纳米碳酸钙生产工艺及合成专利技术分析
纳米碳酸钙的生产工艺
工业生产技术的不断革新,给许多新型的产品生产带来可能,其中一种纳米级的碳酸钙颗粒就可运用于多个行业中去。
目前主要采用的制作工艺可以分为炭化法、连续喷雾碳化法、超重力碳化法等。
我们来一一去进行了解。
制备纳米碳酸钙的方法有物理法和化学法。
物理法就是对天然石灰石、白垩石进行机械粉碎而得到。
但是粉碎的粒度是有限的,只有采用特殊的方法和机械才有可能达到0.1μm以下。
所以生产纳米碳酸钙主要采用化学法。
(一)碳化法这种制备方法是主要的一种生产方式。
将精选的石灰石煅烧,得到氧化钙和窑气。
使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入CO2气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。
按照碳化过程中CO2气体与氢氧化钙悬浮液接触方式的不同,可将碳化法分为间歇鼓泡碳化法、连续喷雾碳化法和超重力碳化法,以及在间歇鼓泡碳化法基础上改进的非冷冻法。
该法投资少,易于转化,为国内外大多数厂家所采用。
但是这种方法生产效率低、气液接触差、碳化时间长、粒径粗且不均匀。
(二)连续喷雾碳化法喷雾碳化法是将石灰乳用喷头喷成雾状,从塔顶喷下,将一定浓度的CO2以某一速度从塔底上升,与雾状石灰乳发生反应。
对于连续喷雾碳化,则重复进行以上过程,最后可获得粒径小于0.1μm的纳米碳酸钙。
该法生产纳米碳酸钙效率高,经济效益可观,并能实现连续自动大规模生产,另外,具有很高的科学性和技术性。
但设备投资较大。
(三)超重力碳化法利用旋转造成一种稳定的、比地球重力加速度高的多的超重力环境,极大地增加气液接触面积,强化气-液之间的传质过程,从而提高碳化速度。
同时,由于乳液在旋转床中得到高度分散,限制了晶粒的长大,即使不添加晶形控制剂,也可以制备出粒径为15~30nm的纳米碳酸钙。
纳米碳酸钙合成工艺及应用研究进展(二)
纳米碳酸钙合成工艺及应用讨论进展(二)1.6微乳液法目前,讨论者尝试各种不同的新方法来合成纳米粒子,重要有微乳液法、膜分散微结构反应器法、溶胶—凝胶法、原位沉积法等。
微乳液法属于Ca2+—R—CO32—反应系统,有机介质R一般为液体油。
通常,微乳液可分为W/O型、O/W型、油水双连续型3种,反相微乳液属于W/O型微乳液。
Niemann等通过在W/O型微乳液系统中制备纳米碳酸钙和硫酸钡试验,建立了微乳液法制备纳米粒子的理论模型,并提出了工艺条件放大的依据。
Sugih等也在微乳液中用石灰乳碳化制备纳米碳酸钙粒子,讨论了水与表面活性剂的摩尔比、连续相的不同、表面活性剂的浓度及搅拌速度等试验条件,得出:纳米粒子粒径随Ca—OT表面活性剂浓度的加添而下降;搅拌速度的加添会使粒径增大、分布变宽;高浓度的石灰乳更有利于碳化过程。
Hu等用亚麻油做表面活性剂,20℃下碳化合成了纳米碳酸钙,亚麻油的最佳用量为纳米碳酸钙产品质量的3%;产品的活化率能达到99.07%,按10︰100比例添加到PVC中,混合PVC材料的机械性能显著改善。
