辊轧机毕业设计
轧机毕业设计
轧机毕业设计轧机毕业设计一、设计背景:轧机是一种用于金属加工的机械设备,主要用于将金属材料压延成不同形状和尺寸的工件。
随着工业的发展,轧机在金属加工领域中扮演着非常重要的角色。
然而,传统的轧机在使用过程中存在一些问题,如能耗高、操作复杂、生产效率低等,需要进行改进和优化。
二、设计要求:1. 减少能耗:设计一种能够降低轧机能耗的新型机构。
2. 提高操作便捷性:设计一种简化操作流程、提高操作便捷性的轧机控制系统。
3. 提高生产效率:设计一种能够提高轧机生产效率的自动化生产线。
三、设计方案:1. 能耗降低方案:通过对传统轧机进行机械设计,改变传统的辊体传动结构,采用高效能的发电机组对轧机进行动力供给,降低能耗。
2. 操作便捷性方案:设计一种新型的轧机控制系统,采用触摸屏控制面板代替传统的按钮控制方式,实现人机交互,简化操作流程。
3. 提高生产效率方案:在传统轧机的基础上,增加自动化生产线中的送料装置、收卷装置和贯通装置等,实现轧机的自动化生产。
四、设计步骤:1. 进行需求分析:了解用户的需求,明确设计的目标。
2. 进行研究论证:调研现有的轧机设计和技术,评估其优缺点。
3. 进行机械设计:根据设计要求,设计新型的机械结构,考虑能耗降低和操作便捷性。
4. 进行电气设计:设计轧机控制系统,选用合适的控制器和传感器,实现自动化生产。
5. 进行实验验证:制作样机,进行实验验证,检验设计方案的可行性和有效性。
五、设计预期成果:1. 能耗降低预期效果:应用新型的机构和动力供给方式,实现能耗降低,减少生产成本。
2. 操作便捷性预期效果:采用触摸屏控制面板,实现轧机的智能控制,提高操作便捷性,降低操作难度。
3. 提高生产效率预期效果:引入自动化生产线,实现轧机的自动化生产,提高生产效率和产能。
六、设计难点和创新点:1. 难点:克服机械设计中的结构和动力传递的复杂性,并找到适合的动力供给方式,降低能耗。
2. 创新点:引入触摸屏控制面板,实现轧机的智能化控制;设计自动化生产线,提高生产效率。
毕业设计 轧辊的工艺计算
设计目录前言 (1)第一章轧辊的工艺计算1.1 轧辊的基本参数 (5)1.2 轧辊的材料、轧辊的硬度面 (5)1.3 轧辊的强度校核 (6)1.4 工作辊与支承辊的接触应力 (9)1.5 轧辊的变形计算 (10)1.6 工作辊与支承辊间的弹性变形 (11)1.7 轧辊轴承的选择 (12)1.8 轴承寿命的计算 (12)1.9 轧辊轴承润滑 (13)第二章压下螺丝与螺母的工艺参数2.1 压下螺丝的选择 (14)2.2 压下螺母的选择 (15)2.3 电机的选择 (17)第三章轧辊平衡系统的工艺参数3.1 支承辊平衡缸的选择 (18)3.2 工作辊平衡缸的选择 (19)第四章机架的工艺参数4.1 机架的主要结构参数 (20)4.2 机架的结构 (21)4.3 机架的强度计算 (24)第五章工作机座刚度计算5.1 轧辊系统的弹性变形 (25)5.2 轧辊轴承的弹性变形 (26)5.3 轴承座的弹性变形 (27)5.4 压下系统的弹性变形 (28)5.5 支承辊轴承座和压下螺丝间各零件的弹性变形 (30)5.6 压力调心板的接触变形 (31)5.7 机架的弹性变形 (32)第六章轧辊轧制力矩的计算 (33)第七章减速器 (34)第八章万向接轴的选择 (35)第九章电动机容量计算与校核9.1 主电机容量的计算 (36)9.2 主电机容量的校核…………………………….结束语 (39)参考文献 (40)前言随着汽车、制罐、无线电技术等部门的迅速发展,冷轧薄板的产量日益增加。
冷轧的生产成本比热轧的高10%,投资费用比热轧多20-25%,但冷轧钢板的性能和质量都比热轧的好,在同样的用途下,可以节约金属达30%,故冷轧薄板得到迅速发展。
美国使用的薄板几乎百分之百都是冷轧的,热轧薄板的焊管冷弯型钢的坯料都是冷轧的。
