纳米碳酸钙制备工艺分析
微乳液法制备微纳米碳酸钙
微乳液法制备微纳米碳酸钙微纳米碳酸钙(nano-calcium carbonate)是一种具有广泛应用前景的材料,可用于橡胶、塑料、纸张、油漆、化妆品等多个领域。
传统的制备方法如喷雾干燥法、溶胶凝胶法以及沉淀法等存在着颗粒尺寸分散不均匀、能耗高、生产周期长等问题。
而微乳液法(microemulsion method)作为一种新型制备方法,具有制备速度快、能耗低、颗粒尺寸均匀等优势,因而备受研究者关注。
微乳液法制备微纳米碳酸钙的基本过程是将适量的油相、水相和表面活性剂相混合并均匀搅拌,形成一种细小的乳液微胶囊。
接下来,在乳液微胶囊中加入适量的钙源和碱源,并持续搅拌,使钙源和碱源在乳液微胶囊中反应生成微纳米碳酸钙。
最后,通过离心、过滤和干燥等步骤,得到目标产物。
微乳液法制备微纳米碳酸钙的优点之一是制备速度快。
相比传统的制备方法,微乳液法的反应时间更短,一般只需要几小时即可完成。
这得益于微乳液中乳液微胶囊的小尺寸和较大的比表面积,有利于反应物之间的质传和热传递。
此外,微乳液法还具有能耗低的优势。
乳液微胶囊的小尺寸使体系内能量传递的距离缩短,从而可以降低能耗。
同时,微乳液法的反应过程一般在常温下进行,无需额外加热或冷却,这也有助于降低能耗。
微乳液法制备微纳米碳酸钙还具有颗粒尺寸均匀的优势。
乳液微胶囊的较小尺寸和表面活性剂的作用使得乳液微胶囊在水中很好地分散,并且可以通过控制各相含量来调节颗粒尺寸。
这种均匀的颗粒尺寸有利于微纳米碳酸钙的应用,例如在塑料中作为增强剂或填充剂时,可以提高塑料的机械性能和导热性能。
然而,微乳液法制备微纳米碳酸钙也存在一些问题。
首先,乳液微胶囊的形成需要合适的表面活性剂,一些高性能的表面活性剂往往较昂贵,增加了制备成本。
其次,微乳液法的操作相对复杂,需要精确控制各相的比例和搅拌条件,以确保反应的均一性和稳定性。
此外,微乳液法产生的微纳米碳酸钙往往表面带有一些胶体残留物,需要经过后处理处理。
【精品文章】常见纳米碳酸钙的制备工艺及特点简介
常见纳米碳酸钙的制备工艺及特点简介
纳米技术是当前粉体技术的热点,纳米技术和材料的研究、生产及其应用在我国已经初见成效,纳米碳酸钙是其中最具代表性的产品之一。
我国目前纳米碳酸钙的生产工艺种类较多,本文选取了几种常见的工艺技术介绍给各位读者,期望能起到一些科普和技术推广的作用。
1、夹套反应釜法
该工艺方法是将25℃以下的氢氧化钙乳液泵入碳化反应罐中,通入二氧化碳,在搅拌状态下,进行碳化反应,通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件制备纳米碳酸钙。
该法因搅拌气-液接触面积大,反应较均匀,产品粒径分布较窄等,已成为近几年纳米碳酸钙生产的主要方法。
夹套反应釜法因受温度变化的影响,粒径变化频率较大,且碳酸钙生产过程中的碳化过程是一种放热反应,要保证产品细度,就要严格要求控制温度。
由于制冷设备的投入、维护费用和电能消耗相对较高。
2、乳液法
乳液法大致可分为两种: 一种是微乳液法,另一种为乳状液膜法。
微乳液法主要利用微乳液中液滴大小可控的特性, 将可溶性碳酸盐与钙盐分别溶于组成完全相同的微乳液中, 再混合反应,由于反应被控制在较小的区域内进行,因而可得到纳米级碳酸钙晶粒, 再将其与溶剂分离,即得产品。
而乳状液膜法则是利用孔径为几个微米活几十微米的膜材料作为分散介质,分散相压入到连续相中时,被微小孔膜剪切成微小粒径的液滴, 进入连续相,从而实现微米尺度的相互混合。
碳化法制备纳米碳酸钙的工业合成方法
世上无难事,只要肯攀登
碳化法制备纳米碳酸钙的工业合成方法
纳米碳酸钙的制备方法按制备过程中是否发生化学反应分为化学方法和物理方法,其中化学方法包括碳化法、乳液法、夹套反应釜法、复分解法。
碳化法是生产纳米级轻质碳酸钙的主要方法。
首先,将精选的石灰石煅烧,得到氧化钙和窖气。
然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力作用下粉碎、多级悬液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浊液。
然后通入二氧化碳气体,加入适当的晶形控制剂,碳化至终点,得到要求晶形的碳酸钙浆液。
再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。
碳化是整个生产工艺的核心,根据碳化反应过程二氧化碳气体与氢氧化钙悬浮液接触方式的不同,纳米碳酸钙的工业合成方法可分为间歇鼓泡法、喷雾碳化法、喷射吸收法和超重力碳化法。
间歇鼓泡法
间歇鼓泡碳化法是目前国内外大多采用的方法。
间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳通过冷冻机降温到25℃以下,泵入碳化塔,通入CO2 混合气,在搅拌下进行碳化反应。
通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。