李珍等人讨论了微乳液法制备纳米碳酸钙,试验采纳吐温—80作为表面活性剂,并得出了最佳工艺条件。
赵睿应用反相微乳液法制备了多种形态纳米碳酸钙颗粒,大小均匀,分散性好,较少团聚,粒径从30~100nm不等。
微乳液法制备纳米碳酸钙装置简单,操作简单;制备的纳米粒子粒度分散性好,且粒度可调,有很好的应用前景。
但对于微乳液的形成机理、微结构掌控、体系组分对颗粒形成动力学、尺寸、形态及性质的影响,有待深入讨论。
该技术需要大量的油和表面活性剂,如何分别回收它们,以降低成本,目前还处于试验室讨论阶段,这也是该技术无法大规模商业化生产的一个紧要原因。
有报道,湖南大学利用纳米技术和材料,把握了采纳微乳液法生产纳米碳酸钙新工艺,填补国际技术空白。
目前此种方法正处在讨论之中,还需进一步讨论微乳液性质,寻求高效率、低成本、易回收的表面活性剂,建立适合工业化的生产体系。
纳米碳酸钙制备工艺分析
纳米碳酸钙制备工艺分析纳米碳酸钙(nano-CaCO3)是一种具有广泛应用前景的新型纳米材料,可用于陶瓷制品、橡胶制品、塑料制品和涂料等多个行业。
其制备工艺主要包括溶液法、加热碳化法和高压碳酸盐法。
本文将对这些制备工艺进行详细的分析。
首先是溶液法。
该方法通过将硝酸钙和碳酸钠等钙源溶解在水中,然后通过化学反应沉淀出纳米碳酸钙。
这种方法的优点是简单易行,可控性好,能够得到均一分散度较好的纳米碳酸钙颗粒。
然而,溶液法存在一些问题,如反应溶液的酸碱度、温度和搅拌速度等因素对纳米碳酸钙的形貌和颗粒大小具有较大影响,需要进行严密的实验条件控制。
其次是加热碳化法。
该方法通过将一定质量比的钙源与一定比例的碳源混合,在高温下加热反应,使其发生碳化反应生成纳米碳酸钙。
这种方法具有高效、高产出等优点,制备出的纳米碳酸钙具有较好的纯度和形貌。
然而,加热碳化法也存在一些问题,如反应条件的控制较为困难,高温容易引起固相和气相反应的竞争,而且产生的纳米碳酸钙颗粒分散性较差。
最后是高压碳酸盐法。
该方法通过将高压二氧化碳气体与钙氢氧化物反应,生成纳米碳酸钙。
这种方法具有操作简便、反应效果好等优点,制备出的纳米碳酸钙颗粒形状规整、分散性好。
然而,高压碳酸盐法也存在一些问题,如需要较高的压力和温度,设备要求较高。
总的来说,纳米碳酸钙制备工艺各有优缺点,选择合适的制备工艺需要考虑到具体应用的要求以及成本和技术条件的综合因素。
未来的研究方向可以是改进现有制备工艺,提高纳米碳酸钙的颗粒分散性和控制其形貌的技术,以满足不同应用领域对纳米碳酸钙的需求。
微纳米碳酸钙的制备与分析
微纳米碳酸钙的制备与分析微纳米碳酸钙是一种新型的功能材料,其具有优异的分子屏障及催化活性,在药物载体、高分子材料、高效能工况、污染物处理等领域中具有广阔的应用前景。
本文介绍了微纳米碳酸钙的制备方法以及分析技术,并结合介绍其在各领域中的应用。
一、微纳米碳酸钙的制备微纳米碳酸钙的制备主要有两种方法,即水法法和乳液法。
1.水法制备水法制备的微纳米碳酸钙基于晶体形态材料的改性,主要利用化学改性的方法,产生的微纳米碳酸钙的粒径小、表面积大、吸附性能强,具有优良的功能性能。