目前,国外绝大多数薄板是连续式生产,成卷供应。
冷轧薄板轧机有:连续式冷轧机,多辊式轧机(八辊,十二辊,二十辊等),四辊可逆冷式轧机,六辊冷轧机和特殊轧机。
机械毕业设计1323双辊驱动五辊冷轧机的设计正文
双辊驱动五辊冷轧机设计1绪论1.1选题的背景和目的冷轧钢板和带钢近年来得到较大的发展,七十年代国外带钢冷连轧机共196套。
末架出口速度可达25~4107米/秒,窄薄带厚度仅0.001毫米,为了提高产量,冷带卷已达60吨,一套冷轧机年产量可达350万吨。
自1979年开始出现了全连续冷轧机,这种轧机只要第一架引料后,可实现连续轧制。
全连续冷连轧机可以提高生产率30~50%,产品质量和成材率也得到很大提高。
随着工业生产的发展,对极薄带材要求增加特别是微电子工业对极薄带材要求更高。
而轧制薄带要求轧辊直径更小。
一般简单的关系d=100hmin。
轧制0.1毫米厚的带钢应为100毫米,有张力轧制可以稍大些。
对于中小企业为生产薄带将四辊轧机工作辊减少,支承辊直径加大,由于轧辊直径不匹配加大轧辊的磨损,为此,采用在二个工作中间加上小直径的工作辊,组成五辊轧机,轧制形成异步轧制。
这种轧机对四辊轧机改造尤其重要,只要将齿轮座改造就可以实现。
不少企业为生产薄带采用五辊冷轧机可采用双辊驱动工作辊或双辊驱动只承来实现。
也可以采用单辊驱动五辊轧机,这样改造成本更低。
总之,为生产薄带采用五辊轧机进行生产是很好的方法。
为提高水平刚度也可采用具有侧支系统的五辊轧机称为FFC轧机。
对冷连轧的最后一架也可以改造五辊轧机以便轧制更薄的带材。
选题就是在这种情况下进行的,其目的是利用四辊轧机改造成五辊轧机,生产薄带卷材。
以满足工业生产需要。
要采用12辊或20辊轧机生产投资大,成本高。
利用四辊轧机改造是一个有效的好方法。
为此,选择双驱动五辊轧机设计题目。
1.2冷轧板在国民经济发展中的作用随着国民经济的迅速发展,冷轧钢板的需求量越来越大。
板材生产在国民经济中的地位也越来越显著,板带材应用范围最广,工业先进的国家钢板产量占钢产量的50~60%,板带钢按产品厚度分为中厚板:厚度4~60毫米,长度可达25米,宽度4米。
薄板:厚度0.2~4毫米,宽度2050毫米,可切成定尺长度,也可以成卷供应。
Ф500轧钢机辊系设计
毕业设计报告设计内容及要求设计Φ500轧钢机辊系,包括传动方案制定、典型轧制道次轧制力及传动功率计算、传动件参数计算及结构设计。
本大组同学共同制定传动方案3种,每两个同学选择其中一种进行具体设计,分工进行参数计算及结构设计,各自完成总装图的绘制(2#图幅),可以手绘,可以计算机绘制,提交设计说明书1份(字数不少于5000字)设计参数已知:轧制断面150mm*150mm;轧前高度h=150mm,压下量Δh=10mm;轧制温度 t=1100℃;材质 45#钢;轧制速度:80rpm;压下最大行程:550mm进度要求第1—2天熟悉题目,提出设计基本方案第3—8天进行参数计算及基本结构设计第9—13天修正参数及绘图第14—15天提交设计成果及回答提问参考资料轧钢机械、机械设计手册、机械设计、材料力学等方面教材或参考文献其它计算机及绘图软件说明1.本表应在每次实施前一周由负责教师填写二份,院系审批后交院系办备案,一份由负责教师留用。
2.若填写内容较多可另纸附后。
3.一题多名学生共用的,在设计内容、参数、要求等方面应有所区别。