该法可以生产普通微细碳酸钙,但对于生产纳米级碳酸钙就需要严格控制一些工艺条件,如碳化反应温度、石灰乳浓度等,而且也相应地需对鼓泡塔做一些改进,比如加搅拌器、挡板或通过气体分布器控制等,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。
陈先勇等人采用间歇鼓泡碳化法,通过对碳化反应温度、灰乳密度、添加剂等因素的严格控制,成功制得粒度分布均匀、平均粒径为40nm 左右的单分散球形纳米碳酸钙产品。
多级喷雾碳化法。
纳米碳酸钙的生产工艺
工业生产技术的不断革新,给许多新型的产品生产带来可能,其中一种纳米级的碳酸钙颗粒就可运用于多个行业中去。
目前主要采用的制作工艺可以分为炭化法、连续喷雾碳化法、超重力碳化法等。
我们来一一去进行了解。
制备纳米碳酸钙的方法有物理法和化学法。
物理法就是对天然石灰石、白垩石进行机械粉碎而得到。
但是粉碎的粒度是有限的,只有采用特殊的方法和机械才有可能达到0.1μm以下。
所以生产纳米碳酸钙主要采用化学法。
(一)碳化法这种制备方法是主要的一种生产方式。
将精选的石灰石煅烧,得到氧化钙和窑气。
使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入CO2气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。
按照碳化过程中CO2气体与氢氧化钙悬浮液接触方式的不同,可将碳化法分为间歇鼓泡碳化法、连续喷雾碳化法和超重力碳化法,以及在间歇鼓泡碳化法基础上改进的非冷冻法。
该法投资少,易于转化,为国内外大多数厂家所采用。
但是这种方法生产效率低、气液接触差、碳化时间长、粒径粗且不均匀。
(二)连续喷雾碳化法喷雾碳化法是将石灰乳用喷头喷成雾状,从塔顶喷下,将一定浓度的CO2以某一速度从塔底上升,与雾状石灰乳发生反应。
对于连续喷雾碳化,则重复进行以上过程,最后可获得粒径小于0.1μm的纳米碳酸钙。
该法生产纳米碳酸钙效率高,经济效益可观,并能实现连续自动大规模生产,另外,具有很高的科学性和技术性。
但设备投资较大。
(三)超重力碳化法利用旋转造成一种稳定的、比地球重力加速度高的多的超重力环境,极大地增加气液接触面积,强化气-液之间的传质过程,从而提高碳化速度。
同时,由于乳液在旋转床中得到高度分散,限制了晶粒的长大,即使不添加晶形控制剂,也可以制备出粒径为15~30nm的纳米碳酸钙。
纳米碳酸钙的制备及用途
一、纳米碳酸钙的制备
纳米碳酸钙的制备方法主要有碳化法、复分解法和化学气相沉积法等。其中, 碳化法是最常用的制备方法,其主要原理是在高温高压条件下,将二氧化碳气体 与氢氧化钙溶液反应生成碳酸钙沉淀。具体制备过程包括配料、搅拌、碳化、过 滤、干燥和表面处理等步骤。
为了获得高质量的纳米碳酸钙,需要注意以下几点:
纳米碳酸钙的制备及用途
目录
01 一、纳米碳酸钙的制 备
02
二、纳米碳酸钙的用 途
03
三、纳米碳酸钙的市 场现状和前景
04 四、结论
05 参考内容
随着科技的不断发展,纳米技术在各个领域的应用越来越广泛。其中,纳米 碳酸钙作为一种重要的纳米材料,具有广阔的应用前景和市场价值。本次演示将 详细介绍纳米碳酸钙的制备方法、用途及市场发展情况,以期让更多人了解这一 纳米材料的优势和应用价值。
功能性纳米碳酸钙在许多领域都有广泛的应用,例如橡胶、塑料、涂料、化 妆品和生物医学等。由于其良好的分散性和高透明度,它可以作为塑料的增强填 料和透明剂。此外,纳米碳酸钙还可以用于药物输送,如抗癌药物和疫苗的载体。
五、结论
功能性纳米碳酸钙的制备及性质研究具有重要的实际意义。其制备方法的改 进和性质的优化将进一步拓宽其应用领域,提高其使用性能。对其磁学性质和生 物相容性的进一步研究也将为纳米碳酸钙在生物医学领域的应用带来新的可能。
摘要纳米碳酸钙是一种具有重要应用价值的无机纳米材料,在橡胶、塑料、 涂料、油墨等领域得到广泛应用。本次演示总结了纳米碳酸钙的制备及改性应用 研究进展,并分析了其未来的发展趋势和应用前景。
引言纳米碳酸钙是一种由钙离子和碳酸根离子组成的无机纳米粒子,具有轻 质、高比表面积、吸油性等特性。制备纳米碳酸钙的方法主要有化学沉淀法、气 相水解法、界面沉淀法等。纳米碳酸钙经过改性处理后,可进一步提高其应用性 能,如表面改性技术、插层改性技术等。
纳米碳酸钙超重力法
纳米碳酸钙超重力法纳米碳酸钙的超重力法是一种制备技术,通过利用高速离心力和超重力环境,实现物质组分的分离和纯化。
在这种技术中,含有碳酸钙前体物的水溶液在远超于地球重力场的条件下进行离心分离操作,形成具有纳米级别粒径的碳酸钙。
这种制备方法具有较好的分散性和表面活性,且能保证所有晶核具有相同的生长时间,使产物浓度空间均匀分布,满足较高的产物过饱和度。
在橡胶工业中,纳米碳酸钙作为一种重要的填充剂,具有广泛的应用。
它可以提高橡胶的力学性能、热稳定性和阻隔性,改善橡胶制品的加工流动性和耐老化性。
此外,纳米碳酸钙在塑料、涂料、油墨等高分子材料中也有广泛应用,可以提高材料的力学性能、耐热性、阻隔性、透明性和加工流动性等。
