第十二章 胶体及大分子溶液

第十二章 胶体及大分子溶液

7.
亚铁氰化铜溶胶的稳定剂是亚铁氰化钾, 亚铁氰化铜溶胶的稳定剂是亚铁氰化钾, 试写出其胶团表示式,胶粒电荷符号如何? 试写出其胶团表示式,胶粒电荷符号如何?
以K4Fe(CN)6为亚铁氰化铜的稳定剂,则必 为亚铁氰化铜的稳定剂, 进入溶胶粒子的紧密层内, 是Fe(CN)64+进入溶胶粒子的紧密层内,胶 团为[Cu ·(4n团为[Cu2Fe(CN)6)m·nFe(CN)64-·(4ng)K+]q+·qK+
若胶核为[Au] 若胶核为[Au]m,由于Na+AuO2-为稳定剂, 由于Na 为稳定剂, 故AuO2-进入紧密层 [[Au]mnAuO2-(n-x)Na+]x-xNa(n-
3.
如欲制备AgI负性溶胶 如欲制备AgI负性溶胶,应在 负性溶胶, 25cm3,0.016mol/dm3的KI溶液内加入多少体 KI溶液内加入多少体 积的0.005mol/dm 的硝酸银溶液。 积的0.005mol/dm3的硝酸银溶液。
8.
如何理解溶胶是动力学上稳定而热力学上 不稳定体系,且有聚沉不稳定的特性? 不稳定体系,且有聚沉不稳定的特性?
由于熔胶的布朗运动以及扩散作用, 由于熔胶的布朗运动以及扩散作用,更由 于胶粒表面的双电层结构及粒子溶剂化膜 造成溶胶的动力学稳定性。 造成溶胶的动力学稳定性。但由于溶胶是 高度分散得非均相体系, 高度分散得非均相体系,具有很大的表面 自由能, 自由能,因此有自发聚沉以降低体系能量 的趋势,因此是热力学的不稳定体系。 的趋势,因此是热力学的不稳定体系。
∴膜内酸性,膜外碱性。若大分子电解质为 膜内酸性,膜外碱性。 R+Cl-,则结果相反,这类膜平衡称为膜水 则结果相反, 解,由此可以部分解释生理上细胞内外呈 不同的PH及胃酸的形成 及胃酸的形成。 不同的PH及胃酸的形成。

第12章胶体练习题及答案

第12章胶体练习题及答案

9
2、氢氧化铁溶胶显红色,由于胶体粒子吸附正电荷,当把直流电源
的两极插入该溶胶时,在
极附近颜色逐渐变深,这是
现象的结果。(2、负,电泳)
3、ζ电势在量值上
于热力学电势φ,当外加电解质增加时,
(1) 胶粒间的引力本质上是所有分子的范德华力的总和 ;
(2) 胶粒间的斥力本质上是双电层的电性斥力 ;
(3) 胶粒周围存在离子氛,离子氛重叠越大,胶粒越不稳定 ;
(4) 溶胶是否稳定决定于胶粒间吸引作用和排斥作用的总效
应。
三、填空题
1、溶胶(憎液溶胶)的三个主要特征是:


。(1、高
度分散的,热力学不稳定多相系统,)
第十二章胶体化学练习题 一、是非题 (对者画√,错者画×)
1、溶胶是均相系统,在热力学上是稳定的。( - ) 2、长时间渗析,有利于溶胶的净化与稳定。( - ) 3、有无丁达尔效应是溶胶和分子分散系统的主要区别之一 。 (+ ) 4、亲液溶胶的丁达尔效应应比憎液胶体强。( - ) 5、在外加直流电场中,碘化银正溶胶向负电极移动,而其扩散层 向正电极移动。(+ ) 6、新生成的 Fe(OH)3 沉淀中加入少量稀 FeCl3 溶液,会溶解,再加 入一定量的硫酸盐溶液则又会沉淀。( + ) 7、丁达尔效应是溶胶粒子对入射光的折射作用引起的。( - ) 8、胶束溶液是高度分散的均相的热力学稳定系统。( + ) 9、胶体粒子的扩散过程和布朗运动本质上都是由粒子的热运动而 发生的宏观上的定向迁移现象。( + ) 10、在溶胶中加入电解质对电泳没有影响。( - ) 11、溶胶粒子因带有相同符号的电荷而相互排斥,因而在一定时 间内能稳定存在。( + ) 12、同号离子对溶胶的聚沉起主要作用。( - ) 13、大大过量电解质的存在对溶胶起稳定作用,少量电解质的存 在对溶胶起破坏作用。( - ) 14、由瑞利公式可知,分散介质与分散相之间折射率相差愈大, 则散射作用愈显著。是不是?( + ) 15、溶胶是亲液胶体,而大分子溶液是憎液胶体。( - ) 16、乳状液必须有乳化剂存在才能稳定。( + )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一内容 下一内容 回主目录
2020/8/4
胶粒的结构
例1:AgNO3 + KI→KNO3 + AgI↓
过量的 KI 作稳定剂 胶团的结构表达式 :
[(AgI)m n I – (n-x)K+]x– xK+
胶核 胶粒(带负电) 胶团(电中性)
胶团的图示式:
胶核 胶粒 胶团
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
2020/8/4
12.2 溶胶的制备与净化
溶胶的制备 (1)分散法 1.研磨法 2.胶溶法 3.超声波分散法 4.电弧法 (2)凝聚法 1.化学凝聚法 2.物理凝聚法
上一内容 下一内容 回主目录
溶胶的净化 (1)渗析法 (2)超过滤法
2020/8/4
溶胶的制备
制备溶胶必须使分散相粒子的大小落在胶体分 散体系的范围之内,并加入适当的稳定剂。制备方 法大致可分为两类:
不同状态时,则形成不同的固溶胶:
A.固-固溶胶 如有色玻璃,不完全互溶的合金
B.固-液溶胶 C.固-气溶胶
如珍珠,某些宝石 如泡沫塑料,沸石分子筛
上一内容 下一内容 回主目录
2020/8/4
(2)按分散相和介质聚集状态分类
3.气溶胶 将气体作为分散介质所形成的溶胶。当分散相 为固体或液体时,形成气-固或气-液溶胶,但没有 气-气溶胶,因为不同的气体混合后是单相均一体 系,不属于胶体范围。 A.气-固溶胶 如烟,含尘的空气 B.气-液溶胶 如雾,云
分散相粒子的半径在1 nm~100 nm之间的体系。目 测是均匀的,但实际是多相不均匀体系。也有的将1 nm ~ 1000 nm之间的粒子归入胶体范畴。 3.粗分散体系
当分散相粒子大于1000 nm,目测是混浊不均匀体 系,放置后会沉淀或分层,如黄河水。
上一内容 下一内容 回主目录
2020/8/4
(2)按分散相和介质聚集状态分类
上一内容 下一内容 回主目录
2020/8/4
(3)按胶体溶液的稳定性分类
1.憎液溶胶 半径在1 nm~100 nm之间的难溶物固体粒子 分散在液体介质中,有很大的相界面,易聚沉,是 热力学上的不稳定体系。 一旦将介质蒸发掉,再加入介质就无法再形成 溶胶,是 一个不可逆体系,如氢氧化铁溶胶、碘 化银溶胶等。 这是胶体分散体系中主要研究的内容。
12章胶体与大分子溶液
上一内容 下一内容 回主目录