教研室主任:指导教师:陈祥伟2012年1月13日摘要 (4)1绪论 (5)1.1轧钢机的发展状况 (5)1.2轧钢机的分类 (5)1.3轧钢机的组成及结构 (5)2 传动方案的选定 (6)3 参数计算 (7)3.1轧制压力和轧制力矩 (7)3.1.1轧制平均单位压力 (8)3.1.2轧制传动力矩 (8)3.1.3电动机力矩计算 (9)3.1.4电动机的功率计算和电动机的选择 (10)3.2 轧辊 (10)3.2.1轧辊的结构 (10)3.2.2 轧辊的系列尺寸 (11)3.2.3接轴及其系列尺寸 (12)3.2.4 轧辊校核 (13)3.3 减速器 (15)3.3.1选择齿轮材料,精度等级及参数 (15)3.3.2 高速轴齿轮几何计算 (15)3.3.3 低速轴齿轮几何计算 (16)3.3.4减速器中各个轴的最小直径计算 (17)3.3.5减速器轴承的选择 (18)3.4联轴器的选择 (18)3.5 齿轮座人字齿轮设计计算 (20)3.5.1选齿轮材料、精度等级及参数 (20)3.5.2按齿根弯曲强度设计 (20)3.5.3强度校核 (20)3.5.4几何计算 (21)4安装要点及维护要点 (22)5 设计心得 (24)参考文献 (25)设计的为500轧机辊系,轧辊的直径为500mm。
辊轧机轧制系统设计及有限元分析毕业设计说明书
毕业设计题目: 4辊轧机轧制系统设计及有限元分析学院:专业:班级:学号:学生姓名:导师姓名:完成日期:目录摘要 (Ⅰ)Abstract (Ⅱ)第1章绪论 (1)1.1 引言 (1)1.2 研发背景及意义 (1)1.3 4辊轧机轧制系统基本设计思路 (2)1.3.1 4辊轧机的功能 (2)1.3.2 4辊轧机轧制系统结构的基本设计思路 (2)1.4 课题的研究内容 (3)第2章轧制系统结构设计 (4)2.1 引言 (4)2.2 轧辊环的设计计算 (4)2.2.1 轧辊环材料的选择 (4)2.2.2 轧辊环基本参数的确定 (4)2.3 电动机的选择 (6)2.3.1 选择电动机的类型及结构形式 (6)2.3.2 轧制压力的计算 (7)2.3.3 轧制总力矩的计算 (8)2.3.4 电机转速的确定 (11)2.3.5 电机功率的确定 (11)2.3.6 电动机型号的确定 (12)2.3.7 传动各级轴的基本参数确定 (12)2.4 轧辊轴的计算 (13)2.4.1 估算轴的最小直径 (13)2.4.2 确定轴的各段直径 (14)2.4.3 轴的校核 (15)2.5 轧辊轴上轴承的确定 (15)2.6 带传动的设计计算 (15)2.6.1 确定计算功率 (16)2.6.2 选择带型 (17)2.6.3 确定带轮的基准直径 (17)2.6.4 确定中心距和带的基准长度 (17)2.6.5 验算主动轮上的包角 (18)2.6.6 确定带的根数 (18)2.6.7 确定带的预紧力 (19)2.6.8 计算作用在带轮的压轴力 (19)2.6.9 带轮的材料 (19)2.6.10 带轮的结构形式及主要尺寸 (19)2.7 减速器的设计计算 (20)2.7.1 减速器类型的选择 (20)2.7.2 减速器基本参数 (21)2.7.3 标准斜齿圆柱齿轮的设计计算 (22)2.7.4 齿轮的轴的设计 (25)第3章三维建模 (29)3.1 引言 (29)3.2 基本零件建模 (29)3.3 轧制系统的装配 (31)3.3.1 轧辊轴的装配 (32)3.3.2 轧制部分装配 (33)3.3.3 轧制系统装配 (34)3.3.4 总装配 (36)第4章轧制系统有限元分析 (37)4.1 引言 (37)4.2 轧辊轴的有限元分析 (37)4.3 轧辊环的有限元分析 (39)4.4 龙门架的有限元分析 (40)4.5 轧辊缺陷的种类和原因 (42)结论 (43)参考文献 (44)致谢 (45)4辊轧机轧制系统设计及有限元分析摘要:本次设计的4辊轧机轧制系统是借助旋转轧辊与其接触摩擦的作用,将被轧制的金属体(轧件)拽入轧辊的缝隙间,在轧辊压力作用下,使轧件主要在厚度方向上完成塑性成型。
机械毕业设计(论文)高速线材轧机辊设计【全套图纸】
第一章绪论1.1线材及其生产的基本知识线材按其断面形状属型钢,实际上已成独立钢类。
直径5.5-20mm的热轧圆钢和10mm以下的螺纹钢,通称线材。
线材大多用卷材机卷成盘卷供应,故又称为盘条或盘圆。