超重力法制备纳米碳酸钙的优点:超重力法制备纳米碳酸钙具有许多优点。
首先,该方法可以在常温常压下进行,避免了高温高压对设备的高要求,降低了生产成本。
其次,超重力法可以快速地完成碳酸钙的成核和生长过程,缩短了生产周期。
此外,超重力法可以获得高纯度的纳米碳酸钙,减少了后续处理和提纯的步骤。
最重要的是,超重力法可以精确控制纳米碳酸钙的粒径和形貌,使其满足不同应用领域的需求。
超重力法制备纳米碳酸钙的应用前景随着科技的不断发展,纳米碳酸钙的应用领域也在不断扩展。
在橡胶工业中,随着绿色轮胎的发展,对纳米碳酸钙的需求量不断增加。
在塑料行业中,随着人们对环保意识的提高,使用可降解的塑料制品已成为趋势,这需要大量的纳米碳酸钙作为增韧剂和增强剂。
此外,纳米碳酸钙在涂料、油墨、化妆品等领域也有广泛的应用前景。
超重力法制备纳米碳酸钙具有良好的应用前景。
首先,超重力法可以制备出高纯度、高分散性的纳米碳酸钙,满足不同领域对材料性能的要求。
其次,超重力法可以精确控制纳米碳酸钙的粒径和形貌,使其在应用中发挥最佳性能。
此外,超重力法具有高效、环保、低成本的优点,有利于推动纳米碳酸钙的广泛应用。
结论超重力法制备纳米碳酸钙是一种高效、环保、低成本的方法,具有良好的应用前景。
纳米碳酸钙制备工艺分析
纳米碳酸钙制备工艺分析纳米碳酸钙(nano-CaCO3)是一种具有广泛应用前景的新型纳米材料,可用于陶瓷制品、橡胶制品、塑料制品和涂料等多个行业。
其制备工艺主要包括溶液法、加热碳化法和高压碳酸盐法。
本文将对这些制备工艺进行详细的分析。
首先是溶液法。
该方法通过将硝酸钙和碳酸钠等钙源溶解在水中,然后通过化学反应沉淀出纳米碳酸钙。
这种方法的优点是简单易行,可控性好,能够得到均一分散度较好的纳米碳酸钙颗粒。
然而,溶液法存在一些问题,如反应溶液的酸碱度、温度和搅拌速度等因素对纳米碳酸钙的形貌和颗粒大小具有较大影响,需要进行严密的实验条件控制。
其次是加热碳化法。
该方法通过将一定质量比的钙源与一定比例的碳源混合,在高温下加热反应,使其发生碳化反应生成纳米碳酸钙。
这种方法具有高效、高产出等优点,制备出的纳米碳酸钙具有较好的纯度和形貌。
然而,加热碳化法也存在一些问题,如反应条件的控制较为困难,高温容易引起固相和气相反应的竞争,而且产生的纳米碳酸钙颗粒分散性较差。
最后是高压碳酸盐法。
该方法通过将高压二氧化碳气体与钙氢氧化物反应,生成纳米碳酸钙。
这种方法具有操作简便、反应效果好等优点,制备出的纳米碳酸钙颗粒形状规整、分散性好。
然而,高压碳酸盐法也存在一些问题,如需要较高的压力和温度,设备要求较高。
总的来说,纳米碳酸钙制备工艺各有优缺点,选择合适的制备工艺需要考虑到具体应用的要求以及成本和技术条件的综合因素。
未来的研究方向可以是改进现有制备工艺,提高纳米碳酸钙的颗粒分散性和控制其形貌的技术,以满足不同应用领域对纳米碳酸钙的需求。
纳米碳酸钙的合成工艺研究
纳米碳酸钙的合成工艺研究纳米碳酸钙(Nano CaCO3)是一种颗粒尺寸小于100纳米的碳酸钙粉体材料。
与传统的微米级碳酸钙相比,纳米碳酸钙具有较大的比表面积、高反应活性、良好的机械性能和透明度等特点,广泛应用于领域,如橡胶、塑料、涂料、纺织品、食品、医药等。
本文将介绍纳米碳酸钙的合成工艺研究。
纳米碳酸钙的合成方法多种多样,常用的合成工艺包括溶液法、气相法和固相法等。
以下将分别介绍这三种常用工艺。
溶液法是一种常用的纳米碳酸钙合成方法。
一般来说,该方法通过在钙盐溶液中加入碳酸盐溶液,通过化学反应使碳酸盐与钙盐反应生成纳米碳酸钙。
在该方法中,反应温度、pH值、反应时间等条件对纳米碳酸钙的产率和粒径均具有重要影响。
较高的温度和碱性条件有利于产生较小颗粒尺寸的纳米碳酸钙。
此外,对溶液饱和度的控制也是纳米碳酸钙合成的关键。
通过合理调节溶液浓度和反应时间,可以控制纳米碳酸钙的尺寸和分布。
气相法是另一种常用的纳米碳酸钙合成方法。
该方法主要通过在高温环境下将有机碳源与氧化钙进行热解反应,生成纳米碳酸钙。
常用的有机碳源包括甲烷、丙烷等。
热解温度、反应时间和气体流速等因素对纳米碳酸钙的形貌和分布起着重要作用。
通常情况下,较高的热解温度和较长的反应时间有利于产生较小的颗粒尺寸和较窄的分布。
固相法是一种低成本的纳米碳酸钙合成方法。
该方法通过在固相条件下进行反应,使钙源和碳源在高温下发生化学反应,生成纳米碳酸钙。
常用的钙源包括石灰石和氢氧化钙,而常用的碳源包括葡萄糖、醋酸钠等。
反应温度、反应时间和原料比例等因素对纳米碳酸钙的合成具有重要影响。
较高的反应温度和较长的反应时间有利于生成较小的颗粒尺寸和较高的产率。
纳米碳酸钙的合成工艺研究主要集中在优化合成条件、控制颗粒尺寸和分布以及提高产率等方面。
例如,通过合理调节反应温度、pH值和反应时间等条件,可以获得所需的纳米碳酸钙颗粒尺寸和形貌。
此外,利用表面活性剂和分散剂等添加剂可以改善纳米碳酸钙颗粒的分散性和稳定性。
纳米碳酸钙的生产工艺及用途