主要步骤:(1)选择合适的质量比,用碳酸钙粉末缩成细屑;(2)将碳酸钙细屑加入适量的氯化钠溶液,并将其搅拌至完全溶解;(3)再将其加入含有氨基有机酸的溶液,并置于温度为60℃的水浴中调节pH值,使之成核;(4)将温度提高至90℃,调整反应时间至2h,使微碳酸钙经历继续反应;(5)将微碳酸钙加入水溶液并进行搅拌,使其粒径微小,并用离心来分离微碳酸钙;(6)将微碳酸钙粉末置于空气中进行干燥,完成水法制备。
2.乳液法制备乳液法制备的微纳米碳酸钙以乳液的形式产生,该法简便快速,碳酸钙微粒的粒径均匀,其形态可控,更容易表现出特性化的性能。
主要步骤:(1)制备乳液:准备固定比例的碳酸钙粉末、有机聚氧乙烯醚和水,充分搅拌,令其混合成乳状状液;(2)预处理乳液:将搅拌好的乳液通过高压泵经过高压处理,以获得粒径小的碳酸钙微粒;(3)离心回收:将乳液经过离心处理,以提高粒子的纯度;(4)干燥回收:将得到的微粒置于空气中进行干燥,即可得到所需的微碳酸钙。
二、微纳米碳酸钙的分析微纳米碳酸钙的粒径一般处于几十纳米到1微米之间,常见的分析技术有:电子显微镜(SEM)、扫描尺度X射线衍射(SXRD)、紫外可见(UV-Vis)、傅立叶变换红外光谱(FT-IR)、分子吸收分析(TGA)、激光粒度仪(LPS)等。
(1)电子显微镜(SEM)SEM是用电子代替光子,在表面分析粒度和形貌上实现1000倍以上的放大和高分辨率,能分析微纳米碳酸钙的形貌和图案,较好地确定微碳酸钙的表征尺寸。
纳米碳酸钙的制备和应用技术
纳米碳酸钙的制备和应用技术纳米碳酸钙在众多领域的应用相当广泛,它具有很强的生物相容性和可降解性能。
因此,纳米碳酸钙的制备和应用技术成为了研究和开发的热门选项。
本文就从制备和应用两个角度,对纳米碳酸钙的相关技术展开探讨。
一、纳米碳酸钙的制备技术1. 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米碳酸钙制备方法,其优点是简便易操作、反应速度快、控制性好。
首先,将所需原料经过适当的处理(如溶解、乳化等)得到一种亚微米级别的胶体溶液。
随后在适当的条件下采用热、化学、光等方式对溶胶进行凝胶化处理,待凝胶化结束后,对凝胶进行干燥、烧结等处理即可得到所需产物。
2. 水相沉淀法水相沉淀法是一种比较常用的制备纳米碳酸钙的方法,其过程相对简单,且所需原料容易寻找。
该方法的具体实施过程为,将Ca2+和CO3 2-的水溶液混合,搅拌反应,沉淀产物后进行洗涤、干燥或烧结等处理得到所需产物。
3. 水热法水热法是制备纳米碳酸钙颗粒的经典方法之一,该方法适用于生成一定规模的均匀颗粒。
具体方法是在水中加入适量的氢氧化钙和碳酸氢钠,搅拌反应后直接通过调节反应温度和时间来控制所得产物的大小和形貌。
二、纳米碳酸钙的应用技术1. 生物医学领域纳米碳酸钙在生物医学领域中的应用主要是基于其良好的生物相容性和可降解性能而实现的,比如在骨骼修复、药物输送、医学成像等方面。
研究表明,纳米碳酸钙颗粒具有较低的毒性和对身体无害的特点,可以作为骨骼修复材料或药物携带平台,用于治疗骨质疏松症、癌症等疾病。
