选修2-2 1.6 微积分基本定理练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2 1.6 微积分基本定理

一、选择题

1.下列积分正确的是( )

A.

1227

1

3

=⎰

x

dx

B.e e dx x e x

-=⎰

2

1

21 C.()

3

16122ln 0=+⎰dx e e x

x 222

=⎰-π

πxdx D.

[答案] A [解析]

122

3

27232

3

32

271

3

227

1

3

127

1

3

=-⨯===⎰

-

x dx x x

dx

2.

=⎪⎭⎫

⎛+⎰-dx x x 2

2421 A.21

4 B.54 C.33

8

D.218

[答案] A

[解析] ⎠⎛2-2⎝⎛⎭⎫x 2+1x 4d x =⎠⎛2-2x 2d x +⎠⎛2-21x 4d x =13x 3| 2-2+⎝⎛⎭⎫-13x -3| 2-2

=13(x 3-x -

3)| 2

-2 =13⎝⎛

⎭⎫8-18-13⎝⎛⎭

⎫-8+18=214.

故应选A. 3.

-1

1

|x |d x 等于( )

A.⎠⎛1-1x d x

B.⎠

⎛1-1d x

C.⎠

⎛0-1(-x )d x +⎠⎛0

1x d x

D.⎠

⎛0-1x d x +⎠⎛0

1(-x )d x

[答案] C

[解析] ∵|x |=⎩

⎪⎨⎪

x (x ≥0)-x (x <0)

∴⎠⎛1-1|x |d x =⎠

⎛0-1|x |d x +⎠⎛0

1|x |d x

=⎠

⎛0-1(-x )d x +⎠⎛0

1x d x ,故应选C.

4.设f (x )=⎩⎪⎨⎪⎧

x 2 (0≤x <1)

2-x (1≤x ≤2),则⎠

⎛0

2f (x )d x 等于( )

A.3

4 B.4

5 C.56

D .不存在

[答案] C

[解析] ⎠⎛0

2f (x )d x =⎠⎛0

1x 2d x +⎠

⎛1

2(2-x )d x

取F 1(x )=13x 3,F 2(x )=2x -1

2x 2, 则F ′1(x )=x 2,F ′

2(x )=2-x

∴⎠⎛0

2f (x )d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)

=13-0+2×2-12×22-⎝⎛⎭

⎫2×1-12×12=56.故应选C.

5.⎠⎛a

b f ′(3x )d x =( )

A .f (b )-f (a )

B .f (3b )-f (3a )

C.1

3[f (3b )-f (3a )] D .3[f (3b )-f (3a )]

[答案] C

[解析] ∵⎣⎡⎦⎤13f (3x )′=f ′(3x ) ∴取F (x )=1

3f (3x ),则

⎠⎛a

b f ′

(3x )d x =F (b )-F (a )=1

3[f (3b )-f (3a )].故应选C.

6.⎠⎛0

3|x 2-4|d x =( )

A.21

3 B.223 C.23

3 D.253

[答案] C

[解析] ⎠⎛0

3|x 2-4|d x =⎠⎛0

2(4-x 2)d x +⎠

⎛2

3(x 2-4)d x

=⎝⎛⎭⎫4x -13x 3| 2

0+⎝⎛⎭

⎫13x 3-4x | 32=233

. 7.

θθπ

d ⎰

⎪⎭

⎫ ⎝⎛-3

22sin 21 的值为 ( )

A .-3

2 B .-12 C.1

2

D.32

[答案] D

[解析] ∵1-2sin 2θ

2=cos θ

2

3

sin cos 2sin 213

30302=

==⎪⎭⎫ ⎝

-∴⎰⎰π

ππθθθθd d ,故应选D 8.函数F (x )=⎠⎛0

x cos t d t 的导数是( )

A .cos x

B .sin x

C .-cos x

D .-sin x

[答案] A

[解析] F (x )=⎠⎛0

x cos t d t =sin t | x

0=sin x -sin0=sin x . 所以F ′(x )=cos x ,故应选A. 9.若⎠⎛0

k (2x -3x 2)d x =0,则k =( )

A .0

B .1

C .0或1

D .以上都不对

[答案] C

[解析] ⎠

⎛0

k (2x -3x 2)d x =(x 2-x 3)| k

=k 2-k 3=0, ∴k =0或1.

10.函数F (x )=⎠⎛0

x t (t -4)d t 在[-1,5]上( )

A .有最大值0,无最小值

B .有最大值0和最小值-32

3 C .有最小值-32

3,无最大值 D .既无最大值也无最小值 [答案] B

[解析] F (x )=⎠

⎛0

x (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 2| x

0=13x 3-2x 2(-1≤x ≤5).

F ′(x )=x 2-4x ,由F ′(x )=0得x =0或x =4,列表如下:

x (-1,0) 0

(0,4) 4

(4,5) F ′(x ) +

0 -

0 +

F (x )

大值

小值

可见极大值F (0)=0,极小值F (4)=-32

3. 又F (-1)=-73,F (5)=-25

3 ∴最大值为0,最小值为-32

3.

二、填空题

11.计算定积分: ①⎠

⎛1-1x 2d x =________

②⎠⎛23⎝⎛⎭

⎫3x -2x 2d x =________

③⎠⎛0

2|x 2-1|d x =________

相关文档
最新文档