纳米碳酸钙的生产工艺及用途碳酸钙是自然界存在的一种很广泛的矿物质,也是一种传统的无机盐化工产品。
近年来,随着碳酸钙的超细化及表面改性技术的发展,纳米碳酸钙制备技术及应用,已成为国内外竞相开发的研究热点。
本文就有关纳米碳酸钙的主要生产技术及其应用领域作一简介。
【阳山县中棋实业有限公司】关键词纳米碳酸钙生产用途碳酸钙(化学式为CaCO3)在自然界广泛存在,它至少有6种矿物形式[1]:无定形碳酸钙(amorphous CaCO3)、球霰石(vaterite)、文石(aragonite)、方解石(calcite)、单水方解石(monohydro calcite)和六水方解石(ikaite,CaCO3·6H2O),是大理石、石灰石、白垩等天然矿物的主要成分,也是贝壳、珊瑚礁、珍珠的构成成分。
在工业上,碳酸钙作为一种重要的无机盐化工产品,物美价廉。
根据生产方法不同,碳酸钙分为两大类、多种型号,以满足不同行业、不同用途的需要[2]。
以方解石、大理石、白垩、贝壳、石灰石等为原料经机械粉碎及超细研磨等用物理方法制取的碳酸钙粉体产品称重质碳酸钙,以GCC表示;以石灰石为原料经煅烧、消化、碳酸化、分离、干燥分级等化学方法制取的产品称轻质碳酸钙,以PCC表示。
普通型的重质碳酸钙和轻质碳酸钙,通常作一般填料和白色颜料使用。
纳米碳酸钙是20世纪80年代运用纳米技术加工发展而成的一种新型轻质碳酸钙产品,粒径通常在20~100 nm之间。
由于碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,且粒径细而均匀、分布窄、比表面积大、表面活性及分散性好、表面能高,使其在实际使用中体现了很多普通碳酸钙材料所不具备的更加优异的性能,用途更为广泛。
如可广泛大量应用于注塑、挤出、PVC型材、管材、汽车涂料、密封胶、粘结剂涂料、油墨、橡胶等行业,碳酸钙产品的附加值得到很大提高,很快引起了世界各国的普遍关注,现已成为无机非金属材料研究和企业竞争投资的热点[3]。
混凝土中掺入纳米碳酸钙的原理及应用
混凝土中掺入纳米碳酸钙的原理及应用一、引言混凝土是一种广泛应用的建筑材料,其主要成分是水泥、砂子、石子和水。
然而,传统的混凝土存在一些问题,比如强度不够、易开裂、易受渗透和化学侵蚀等。
为了解决这些问题,人们开始将纳米材料引入混凝土中,其中纳米碳酸钙是一种常用的材料。
本文将详细介绍混凝土中掺入纳米碳酸钙的原理及应用。
二、纳米碳酸钙的概述纳米碳酸钙是一种重要的纳米材料,其晶体结构和普通碳酸钙相同,但其粒径小于100纳米。
由于其表面积大、界面效应强、化学反应活性高等特点,纳米碳酸钙被广泛应用于材料科学、生物医学、环境保护等领域。
三、混凝土中掺入纳米碳酸钙的原理混凝土中掺入纳米碳酸钙的主要原理是通过纳米碳酸钙的作用,改善混凝土的力学性能、耐久性能和微观结构。
具体来说,纳米碳酸钙可以在混凝土中形成钙硅石凝胶,填补混凝土中的孔隙,并与水泥反应生成水化产物,从而提高混凝土的强度和稳定性。
此外,纳米碳酸钙还可以吸附混凝土中的游离氢离子,减少混凝土的碱骨架溶解,从而提高混凝土的耐久性。
纳米碳酸钙还可以通过填补混凝土的孔隙,减少混凝土中的水分渗透,从而提高混凝土的耐水性和耐久性。
四、混凝土中掺入纳米碳酸钙的应用1.提高混凝土的强度纳米碳酸钙可以在混凝土中形成钙硅石凝胶,填补混凝土中的孔隙,并与水泥反应生成水化产物,从而提高混凝土的强度和稳定性。
掺入适量的纳米碳酸钙可以提高混凝土的抗压强度、抗拉强度和抗弯强度。
2.提高混凝土的耐久性纳米碳酸钙可以吸附混凝土中的游离氢离子,减少混凝土的碱骨架溶解,从而提高混凝土的耐久性。
掺入适量的纳米碳酸钙可以提高混凝土的抗渗透性、抗冻融性和耐化学侵蚀性。
3.提高混凝土的微观结构纳米碳酸钙可以填补混凝土的孔隙,减少混凝土中的水分渗透,从而提高混凝土的耐水性和耐久性。
此外,纳米碳酸钙还可以改善混凝土的微观结构,使混凝土中的颗粒更加紧密排列,从而提高混凝土的密实度和稳定性。
五、纳米碳酸钙的制备方法目前,纳米碳酸钙的制备方法主要有物理方法和化学方法两种。
纳米碳酸钙结构
纳米碳酸钙结构摘要:一、纳米碳酸钙的基本背景二、纳米碳酸钙的微观结构与性质三、纳米碳酸钙在各个领域的应用四、纳米碳酸钙的市场前景与挑战正文:纳米碳酸钙(Nano-calcium carbonate,简称NCC)是一种具有微米级和纳米级颗粒尺寸的碳酸钙(CaCO3)的变种。
在近年来,纳米碳酸钙因其独特的物理和化学性质吸引了科研人员和工程师的关注,广泛应用于各个领域。
本文将探讨纳米碳酸钙的基本背景、微观结构与性质,以及在各个领域的应用、市场前景与挑战。
一、纳米碳酸钙的基本背景纳米碳酸钙的基本结构由钙离子(Ca2+)和碳酸根离子(CO32-)组成。
其微小尺寸和高比表面积使其成为材料科学和工程领域中备受关注的研究对象。
纳米碳酸钙的制备方法主要有物理法和化学法,如沉淀法、水热法、溶胶-凝胶法等。
二、纳米碳酸钙的微观结构与性质纳米碳酸钙的微观结构与普通碳酸钙有很大差异,其晶体结构和表面电子结构发生了变化,产生了小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等。