2. 环保领域纳米碳酸钙在环保领域中的应用主要涉及农业、水处理、环保建材等方面。
在农业方面,由于其具有优异的土壤改良能力,可以降低土壤酸化程度、改善土壤结构和肥力,从而提高农业产量。
在水处理方面,碳酸钙可以通过与重金属离子形成络合物,有效地降低水中重金属离子含量,净化水源。
在环保建材方面,纳米碳酸钙透明、耐候性强,可以应用于玻璃、涂料、纸张等产品的制造。
3. 食品工业纳米碳酸钙在食品工业中的应用主要体现在食品增稠剂、酸化剂等方面。
纳米碳酸钙生产工艺
纳米碳酸钙生产工艺纳米碳酸钙是一种具有极小颗粒大小的碳酸钙粉末,其平均粒径一般小于100纳米。
它具有较大的比表面积和更好的分散性,可广泛应用于塑料、橡胶、纸张、涂料、油漆等领域。
纳米碳酸钙的生产工艺主要包括物料准备、破碎、磨矿、分级、乳化和精细加工等几个关键步骤。
首先,物料准备是生产纳米碳酸钙的关键步骤之一。
主要原料为优质石灰石,经过破碎、干燥和筛选等处理,获得适合后续生产的颗粒物料。
接下来是破碎工艺。
用颚式破碎机将石灰石块破碎成合适的碎石。
然后,采用粉碎机将碎石再次细碎,获得符合工艺要求的石块颗粒。
然后进行磨矿处理。
将破碎后的石块送入磨机中进行研磨,使用球磨机进行湿磨磨矿。
通过湿磨磨矿可以更好地保持颗粒的形状,并且能够减少加工过程中对颗粒的损伤,提高纳米碳酸钙的质量。
分级是纳米碳酸钙生产过程中的重要步骤。
通过使用高效的离心分离器和微粉分离器对磨矿后的酸钙颗粒进行分级。
经过离心分离和除尘处理之后,可以获得粒径较小的纳米碳酸钙颗粒。
在乳化工艺中,将分级后的纳米碳酸钙颗粒通过乳化剂处理,使其进一步细化颗粒的大小和提高均匀度。
乳化工艺可通过高速剪切、离心力等作用对颗粒进行细化处理,使纳米碳酸钙的颗粒大小更加均一。
最后是精细加工。
经过前面步骤处理后的纳米碳酸钙颗粒已经基本达到了要求,但还需进行精细加工以进一步改善其品质。
此时可以通过流化床、真空滤波机等设备对纳米碳酸钙进行干燥处理,去除过多的水分,提高产品的稳定性和耐候性。
纳米碳酸钙生产工艺的关键就是控制各个步骤中的温度、浓度、时间等参数,确保原料的稳定性和产品的质量。
此外,为了保证产品的安全和环保性,应注意减少生产过程中的废水、废气和废渣的排放。
综上所述,纳米碳酸钙的生产工艺包括物料准备、破碎、磨矿、分级、乳化和精细加工等关键步骤。
通过合理控制各个工艺参数,可以获得颗粒大小均匀、质量稳定的纳米碳酸钙产品,满足不同应用领域的需求。
纳米碳酸钙制备工艺分析
纳米碳酸钙制备工艺分析纳米碳酸钙又被称为超微细碳酸钙,其平均粒子直径大约为40nm。
工艺试验室制备超细碳酸钙通常采用碳化法、复分解法、微乳法三种途径,工业上则一般采用碳化法。
1、纳米碳酸钙的制备方法(1)复分解法复分解法是在一定条件下,将水溶性钙盐(如氯化钙,硫酸钙等)与水溶性碳酸盐(如碳酸铵,碳酸钠等),通过液相到固相的反应过程制得纳米碳酸钙。
试验室使用这种方法制取碳酸钙时,可以通过掌握反应物浓度、反应温度、生成物的过饱和度以及加入适当的添加剂等操作方法,得到粒径小于0.1μm、比表面积大、具有较好溶解性的无定形碳酸钙产品。