目前盘条直径的规格已经扩大至36mm,甚至可达60mm。
但常见的线材产品直径为5~13mm。
全套图纸,加153893706线材一般用普通碳素钢和优质碳素钢制成。
按照钢材分配目录和用途不同,线材包括普通低碳钢热轧圆盘条、优质碳素钢盘条、碳素焊条盘条、调质螺纹盘条、制钢丝绳用盘条、琴钢丝用盘条以及不锈钢盘条等。
线材是用量很大的钢材品种之一。
轧制后可直接用于钢筋凝土的配筋和焊接结构件,也可经再加工使用。
例如,经拉拔成各种规格钢丝,再捻制成钢丝绳、编织成钢丝网和缠绕成型及热处理成弹簧;经热、冷锻打成铆钉和冷锻及滚压成螺栓、螺钉等;经切削成热处理制成机械零件或工具等。
高速线材是指用“高速无扭轧机”轧制的盘条。
轧制速度在80—160米/秒。
每跟重量在1.8—2.5吨,尺寸公差精度高(可达到0.02mm),在轧制过程中可调整工艺参数(特冷扎线上)来保证产品的不同要求。
高线和普线的质量标准都是相同的,只是生产线的不同造成包装外观的差异。
通俗点说就是一捆线材里面只有一个接头,一捆线材是整的,中间没有断开的。
普线的接头有多少个就不一定了,有时候一根就10~20米的样子,不好说有多重!也可以这样理解,普线就是高线的下脚料了,做高线余下的。
高线(高速线材)的特点(1)它的尺寸精度高,椭圆度小。
(2)它采用集散卷风冷却,它成分均匀,机械性能好。
(3)由于采用负公差轧制,它节约了金属,相同重量的高线要比普线长度更长。
(4)每件只有一个头和尾。
(5)高线要比普线一般要贵20~40元/t!1.1.1线材的生产由于线材自身细而长的特点致使其在生产过程中轧制出合乎尺寸精度要求的线材具有一定的难度。
其原因是线材比圆钢细而长,表面积大,温降非常快,在轧制到最后几道工序的时候能保持在热加工温度范围内的时间短,这就很容易造成由于温度急剧下降而超出了允许的温度下线,使整根线材成为废品。
辊轧机毕业设计
森吉米尔二十辊轧机摘要森吉米尔冷轧机与四辊轧机或其他类型轧机的本质区别是轧制力的传递方向不同。
森吉米尔冷轧机轧制力从工作辊通过中间辊传到支撑辊装置,并最终传到坚固的整体机架上。
这种设计保证了工作辊在整个长度方向的支撑。
这样辊系变形极小,可以在轧制的整个宽度方向获得非常精确的厚度偏差。
森吉米尔冷轧机基本上是单机架可逆式布置,灵活性大,产品范围广。
但是亦有极个别呈连续布置的森吉米尔轧机。
卷取机用于卷取带材,并可形成轧制张力。
由传动的直流电机通过减速机带动卷筒旋转。
张力是薄带和极薄带材轧制过程中最重要的参数之一,它对带材厚度均匀性、表面质量和物理一力学性能都有极大的影响。
卷筒采用四棱锥结构,实心的四棱锥轴在液压缸活塞杆推动下作轴向移动时,卷筒被胀开或收缩。
四棱锥的锥面倾斜角一般为7°~7°30″。
还有很多细节方面,都是森基米尔冷轧机冷轧钢板的工艺特点,下面我们就森基米尔冷轧机的结构性、机架、测厚仪、开卷机、板形控制等等,具体剖析。
关键词:森吉米尔冷轧机辊系卷筒张力目录摘要 (I)1.森吉米尔轧机的性能与工艺流程 (5)1.1森吉米尔结构性能的特点 (5)1.1.1森吉米尔结构性能的特点 (5)1.1.2森吉米尔轧机的具工艺流程体 (6)1.1.3目前森吉米尔轧机的发展水平 (6)2.机架 (7)2.1工作机座 (7)2.1.1工作机座 (7)2.2机架 (8)2.2.1 机架 (8)2.3轧辊 (9)2.3.1轧辊系统 (9)2.3.2轧机调整机构 (10)2.3.3 压下调整机构 (10)2.3.4轧制线标高调整机构 (11)2.3.5轴向辊形调整机构 (13)3.测厚仪 (16)3.1.1测厚仪 (16)3.1.2接触式测厚仪 (16)4.开卷机 (17)4.1开卷机 (17)4.2上料机构 (17)4.2.1上料机构 (17)4.2.2上料小车 (18)4.2.3固定上料装置 (18)4.2.4开卷箱 (18)4.2.5喂料机构 (18)5.