这些特殊性质使得纳米碳酸钙在磁性、催化剂、光热阻和熔点等方面具有优越性能。
纳米碳酸钙的优异性能包括:1.高比表面积:纳米碳酸钙具有较大的比表面积,使其具有较高的化学活性。
2.优异的生物相容性:纳米碳酸钙对人体无毒、无刺激性,具有良好的生物相容性。
3.可调控的表面电荷:通过表面改性,可以调控纳米碳酸钙的表面电荷,从而适应不同应用场景。
4.可用于药物传递的载体:纳米碳酸钙可作为药物载体,提高药物的生物利用度和疗效。
三、纳米碳酸钙在各个领域的应用纳米碳酸钙因其独特性能,在众多领域得到广泛应用。
如:1.塑料、橡胶、油墨、涂料等行业:纳米碳酸钙作为填充剂和补强剂,可以提高制品的机械性能、耐磨性和耐候性。
2.造纸工业:纳米碳酸钙用于纸张填料,可以提高纸张的白度、亮度和平滑度。
3.粘胶剂、密封剂等工业:纳米碳酸钙可以提高产品的触变性和抗滑性。
4.牙膏、食品、医药、饲料等行业:纳米碳酸钙作为增量剂、崩解剂和载体,可以提高产品的性能和品质。
纳米碳酸钙的化学制备方法及应用分析
纳米碳酸钙的化学制备方法及应用分析作者:刘中河李甘来源:《速读·中旬》2016年第10期摘要:碳酸钙作为一种生物矿物,其具有良好的生物相容性和稳定的化学性质,属于很有前途的无机材料,被广泛应用于医药、油墨、涂料、塑料和橡胶等领域。
而纳米碳酸钙则是指粒径保持在1~100nm范围内的碳酸钙产品,其涉及超微细碳酸钙和超细碳酸钙这两种产品,具有宏观量子隧道效应、小尺寸效应和量子尺寸效应,在杀菌消毒、增强透明性与补强性等方面的应用性能较为特殊。
本文就对纳米碳酸钙的化学制备方法及应用进行分析和探讨。
关键词:纳米碳酸钙;化学制备方法;应用纳米碳酸钙是上世纪八十年代发展起来的新型固体材料,选料为非金属矿石灰石,采用沉淀法合成纳米粉末体的技术来制备纳米材料。
随着纳米技术的快速发展,碳酸钙逐步实现了表面改性、结构复杂化以及超细化的发展,应用价值越来越高,在熔点、催化剂、光热组和磁性等方面的优越性日益增强。
可以说,纳米碳酸钙产品的应用空间与发展潜力将会越来越大。
一、纳米碳酸钙的化学制备方法(一)凝胶法凝胶法主要是以凝胶的一端或两端为依据,让Ca2+和CO32-加以扩散,这样凝胶内部可以生成结晶核,在其位置不变的前提下,能够对晶核的生长与生成进行连续观察,适应于晶体过程的研究。
当然对不同的条件加以控制,如添加剂的浓度与种类、pH值、Ca2+和CO32-的浓度、凝胶浓度等,可以得到球霞石型或文石型的碳酸钙。
(二)乳液法乳液法可以划分为乳状液膜法与微乳液法,其中利用前者来制备纳米CaCO3时,膜溶剂需选用煤油,让司本-80(Span-80)座位流动载体与表面活性剂,这样可以配成水相与油相不相溶的液体混合物,利用电动搅拌器加以搅拌后,这时油相中会分散有微液滴形式Na2CO3水溶液,形成乳液后与Ca(OH)2溶液进行混合搅拌,Ca2+会进入微液滴加以反应,从而生成CaCO3超细颗粒。
后者则是在两份完全相同的微乳液中溶入可溶性钙盐与可溶性碳酸盐,在特定情况下混合反应之后,需要对小区域内的晶粒生长与成核进行控制,然后将溶剂与晶粒进行分离,从而得到纳米碳酸钙的颗粒。
纳米碳酸钙分散
纳米碳酸钙分散
纳米碳酸钙分散液是一种将纳米级碳酸钙粒子均匀分散在溶剂或分散剂中的液体制剂。
纳米碳酸钙粒子具有很小的粒径,通常在1-100纳米范围内,具有较大的比表面积和高活性,能够提高纳米材料的可分散性和增加其应用的效果。
制备纳米碳酸钙分散液通常有以下几种方法:
1. 沉淀法:将适量的碳酸钙溶液与沉淀剂反应,生成纳米碳酸钙颗粒,然后通过超声或机械剪切等方法将颗粒分散均匀。
2. 超声法:将微米级的碳酸钙颗粒加入溶剂中,通过超声波的振动作用使颗粒逐渐破碎成纳米级粒子,并形成分散液。
3. 乳化剂法:在溶剂中添加乳化剂,将碳酸钙与乳化剂相互作用,形成稳定的纳米碳酸钙分散液。
纳米碳酸钙分散液可广泛用于颜料、塑料、橡胶、涂料、纺织品、陶瓷等领域,可以增强材料的机械性能、光透过性和阻燃性能。
此外,纳米碳酸钙还具有优异的亲水性和低价格,具有良好的应用潜力。
纳米碳酸钙的制备
6/21/2024
——
——
天津市分析仪器厂 WKB—1 P max=0.6MPa V max=0.8m3/h 武汉仪表元件厂 LZB—4 精度为±10L/h
上海伟业仪器厂 pHS—3C 精度为±0.01
上海雷磁仪器厂 DDS—11A 精度为±0.1uV/cm
力在20000t/a左右,实际需求量在80000—100000t,国
产纳米碳酸钙因产品晶形结构不同及是否活化处理,
价格各异,价位在2000—6000元/t。由于纳米碳酸钙附
加值高(为普通碳酸钙价格的10—20倍),且潜在市
场广阔,纳米碳酸钙已成为国内科研开发的热点,并
成为碳酸钙生产企业发展的目标 [5—9]。