这种方法制得的纳米碳酸钙纯度比较高,也有具有很好的白度,但在制取不同晶形的产品时需要很高的成本,所以目前国内外很少采用这种方法工业制取纳米碳酸钙。
(2)碳化法①间歇鼓泡碳化法与复分解法不同,间歇鼓泡碳化法是目前国内外制备纳米碳酸钙广泛采用的方法。
其操作步骤是首先将1.04-1.06g/cm3的Ca(OH)2浆液降温到25℃以下,再将浆液打入到碳化塔中,留意保持一定的液位,然后从碳化塔的底部向塔内通入CO2或者CO2和空气的混合气体,掌握合理的溶液浓度、反应温度、气液比以及添加剂等条件,可以间歇制得纳米级碳酸钙。
②连续喷雾法也是通过碳化法来制取纳米碳酸钙,步骤是将Ca(OH)2浆液通过压力式喷嘴从碳化塔的顶部向下呈雾状喷出,与此同时从塔的底部向上通入CO2或者CO2和空气的混合气体,使喷下的Ca(OH)2浆液与CO2充分接触,发生反应。
这种方法明显增加了CO2气体和Ca(OH)2浆液的接触面积,反应过程可以通过掌握石灰乳的浓度、液滴直径、流量、反应气液比等条件,在常温下制得直径在0.04-0.08μm的纳米碳酸钙。
通过连续喷雾法制得的CaCO3粒径分布窄,颗粒外形比较规则,而且简单分散,综合品质要优于间歇鼓泡法,但由于这种方法能耗较大,而且喷嘴简单发生堵塞,造成了高额生产成本,故难以普及。
纳米碳酸钙生产技术18
活性轻钙
干法活化 湿法活化
≥96
≥92
≥95
≤0.35
≤0.5
≤0.002
≤0.001
9.0~108ml/g
≤0.1
≤0.01
≤0.05
≤0.01
≤0.005
≤0.001
专用纳米碳酸钙
橡塑专用钙 树脂油墨专用钙
≥90
≥95
≥85
≤0.5 ≤0.005
≤1.5 细度≤15μm
3 纳米碳酸钙生产的工艺流程
纳米碳酸钙与普通轻钙和活性轻钙的工艺比较
❖ 从普通轻钙,到活性轻钙,再到活性纳米钙,其工艺流程的变化 规律总的来说是越来越复杂,主要区别在于:
❖ ⑴ 设备方面,纳米钙多了制冷设备、活化设备、沉降槽、解聚 分散机等。
❖ ⑵ 添加剂方面,纳米钙多了晶形导向剂、分散剂、活性剂。 ❖ ⑶ 对原料的要求不同,纳米钙要求生石灰品质高;工艺用水要
❖ 填充剂、添加剂、补强剂、改性剂及增白剂,以节约母料、增容 增量、降低成本、改善制品品质、增强制品功能,增加制品附加 值等。
按专门用途、不同晶形、粒径大小分类
专门用途 晶形分类
粒径分类
⑴
橡胶专用钙 无规则体 微粒钙 >5μm
⑵
塑料专用钙 纺锤体 微粉钙 1~5μm
⑶
涂料专用钙 立方体 微细钙0.1~1μm
❖ 俗称纳米级碳酸钙(简称NCC或NPCC)。
2、纳米碳酸钙的特性与分类
❖ 纳米碳酸钙——碳酸钙行业中的“后起之秀”,作为一种新型高 档无机功能性填料、目前唯一吨价位在万元以内的纳米材料、目 前唯一达到万吨级规模的纳米产业、应用最广泛的纳米产品,
❖ 在增韧性、补强性、透明性、触变性、流平性和消毒杀菌等应用 方面的性能,从而大大拓宽了纳米碳酸钙的应用领域,极大地改 善和提高了相关行业的产品性能和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米碳酸钙生产工艺及合成专利技术分析(纳米碳酸钙)是指尺寸在纳米数量级的碳酸钙,中国是于上世纪80时代初开始活性碳酸钙制备技术的讨论,80时代末实现工业化生产。
