选修2-2 1.6 微积分基本定理练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-2 1.6 微积分基本定理
一、选择题
1.下列积分正确的是( )
A.
1227
1
3
=⎰
x
dx
B.e e dx x e x
-=⎰
2
1
21 C.()
3
16122ln 0=+⎰dx e e x
x 222
=⎰-π
πxdx D.
[答案] A [解析]
122
3
27232
3
32
271
3
227
1
3
127
1
3
=-⨯===⎰
⎰
-
x dx x x
dx
2.
=⎪⎭⎫
⎝
⎛+⎰-dx x x 2
2421 A.21
4 B.54 C.33
8
D.218
[答案] A
[解析] ⎠⎛2-2⎝⎛⎭⎫x 2+1x 4d x =⎠⎛2-2x 2d x +⎠⎛2-21x 4d x =13x 3| 2-2+⎝⎛⎭⎫-13x -3| 2-2
=13(x 3-x -
3)| 2
-2 =13⎝⎛
⎭⎫8-18-13⎝⎛⎭
⎫-8+18=214.
故应选A. 3.
⎰
-1
1
|x |d x 等于( )
A.⎠⎛1-1x d x
B.⎠
⎛1-1d x
C.⎠
⎛0-1(-x )d x +⎠⎛0
1x d x
D.⎠
⎛0-1x d x +⎠⎛0
1(-x )d x
[答案] C
[解析] ∵|x |=⎩
⎪⎨⎪
⎧
x (x ≥0)-x (x <0)
∴⎠⎛1-1|x |d x =⎠
⎛0-1|x |d x +⎠⎛0
1|x |d x
=⎠
⎛0-1(-x )d x +⎠⎛0
1x d x ,故应选C.
4.设f (x )=⎩⎪⎨⎪⎧
x 2 (0≤x <1)
2-x (1≤x ≤2),则⎠
⎛0
2f (x )d x 等于( )
A.3
4 B.4
5 C.56
D .不存在
[答案] C
[解析] ⎠⎛0
2f (x )d x =⎠⎛0
1x 2d x +⎠
⎛1
2(2-x )d x
取F 1(x )=13x 3,F 2(x )=2x -1
2x 2, 则F ′1(x )=x 2,F ′
2(x )=2-x
∴⎠⎛0
2f (x )d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)
=13-0+2×2-12×22-⎝⎛⎭
⎫2×1-12×12=56.故应选C.
5.⎠⎛a
b f ′(3x )d x =( )
A .f (b )-f (a )
B .f (3b )-f (3a )
C.1
3[f (3b )-f (3a )] D .3[f (3b )-f (3a )]
[答案] C
[解析] ∵⎣⎡⎦⎤13f (3x )′=f ′(3x ) ∴取F (x )=1
3f (3x ),则
⎠⎛a
b f ′
(3x )d x =F (b )-F (a )=1
3[f (3b )-f (3a )].故应选C.
6.⎠⎛0
3|x 2-4|d x =( )
A.21
3 B.223 C.23
3 D.253
[答案] C
[解析] ⎠⎛0
3|x 2-4|d x =⎠⎛0
2(4-x 2)d x +⎠
⎛2
3(x 2-4)d x
=⎝⎛⎭⎫4x -13x 3| 2
0+⎝⎛⎭
⎫13x 3-4x | 32=233
. 7.
θθπ
d ⎰
⎪⎭
⎫ ⎝⎛-3
22sin 21 的值为 ( )
A .-3
2 B .-12 C.1
2
D.32
[答案] D
[解析] ∵1-2sin 2θ
2=cos θ
2
3
sin cos 2sin 213
30302=
==⎪⎭⎫ ⎝
⎛
-∴⎰⎰π
ππθθθθd d ,故应选D 8.函数F (x )=⎠⎛0
x cos t d t 的导数是( )
A .cos x
B .sin x
C .-cos x
D .-sin x
[答案] A
[解析] F (x )=⎠⎛0
x cos t d t =sin t | x
0=sin x -sin0=sin x . 所以F ′(x )=cos x ,故应选A. 9.若⎠⎛0
k (2x -3x 2)d x =0,则k =( )
A .0
B .1
C .0或1
D .以上都不对
[答案] C
[解析] ⎠
⎛0
k (2x -3x 2)d x =(x 2-x 3)| k
=k 2-k 3=0, ∴k =0或1.
10.函数F (x )=⎠⎛0
x t (t -4)d t 在[-1,5]上( )
A .有最大值0,无最小值
B .有最大值0和最小值-32
3 C .有最小值-32
3,无最大值 D .既无最大值也无最小值 [答案] B
[解析] F (x )=⎠
⎛0
x (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 2| x
0=13x 3-2x 2(-1≤x ≤5).
F ′(x )=x 2-4x ,由F ′(x )=0得x =0或x =4,列表如下:
x (-1,0) 0
(0,4) 4
(4,5) F ′(x ) +
0 -
0 +
F (x )
极
大值
极
小值
可见极大值F (0)=0,极小值F (4)=-32
3. 又F (-1)=-73,F (5)=-25
3 ∴最大值为0,最小值为-32
3.
二、填空题
11.计算定积分: ①⎠
⎛1-1x 2d x =________
②⎠⎛23⎝⎛⎭
⎫3x -2x 2d x =________
③⎠⎛0
2|x 2-1|d x =________