纳米碳酸钙一般指特征维度尺寸在纳米数量级 (1—100nm)的碳酸钙颗粒[1],包括了轻质碳酸钙行 业中统称的超细碳酸钙(粒径0.02—0.1μm)和超微细 碳酸钙(粒径≤0.02μm),是一种新型高档功能性填 充材料。它具有纳米材料所特有的性能,如体积效应、 表面效应等。普通碳酸钙用作填料仅起到增容降价的作 用,而纳米碳酸钙不仅可以起到增容降价的作用,而且 用于塑料、橡胶和纸张中,还具有补强作用。因此,纳 米碳酸钙的研制、开发,受到国内外的关注[24]。
3、了解碳酸钙产品的有关性能参数。
6/21/2024
11
二、实验任务
1、 测定碳化过程中pH值和电导率随时间 的变化曲线;
2、 测定碳酸钙产品的性能参数。
6/21/2024
12
三、实验原理
其热C化a(学O方H)程2悬式浮可液以与表C示O2为气:体进行碳化反应式,
C ( O ) 2 ( a s ) H H 2 O ( l ) C 2 C O 3 ( s ) a 2 H 2 O ( C l ) 7 . 1 K O 1 / m 8
纳米碳酸钙的合成、表面改性以及应用
纳米碳酸钙的合成、表面改性以及应用一、本文概述纳米碳酸钙作为一种重要的无机纳米材料,因其独特的物理化学性质,在多个领域具有广泛的应用前景。
本文旨在全面介绍纳米碳酸钙的合成方法、表面改性技术以及其在不同领域的应用。
我们将概述纳米碳酸钙的基本性质,包括其结构、形貌和主要性能。
随后,我们将详细介绍纳米碳酸钙的各种合成方法,包括物理法、化学法以及生物法等,并分析各种方法的优缺点。
在此基础上,我们将深入探讨纳米碳酸钙的表面改性技术,包括表面包覆、表面接枝等,以提高其分散性、稳定性和功能性。
我们将概述纳米碳酸钙在橡胶、塑料、涂料、造纸、医药等领域的应用,展望其未来的发展趋势和应用前景。
本文旨在为读者提供关于纳米碳酸钙的综合性知识,为其在科研和工业应用中的进一步研究和开发提供参考。
二、纳米碳酸钙的合成方法干法合成主要是通过气-固相反应,将气态的二氧化碳与固态的氢氧化钙在高温下反应生成碳酸钙。
这种方法设备简单,操作方便,但产品纯度低,颗粒尺寸大,分布不均,且能耗高,环境污染严重。
湿法合成则是将气态的二氧化碳通入到含有钙离子的水溶液中,通过控制反应条件,如温度、压力、搅拌速度等,使二氧化碳与钙离子在水溶液中反应生成碳酸钙。
湿法合成的产品纯度高,颗粒尺寸小,分布均匀,且易于进行表面改性。
常用的湿法合成方法包括碳化法、沉淀法、乳液法等。
超重力法是一种新型的合成方法,它利用超重力场强化气液传质过程,使二氧化碳与钙离子在超重力环境下迅速反应生成碳酸钙。
这种方法具有反应速度快,产物纯度高,颗粒尺寸小且分布均匀等优点,是一种具有广阔应用前景的合成方法。
纳米碳酸钙的合成方法各有优缺点,需要根据具体的应用需求选择合适的合成方法。
随着科学技术的不断发展,新的合成方法也在不断涌现,为纳米碳酸钙的制备提供了更多的选择。
三、纳米碳酸钙的表面改性纳米碳酸钙作为一种重要的无机纳米材料,在多个领域具有广泛的应用前景。
然而,由于其高比表面积和强极性,纳米碳酸钙易于团聚,这限制了其性能和应用。
纳米碳酸钙的制备及粒径、形貌控制
纳米碳酸钙的制备及粒径、形貌控制
纳米碳酸钙的制备方法有很多,常见的有化学共沉淀法、溶胶凝胶法、水热法等。
其中,化学共沉淀法是一种简单易操作、成本较低的方法,也是应用最广泛的制备方法之一。
化学共沉淀法的制备步骤如下:
1. 将钙盐和碳酸盐的溶液混合,将pH值调节到8左右。
2. 加入一定量的表面活性剂,如CTAB、SDS等,使反应产物均匀分散。
3. 在搅拌的条件下,缓慢滴加含有碱性离子的溶液,如氢氧化钠溶液,使溶液pH值升高,从而促进反应。
4. 继续搅拌反应一定时间,然后离心、洗涤、干燥,得到纳米碳酸钙粉末。
通过控制反应条件,可以实现纳米碳酸钙的粒径、形貌控制。
主要的影响因素包括反应温度、pH值、反应时间、离子浓度、添加剂种类等。
例如,提高反应温度和pH值可以促进反应速度,但同时也容易导致晶体生长,从而增大颗粒大小;添加适量的表面活性剂可以提高反应产物的稳定性和均匀性,有利于得到较为均一的纳米颗粒。
除了化学共沉淀法,还可以采用其他方法来实现纳米碳酸钙的制备和粒径、形貌控制。
例如,溶胶凝胶法可通过不同的预处理和处理条件实现纳米颗粒的控制,水热法可以获得形貌较为复杂的纳米颗粒等。
纳米碳酸钙的生产工艺
纳米碳酸钙的生产工艺纳米碳酸钙是一种具有广泛应用前景的纳米材料,其生产工艺的优化对于提高产品质量和降低生产成本至关重要。
本文将介绍纳米碳酸钙的生产工艺,并探讨其中的关键步骤和技术。
一、原料准备纳米碳酸钙的制备首先需要准备适当的原料。
通常使用的原料是石灰石或大理石,这些矿石富含碳酸钙。
在原料准备阶段,矿石首先被破碎和磨细,以获得适合生产纳米碳酸钙的颗粒尺寸。
二、碱法制备碱法制备是生产纳米碳酸钙的主要方法之一。
该方法将石灰石与碱性溶液反应,生成碳酸钙沉淀。
具体步骤如下:1. 将石灰石与碱性溶液(如氢氧化钠溶液)混合,调节pH值到适当范围。
2. 在搅拌条件下,使溶液中的碳酸钙沉淀形成。
3. 通过过滤和洗涤,将碳酸钙沉淀分离出来。
4. 将分离得到的碳酸钙沉淀进行干燥,得到纳米碳酸钙产品。