传统的碳酸钙生产,是将精制的石灰石原材料煅烧,得到氧化钙和窑气二氧化碳;消化氧化钙,并将生成的悬乳液氢氧化钙在高剪力作用下粉碎,多级悬液分别,除去颗粒和杂质,得到肯定浓度的精制氢氧化钙悬乳液。
通入二氧化碳气体,加入适当的添加剂掌控晶型,碳化至尽头,得到要求晶型的碳酸钙乳液。
进行脱水、干燥、表面处理,最后得到所要求的碳酸钙产品。
1生产工艺1.1.间歇搅拌式碳化法在湿法碳酸钙的生产中,大多采纳传统的间歇搅拌式碳化法。
生产活性碳酸钙是在生产轻质碳酸钙的基础上,更改碳化工艺(加入改性剂、结晶掌控剂)掌控晶型和粒径,沉淀(加沉淀剂)后经分别、干燥、粉碎、包装,制得不同晶型、颗粒均匀的活性碳酸钙。
间歇搅拌式碳化法工艺投资较少、操作简单,该法因气—液接触面积大,反应较均匀,产品粒径分布较窄等,已成为近几年活性碳酸钙生产的重要方法。
1.2连续喷雾碳化法喷雾碳化法一般采纳两段或三段连续碳化工艺,即石灰乳经第一碳化塔碳化得到反应混合液,然后喷入第二段碳化塔制得最后产品,或再喷入第三段碳化塔碳化得到最后产品。
由于碳化过程分段进行,因此可对晶体的成核和生长过程分段掌控,从而掌控晶体的粒径、晶型。
依据需要,掌控适合的喷雾液滴大小、氢氧化钙浓度、碳化塔内的气液比、反应温度、各段的碳化率等条件,即可制得不同晶型的碳酸钙产品。
1.3超重力碳化法超重力技术起源于1976年的太空试验。
在太空微重力状态下,化工分别单元操作无法完成,从而引发超重力技术的研发,并在1980年得到充分进展。
超重力技术产生的离心加速度不仅可以比重力加速度大2~3个数量级,而且可以调整。
利用离心力场不仅使化工单元操作在太空成为可能,而且可以大大提高化工单元操作效率。
将超重力技术应用于碳酸钙的生产使这一生产过程发生了革命性变化。
高速旋转的填料将氢氧化钙溶液剪切成细小的液滴、液丝和液膜,强大的离心力使碳酸钙微粒一旦形成就快速脱离氢氧化钙溶液,无法连续长大,同时氢氧化钙溶液和二氧化碳气体的接触面积大大加添并快速更新,使反应速度大大提高。
据了解,该技术建设投资大,运行能耗高,导致碳酸钙成本很高,技术使用方已基本放弃采纳该技术。
2现有技术及专利技术分析在国内,目前公知技术中纳米碳酸钙生产大多是以石灰石为重要原材料生产的,采纳碳化法将优选石灰石高温煅烧,得到氧化钙和二氧化碳,然后氧化钙和水反应,生成精制氢氧化钙悬浮液;然后通通入气体,陈化一段时间,抽滤、干燥、粉碎,得到碳酸钙产品。
碳酸钙的粒度和晶型是由碳化过程中决议,碳化法得到的样品质量好,成本低,是目前国内外生产纳米碳酸钙最常见的方法。
据了解,目前工业化的还有间歇式碳化法、超重力法、多级喷雾碳化法、非冷冻法和膜分散微结构反应器制备方法。