板形控制 (19)5.1板形控制 (19)5.1.1板形控制 (19)5.2平直度 (20)5.2.1平直度 (20)6.轧机润滑 (21)6.1轧机润滑 (21)6.1.1冷却系统的作用 (21)6.1.2工艺润滑 (21)6.1.3背衬轴承润滑 (22)6.2冷却 (22)6.2.1冷却 (23)6.2.2冷却剂 (23)6.2.3工艺润滑一冷却剂的品种 (23)6.2.4工艺润滑一冷却系统 (24)7.总结7.1总结 (25)1森吉米尔轧机的性能与工艺流程1.1森吉米尔结构性能的特点1.1.1森吉米尔结构性能的特点(1)具有整体铸造(或锻造)的机架,刚度大,并且轧制力呈放射状作用在机架的各个断面上。
三辊轧机 毕业设计
三辊轧机毕业设计三辊轧机毕业设计引言:在现代工业生产中,轧机是一种非常重要的设备,广泛应用于金属加工、塑料加工、纺织品加工等行业。
其中,三辊轧机作为一种常见的轧机类型,具有结构简单、操作方便、加工效率高等优点,被广泛应用于不同领域。
本文将围绕三辊轧机的毕业设计展开讨论,从设计思路、关键技术、性能优化等方面进行探究。
设计思路:在进行三辊轧机的毕业设计时,首先需要明确设计目标和需求。
根据实际应用需求,可以确定轧机的工作尺寸、材料要求、加工能力等方面的参数。
在设计思路上,可以考虑采用传统的机械式设计,也可以结合现代技术,如计算机辅助设计(CAD)、计算机辅助制造(CAM)等,提高设计效率和精度。
关键技术:在三辊轧机的设计中,有几个关键技术需要重点考虑。
首先是轧辊的设计和制造。
轧辊是轧机的核心部件,直接影响到加工质量和效率。
因此,在设计中需要考虑轧辊的材料选择、表面硬度、精度要求等因素,以满足不同材料的加工需求。
其次是传动系统的设计。
传动系统需要确保轧辊的正常运转和传递足够的动力,因此在设计时需要考虑传动比、传动方式、传动装置的选型等因素。
另外,还需考虑安全保护装置的设计,以确保操作人员的安全。
性能优化:在三辊轧机的毕业设计中,性能优化是一个重要的方面。
通过对轧机的结构和工艺参数进行优化,可以提高加工效率、降低能耗、提高产品质量等。
例如,可以通过优化轧辊的形状和表面处理,减小材料的变形阻力,提高轧制效率。
同时,可以通过优化传动系统,减小能量损耗,提高传动效率。
此外,还可以考虑引入自动化控制系统,提高生产线的智能化水平,实现自动化生产和远程监控。
实施方案:在三辊轧机的毕业设计中,实施方案的选择和实施过程的规划是关键。
根据设计目标和需求,可以选择采用传统的设计方法,也可以引入现代技术手段。
在实施过程中,需要进行详细的设计计算和分析,确保设计方案的可行性和合理性。
同时,还需要进行实际的制造和试验验证,以验证设计方案的有效性和可靠性。
四辊冷轧机毕业设计
四辊冷轧机毕业设计四辊冷轧机毕业设计随着工业化进程的加快,金属材料的需求量也不断增加。
而冷轧是金属材料加工中重要的工艺之一,能够使金属材料获得更好的物理性能和表面质量。
因此,设计一台高效、精确的四辊冷轧机成为了毕业设计的主题。
一、冷轧机的作用和原理冷轧机是通过将金属材料经过多次轧制,使其在室温下获得所需的形状和尺寸。
冷轧机主要由四个辊子组成,其中两个辊子称为工作辊,另外两个辊子称为支承辊。
工作辊通过电机驱动,将金属材料夹在两个工作辊之间,通过辊子的旋转和压力的作用,使金属材料发生塑性变形,从而达到冷轧的目的。
二、冷轧机的设计要求1. 高效性:冷轧机需要具备高效的生产能力,能够在较短的时间内完成金属材料的冷轧加工。
因此,在设计过程中需要考虑辊子的转速、辊子之间的间隙以及辊子的直径等因素,以提高冷轧机的生产效率。
2. 精确性:冷轧机需要保证加工后的金属材料能够达到所需的形状和尺寸。
因此,在设计过程中需要考虑辊子的精度和控制系统的精确性,以确保冷轧机能够提供高质量的加工产品。
3. 安全性:冷轧机在运行过程中需要保证操作人员的安全。