三、超声波法制备超声波法制备纳米碳酸钙是一种新兴的制备方法,其通过超声波作用下的物理过程来产生纳米级的碳酸钙颗粒。
具体步骤如下:1. 将石灰石颗粒悬浮在溶液中,并加入表面活性剂以提高悬浮液的稳定性。
2. 使用超声波设备,对悬浮液进行超声波处理。
超声波的作用下,石灰石颗粒逐渐破碎,并形成纳米级的碳酸钙颗粒。
3. 对悬浮液进行离心分离,以分离出纳米碳酸钙颗粒。
4. 将分离得到的纳米碳酸钙颗粒进行干燥,得到最终产品。
四、气相沉积法制备气相沉积法是一种高温下制备纳米碳酸钙的方法。
该方法通过热分解碳源来产生纳米碳酸钙颗粒。
具体步骤如下:1. 将适量的碳源(如甲烷)和氧化钙(CaO)混合,形成反应气体。
2. 将反应气体引入高温反应炉中,通过热分解反应生成纳米碳酸钙颗粒。
3. 控制反应条件,如温度、气体流速等,以控制纳米碳酸钙颗粒的尺寸和形貌。
4. 将反应产物冷却,并进行收集和分离。
5. 对分离得到的纳米碳酸钙颗粒进行干燥和粒度分析,得到最终产品。
五、应用前景纳米碳酸钙具有广泛的应用前景。
在橡胶、塑料、涂料等材料中,纳米碳酸钙可以作为增强剂和填充剂,提高材料的力学性能和热稳定性。
超细纳米碳酸钙生产制备工艺方法及装置
超细纳米碳酸钙生产制备工艺方法及装置超细纳米碳酸钙(Ultrafine Nanometer Calcium Carbonate)是一种重要的无机功能材料,具有广泛的应用前景。
本文将介绍一种超细纳米碳酸钙的生产制备工艺方法及装置。
一、工艺方法超细纳米碳酸钙的制备方法主要包括化学合成法和物理法两种。
1. 化学合成法化学合成法是通过化学反应将溶液中的钙离子和碳酸根离子反应生成碳酸钙沉淀,再经过后处理过程得到超细纳米碳酸钙产品。
该方法具有反应速度快、操作简单、产量高等优点。
化学合成法的具体步骤如下:(1)将含有钙离子的溶液与含有碳酸根离子的溶液缓慢混合;(2)调节溶液的pH值,使之适合碳酸钙的形核和生长;(3)控制反应温度和时间,促进碳酸钙的沉淀和成长;(4)将沉淀物进行过滤、洗涤、干燥等后处理步骤。
2. 物理法物理法是通过机械研磨或超声波处理等物理力作用将粗颗粒的碳酸钙颗粒分散、破碎,最终得到超细纳米碳酸钙产品。
该方法具有工艺简单、设备投资少等优点。
物理法的具体步骤如下:(1)将粗颗粒的碳酸钙颗粒置于研磨机或超声波设备中;(2)通过机械作用或超声波作用,将碳酸钙颗粒逐渐破碎、分散;(3)控制研磨时间和超声波处理时间,使得颗粒尺寸逐渐减小;(4)对处理后的样品进行过滤、洗涤、干燥等后处理步骤。
二、装置介绍超细纳米碳酸钙的生产制备装置主要包括反应槽、控制系统、过滤系统、洗涤系统、干燥系统等组成部分。
1. 反应槽反应槽是实施化学合成法时的关键设备,用于混合含有钙离子和碳酸根离子的溶液,并通过调节pH值、温度等参数控制反应过程。
2. 控制系统控制系统用于监测和控制反应过程中的温度、pH值、搅拌速度等参数,保证反应条件的稳定性和一致性。
3. 过滤系统过滤系统用于从反应溶液中分离出碳酸钙沉淀,常用的过滤设备有压滤机、离心机等。
4. 洗涤系统洗涤系统用于对过滤后的碳酸钙沉淀进行洗涤,去除杂质和未反应的溶液。
5. 干燥系统干燥系统用于将洗涤后的碳酸钙沉淀进行干燥处理,得到最终的超细纳米碳酸钙产品。
微纳米碳酸钙的制备与分析
微纳米碳酸钙的制备与分析微纳米碳酸钙是一种新型的功能材料,其具有优异的分子屏障及催化活性,在药物载体、高分子材料、高效能工况、污染物处理等领域中具有广阔的应用前景。
本文介绍了微纳米碳酸钙的制备方法以及分析技术,并结合介绍其在各领域中的应用。
一、微纳米碳酸钙的制备微纳米碳酸钙的制备主要有两种方法,即水法法和乳液法。
1.水法制备水法制备的微纳米碳酸钙基于晶体形态材料的改性,主要利用化学改性的方法,产生的微纳米碳酸钙的粒径小、表面积大、吸附性能强,具有优良的功能性能。
主要步骤:(1)选择合适的质量比,用碳酸钙粉末缩成细屑;(2)将碳酸钙细屑加入适量的氯化钠溶液,并将其搅拌至完全溶解;(3)再将其加入含有氨基有机酸的溶液,并置于温度为60℃的水浴中调节pH值,使之成核;(4)将温度提高至90℃,调整反应时间至2h,使微碳酸钙经历继续反应;(5)将微碳酸钙加入水溶液并进行搅拌,使其粒径微小,并用离心来分离微碳酸钙;(6)将微碳酸钙粉末置于空气中进行干燥,完成水法制备。
2.乳液法制备乳液法制备的微纳米碳酸钙以乳液的形式产生,该法简便快速,碳酸钙微粒的粒径均匀,其形态可控,更容易表现出特性化的性能。
主要步骤:(1)制备乳液:准备固定比例的碳酸钙粉末、有机聚氧乙烯醚和水,充分搅拌,令其混合成乳状状液;(2)预处理乳液:将搅拌好的乳液通过高压泵经过高压处理,以获得粒径小的碳酸钙微粒;(3)离心回收:将乳液经过离心处理,以提高粒子的纯度;(4)干燥回收:将得到的微粒置于空气中进行干燥,即可得到所需的微碳酸钙。
二、微纳米碳酸钙的分析微纳米碳酸钙的粒径一般处于几十纳米到1微米之间,常见的分析技术有:电子显微镜(SEM)、扫描尺度X射线衍射(SXRD)、紫外可见(UV-Vis)、傅立叶变换红外光谱(FT-IR)、分子吸收分析(TGA)、激光粒度仪(LPS)等。