此外,也有文献提出,采纳电石渣为原材料,生产纳米碳酸钙,中国专利202310020830提出以电石渣为原材料,采纳化学沉淀法制备超细碳酸钙的方法,将干燥的电石渣经溶液溶解后除去残渣后加入硬脂酸钠,再通入二氧化碳,进行反应得到产品;专利202310229442提出种利用电石渣制备高纯超细碳酸钙的方法,将电石渣粉碎、过筛、微波辅佑襄助加热燃烧以进行预处理;与氯化铵溶液或硝酸铵溶液混合、进行浸取,接着过滤得滤液;加入水溶性离子液体,得混合溶液;将混合溶液与碳酸氢铵溶液混合,在微波辐射作用下搅拌,过滤得碳酸钙固体。
这两项专利均未授权。
贵州大学和遵义氯碱股份有限公司在2023年提出了电石渣制备不同晶形微细和超细碳酸钙的方法(ZL202310068715.5),分析其关键点是用HCl与电石渣反应,使电石渣中的Ca(OH)2以及电石渣被空气碳化后生成的CaCO3都转化为CaCl2,再与NaCO3反应制备超细纳米碳酸钙,据文献称,试验室数据显示产品中CaCO3含量99%,白度98%,平均晶粒尺寸45nm,电镜平均粒径约为80nm。
2023年,王嘉兴公开了用电石渣生产氢氧化钠联产碳酸钙的方法(ZL202310157796.3),其将电石渣经过酸化净化,将氢氧化钙沉淀用清水重新调和成乳浊液,与溶解好的纯碱反应,得到氢氧化钠和碳酸钙的混合液体;氢氧化钠和碳酸钙的混合液体经离心分别后得到氢氧化钠溶液和碳酸钙湿品,氢氧化钠溶液经减压蒸馏,得到质量浓度为45%氢氧化钠溶液;碳酸钙湿品经烘干,粉碎,得到碳酸钙产品。
与贵州大学不同的是,生产碳酸钙的同时产出了副产物氢氧化钠。
北京紫光英力化工也供给了一种新的方法(202310091430.8),据称粒径细度达10微米以下,白度98%以上,目前已完成中试,其方法是采纳甘氨酸作为溶解剂、改性剂和缚酸剂,从电石渣或石灰等钙源中提取有效钙,将甘氨酸钙滤液置于带超声发生装置的内环流反应器中,向反应器通入二氧化碳进行钙化,过滤,洗涤,制备得到超微细碳酸钙。
2023年3月,新疆天山水泥股份有限公司公开了一种超声法电石渣制备纳米碳酸钙的方法,将电石渣经过净化,加入分散剂、二氧化碳和空气,再经过超声波照射生成纳米碳酸钙,实现了粒径在30~200nm,产品纯度99.2%以上的制备方法。
两者都利用了超声法,其作用原理相同,因此,可以推断,天山水泥超声法将被驳回。
整体来看,该技术并未完全成熟,理论讨论也是基于传统方法进行的改进,超声法也仅仅是针对粒径分布问题进行的探讨,工业化水平尚待进一步验证。
2023年,中国中材国际工程与中材国际环境工程公司也有仿佛的讨论,公开了利用电石渣合成超细碳酸钙的方法,属于最新近公开的技术,将电石渣和水混合均匀,将氯化铵加入到电石渣的悬浊液中混合均匀,过滤除渣后得到澄清的氯化钙溶液,氯化钙溶液中加入硫酸盐、氯化物、柠檬酸盐、十二烷基苯磺酸钠、焦磷酸盐、油酸、柠檬酸铵、N—甲基吡咯烷酮、顺丁烯二酸中的一种进行晶形掌控,充分溶解后向该溶液中通入CO2进行碳化反应,直至反应溶液的pH值小于或等于7,得到超细碳酸钙浆液。
此外,该方法还做了延长,将超细碳酸钙浆液加入活化剂脂肪酸或水溶性偶联剂进行液相表面活化处理,脱水、洗涤、干燥后可获得活性碳酸钙微粉。
分析其加入活化剂脂肪酸或水溶性偶联剂的作用在于通过搅拌使脂肪酸和水溶性偶联剂与纳米碳酸钙充分接触,活化均匀,改善其分散性,加添纳米碳酸钙与有机介质的亲和性和相容性。