12.1 胶体及其基本特性
分散相与分散介质 分散体系分类
(1)按分散相粒子的大小分类 (2)按分散相和介质的聚集状态分类 (3)按胶体溶液的稳定性分类
憎液溶胶的特性 胶粒的结构 胶粒的形状
上一内容 下一内容 回主目录
2020/8/4
分散相与分散介质
把一种或几种物 质分散在另一种物质 中就构成分散体系。 其中,被分散的物质 称为分散相 (dispersed phase), 另一种物质称为分散 介质(dispersing medium)。
例如:云,牛奶,珍珠
上一内容 下一内容 回主目录
2020/8/4
分散体系分类
分类体系通常有三种分类方法:
按分散相粒子的大小分类:
胶粒的形状
作为憎液溶胶基本质点的胶粒并非都是球形, 而胶粒的形状对胶体性质有重要影响。
质点为球形的,流动性较好;若为带状的, 则流动性较差,易产生触变现象。
上一内容 下一内容 回主目录
2020/8/4
胶粒的形状
例如:(1)聚苯乙烯胶乳是球形质点 (2) V2O5 溶胶是带状的质点 (3) Fe(OH)3 溶胶是丝状的质点
上一内容 下一内容 回主目录
2020/8/4
(3)按胶体溶液的稳定性分类
2.亲液溶胶 半径落在胶体粒子范围内的大分子物质,溶
解在合适的溶剂中形成溶胶,一旦将溶剂蒸发, 大分子化合物凝聚,再加入溶剂,又可形成溶胶。
亲液溶胶是热力学上稳定、可逆的体系。
上一内容 下一内容 回主目录
2020/8/4
憎液溶胶的特性
2020/8/4
胶粒的结构
例2:AgNO3 + KI → KNO3 + AgI↓
过量的 AgNO3 作稳定剂 胶团的结构表达式:
[(AgI)m n Ag+ (n-x)NO3–]x+ x NO3– 胶核
胶粒(带正电) 胶团(电中性)
胶团的图示式:
胶核 胶粒 胶团
上一内容 下一内容 回主目录
2020/8/4
(1)特有的分散程度
粒子的大小在10-9~10-7 m之间,因而扩散较慢,不能透 过半透膜,渗透压低但有较强的动力稳定性 和乳光现象。
(2)多相不均匀性
具有纳米级的粒子是由许多离子或分子聚结而成,结构 复杂,有的保持了该难溶盐的原有晶体结构,而且粒子大小 不一,与介质之间有明显的相界面,比表面很大。
2020/8/4
胶粒的结构
胶粒的结构比较复杂,先有一定量的难溶物分子 聚结形成胶粒的中心,称为胶核;
然后胶核选择性的吸附稳定剂中的一种离子,形 成紧密吸附层;由于正、负电荷相吸,在紧密层外形 成反号离子的包围圈,从而形成了带与紧密层相同电 荷的胶粒;
胶粒与扩散层中的反号离子,形成一个电中性的 胶团。
•分子分散体系 •胶体分散体系 •粗分散体系
•液溶胶 按分散相和介质的聚集状态分类: •固溶胶
•气溶胶
•憎液溶胶 按胶体溶液的稳定性分类: •亲液溶胶Leabharlann 上一内容 下一内容 回主目录
2020/8/4
(1)按分散相粒子的大小分类
1.分子分散体系
分散相与分散介质以分子或离子形式彼此混溶, 没有界面,是均匀的单相,分子半径大小在10-9 m以 下 。通常把这种体系称为真溶液,如CuSO4溶液。 2.胶体分散体系
1.液溶胶
将液体作为分散介质所形成的溶胶。当分散 相为不同状态时,则形成不同的液溶胶:
A.液-固溶胶 如油漆,AgI溶胶 B.液-液溶胶 如牛奶,石油原油等乳状液 C.液-气溶胶 如泡沫
上一内容 下一内容 回主目录
2020/8/4
(2)按分散相和介质聚集状态分类
2.固溶胶 将固体作为分散介质所形成的溶胶。当分散相为
(3)热力学不稳定性
因为粒子小,比表面大,表面自由能高,是热力学不 稳定体系,有自发降低表面自由能的趋势,即小粒子会自 动聚结成大粒子。
上一内容 下一内容 回主目录
2020/8/4
胶粒的结构
形成憎液溶胶的必要条件是: (1)分散相的溶解度要小; (2)还必须有稳定剂存在,否则胶粒易聚结而
聚沉。
上一内容 下一内容 回主目录
相关文档
最新文档