(1)电子显微镜(SEM)SEM是用电子代替光子,在表面分析粒度和形貌上实现1000倍以上的放大和高分辨率,能分析微纳米碳酸钙的形貌和图案,较好地确定微碳酸钙的表征尺寸。
纳米碳酸钙生产技术18
活性轻钙
干法活化 湿法活化
≥96
≥92
≥95
≤0.35
≤0.5
≤0.002
≤0.001
9.0~108ml/g
≤0.1
≤0.01
≤0.05
≤0.01
≤0.005
≤0.001
专用纳米碳酸钙
橡塑专用钙 树脂油墨专用钙
≥90
≥95
≥85
≤0.5 ≤0.005
≤1.5 细度≤15μm
3 纳米碳酸钙生产的工艺流程
纳米碳酸钙与普通轻钙和活性轻钙的工艺比较
❖ 从普通轻钙,到活性轻钙,再到活性纳米钙,其工艺流程的变化 规律总的来说是越来越复杂,主要区别在于:
❖ ⑴ 设备方面,纳米钙多了制冷设备、活化设备、沉降槽、解聚 分散机等。
❖ ⑵ 添加剂方面,纳米钙多了晶形导向剂、分散剂、活性剂。 ❖ ⑶ 对原料的要求不同,纳米钙要求生石灰品质高;工艺用水要
❖ 填充剂、添加剂、补强剂、改性剂及增白剂,以节约母料、增容 增量、降低成本、改善制品品质、增强制品功能,增加制品附加 值等。
按专门用途、不同晶形、粒径大小分类
专门用途 晶形分类
粒径分类
⑴
橡胶专用钙 无规则体 微粒钙 >5μm
⑵
塑料专用钙 纺锤体 微粉钙 1~5μm
⑶
涂料专用钙 立方体 微细钙0.1~1μm
❖ 俗称纳米级碳酸钙(简称NCC或NPCC)。
2、纳米碳酸钙的特性与分类
❖ 纳米碳酸钙——碳酸钙行业中的“后起之秀”,作为一种新型高 档无机功能性填料、目前唯一吨价位在万元以内的纳米材料、目 前唯一达到万吨级规模的纳米产业、应用最广泛的纳米产品,
❖ 在增韧性、补强性、透明性、触变性、流平性和消毒杀菌等应用 方面的性能,从而大大拓宽了纳米碳酸钙的应用领域,极大地改 善和提高了相关行业的产品性能和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米碳酸钙制备工艺分析
纳米碳酸钙又被称为超微细碳酸钙,其平均粒子直径大约为40nm。
工艺实验室制备超细碳酸钙通常采用碳化法、复分解法、微乳法三种途径,工业上则一般采用碳化法。
1、纳米碳酸钙的制备方法
(1)复分解法
复分解法是在一定条件下,将水溶性钙盐(如氯化钙,硫酸钙等)与水溶性碳酸盐(如碳酸铵,碳酸钠等),通过液相到固相的反应过程制得纳米碳酸钙。
实验室使用这种方法制取碳酸钙时,可以通过控制反应物浓度、反应温度、生成物的过饱和度以及加入适当的添加剂等操作方法,得到粒径小于0.1μm、比表面积大、具有较好溶解性的无定形碳酸钙产品。
这种方法制得的纳米碳酸钙纯度比较高,也有具有很好的白度,但在制取不同晶形的产品时需要很高的成本,所以目前国内外很少采用这种方法工业制取纳米碳酸钙。
(2)碳化法
①间歇鼓泡碳化法与复分解法不同,间歇鼓泡碳化法是目前国内外制备纳米碳酸钙广泛采用的方法。
其操作步骤是首先将1.04-1.06g/cm3的Ca(OH)2浆液降温到25℃以下,再将浆液打入到碳化塔中,注意保持一定的液位,然后从碳化塔的底部向塔内通入CO2或者CO2和空气的混合气体,控制合理的溶液浓度、反应温度、气液比以及添加剂等条件,可以间歇制得纳米级碳酸钙。
②连续喷雾法也是通过碳化法来制取纳米碳酸钙,步骤是将Ca(OH)2浆液通过压力式喷嘴从碳化塔的顶部向下呈雾状喷出,与此同时从塔的底部向上通入CO2或者CO2和空气的混合气体,使喷下的Ca(OH)2浆液与CO2充分接触,发生反应。
这
种方法明显增加了CO2气体和Ca(OH)2浆液的接触面积,反应过程可以通过控制石灰乳的浓度、液滴直径、流量、反应气液比等条件,在常温下制得直径在0.04-0.08μm的纳米碳酸钙。
通过连续喷雾法制得的CaCO3粒径分布窄,颗粒形状比较规则,而且容易分散,综合品质要优于间歇鼓泡法,但由于这种方法能耗较大,而且喷嘴容易发生堵塞,造成了高额生产成本,故难以普及。
(3)微乳法
微乳法是近年来刚刚发展起来的一种制备纳米微粒的方法。
这种方法的操作步骤是分别将可溶性碳酸盐和可溶性钙盐溶解到组成成分完全相同的两份微乳液中,在一定条件下进行混合反应。
这样可以在较小区域内控制晶粒的成核与生长,完成后再将晶粒与溶剂分离,就可以得到纳米碳酸钙微粒,其粒径几乎都控制在几纳米到几十纳米之间。
2、工业上制备纳米碳酸钙的工艺
(1)工艺流程
工艺流程将一定量的生石灰,按水灰比8:1的比例放入80℃的热水中进行消化,完成后就得到了氢氧化钙粗溶液,将其陈化24小时,用200目的筛网过筛,得到精制的氢氧化钙浆料。
将精制氢氧化钙浆料放入玻璃反应器,加入适量添加剂,设置合适的碳化温度,调整合适的搅拌速度,经转子流量计通入二氧化碳和氮气的混合气体或者纯净的二氧化碳气体,就开始了碳化反应。
当反应体系呈酸性,也就是pH值下降到7以下后,继续碳化15分钟,就得到了纳米碳酸钙溶液。
将所得浆料升温至80℃,加入一定量硬脂酸钠保温2小时,过滤、干燥、粉碎后即得纳米碳酸钙固体。