而搅拌釜碳化法是目前国内外广泛采纳的生产纳米碳酸钙的方法,该方法在整个碳化过程中严格掌控碳化温度在10~30℃,而碳酸钙生成过程为放热反应,因此需采纳巨大的强制冷却换热系统。
中国专利申请公开CN1330039公布了一种在较低温度下采纳机械搅拌混合的方式合成纳米碳酸钙的方法,该方法在肯定浓度的Ca(OH)2的悬浮液中通入二氧化碳气体进行碳化。
通过对Ca(OH)2悬浮液的温度、二氧化碳气体的流量掌控碳酸钙晶核的成核速率;在碳化至形成肯定的晶核数后,由晶核形成掌控转化为晶体生长掌控,此时加入晶形调整剂掌控各晶面的生长速率,从而达到形貌可控;连续碳化至尽头加入分散剂调整粒子表面电荷得均匀分散的立方形碳酸钙纳米颗粒;然后将均匀分散的立方形纳米碳酸钙颗粒进行液相表面包覆处理。
所获得的纳米活性碳酸钙粒子在25~100nm之间可控,立方形,比表面大于25m2/g,粒径分布GSD为1.57,吸油值小于28g/100g,且无团聚现象。
所获得的产品性能优异,可作为高档橡胶、塑料以及汽车底漆中的功能填料。
但是该方法生产的纳米碳酸钙具有憎水表面而不适合于用作造纸用填充剂或涂层纸张的颜料。
中国专利申请公开的103922377A公布了一种新型纳米碳酸钙的制备方法,制备步骤包括(1)取氧化钙进行煅烧,得到纯洁的氧化钙;(2)将煅烧后的纯洁氧化钙置于蒸馏水中进行溶解反应,制得氢氧化钙的悬浊液;(3)向上述悬浊液中加入表面活性剂,搅拌制成混合浆料,然后冷却到室温;(4)连续搅拌下,与所述混合浆料中连续通入CO2,直至pH值下降到6~9;(5)过滤,清洗,最后干燥即得所述新型纳米碳酸钙;采纳本创造的制备方法,制得球形纳米碳酸钙粒径分布集中在20~100nm,大小分布均匀,制备过程简单,成本较低;易于纳米碳酸钙的工业化的推广及生产。
中国专利CN100455515C公布了一种纳米级碳酸钙颗粒的制备方法,该方法通过加入晶核形成促进剂,通过对氢氧化钙悬浮液的浓度、温度、二氧化碳其流量等调整来掌控晶核数量、大小,来实现制备的经济节能性,得到颗粒大小及分布可控的立方形纳米级活性碳酸钙产品。
该创造的特点是在碳化过程中无须传统强制冷却换热系统,依据碳化反应放热渐渐提高悬浮液温度,加速碳化反应,缩短碳化反应时间。
国内该方面的专利技术重要集中在如何掌控颗粒粒度小、分布均匀、分散性能好等,从而得到更高经济价值的产品。
分析认为:无论实行哪种方式,以电石渣为原材料,生产纳米碳酸钙其关键在于电石渣的净化,由于电石渣中除重要成分Ca(OH)2以外,还含有焦炭、Si、Al、Fe、Mg及硫化物、磷化物及乙炔等杂质,杂质的存在会影响碳酸钙的白度、纯度等,其净化效果直接影响碳酸钙的品质。
现有技术基本都集中在酸处理,过滤、沉淀等手段,其效果并未得到工业化的证明。
3结论综上所述,目前,国内现有技术关于电石渣与二氧化碳制备纳米碳酸钙,基本都集中在理论和试验室讨论阶段,重点是以传统碳化制备方法为基础,从影响纳米碳酸钙粒径与晶型的多个因素入手,及原材料浓度、碳化温度、二氧化碳流速、搅拌速度等因素对纳米碳酸钙粒径、晶型等方面进行综合讨论,从而确定最优碳化工艺条件。