因此,在设计过程中需要考虑辊子的保护装置、紧急停机按钮以及设备的稳定性等因素,以确保冷轧机的安全运行。
三、冷轧机的设计方案1. 辊子的选择:在设计冷轧机时,需要选择合适的辊子材料。
辊子材料需要具备高强度、高耐磨性和高热导性等特点,以确保冷轧机的长时间稳定运行。
2. 控制系统的设计:冷轧机的控制系统需要具备高精确性和稳定性,能够实现对辊子转速、辊子间隙和辊子压力等参数的精确控制。
同时,还需要考虑到设备的自动化程度和人机界面的友好性,以提高冷轧机的操作效率。
3. 安全保护装置的设计:冷轧机的安全保护装置需要包括辊子的防护罩、紧急停机按钮、辊子的自动检测装置等。
这些装置能够在冷轧机发生故障或异常情况时及时停机,保护操作人员的安全。
四、冷轧机的应用前景冷轧机在金属材料加工行业中具有广泛的应用前景。
轧机毕业设计
轧机毕业设计轧机毕业设计在机械工程领域中,轧机是一种重要的设备,用于将金属材料加工成所需的形状和尺寸。
轧机的设计和优化对于提高生产效率和产品质量至关重要。
在毕业设计中,我选择了轧机作为研究的主题,旨在通过对轧机的设计和改进来探索如何提高金属加工过程的效率和质量。
1. 背景介绍轧机是一种金属加工设备,广泛应用于钢铁、有色金属等行业。
它通过将金属材料通过一系列辊子的压制和变形,使其达到所需的形状和尺寸。
轧机的设计和操作对于产品质量和生产效率至关重要。
然而,当前市场上存在一些问题,如轧机的能耗较高、生产效率不高等。
2. 目标和意义本毕业设计的目标是设计一种能够提高轧机生产效率和降低能耗的新型轧机。
通过对现有轧机的分析和比较,找出其不足之处,并进行改进和优化。
这将有助于提高金属加工行业的竞争力,减少资源浪费,同时也对环境保护具有积极意义。
3. 设计原理轧机的设计原理是利用辊子的旋转和压力,对金属材料进行加工。
辊子的形状和尺寸对于加工效果有着重要影响。
在设计新型轧机时,需要考虑辊子的材料选择、形状设计、加工工艺等因素。
此外,还需要考虑辊子之间的间隙大小,以及辊子的运行速度等参数。
4. 改进方案在改进轧机的设计时,可以考虑以下几个方面:4.1. 辊子材料的选择:选择高硬度、高耐磨性的材料,以提高轧机的寿命和耐用性。
4.2. 辊子形状的优化:通过优化辊子的形状,可以改善金属材料的变形性能,提高产品的质量。
4.3. 辊子间隙的控制:合理控制辊子之间的间隙,可以实现更精确的加工效果。
4.4. 控制系统的改进:采用先进的控制系统,可以提高轧机的自动化程度,减少人为操作的误差。
5. 实验与仿真为了验证新型轧机的设计方案,可以进行实验和仿真。
通过在实验室中搭建轧机模型,并进行加工试验,可以评估轧机的性能和加工效果。
同时,还可以利用计算机仿真软件,对轧机的运行过程进行模拟,以验证设计方案的可行性。
6. 结果和展望通过对轧机的设计和改进,可以提高金属加工过程的效率和质量。
5000mm热轧宽厚板四辊可逆式轧机辊系设计--毕业设计
太原科技大学本科毕业设计说明书5000mm热轧宽厚板四辊可逆式轧机辊系设计Design of four roller reversible rolling mill of hot rollingheavy plate 5000mm学院(系):机械工程学院专业:机械设计制造及其自动化(冶机)学生姓名:学号:指导教师:指导教师:完成日期:2014年6月1日太原科技大学Taiyuan University of Science and Technology摘要随着经济社会的发展,特别是战争年代,大型战舰,大型战机的制造需要,对钢材的尺寸要求也越来越大。
这样就催生了人们对大型轧材的研究与探索。
大型宽厚板应运而生。
在航空母舰,大型水面战舰的制造上对,宽厚板,特别是5米宽厚板的需求是巨大的,由此如雨后春笋般出现的的5m宽厚板轧机的研究与投产更是越来越多。
一个宽厚板生产流水线,包括开坯粗轧机,精轧机,保温坑,冷却装置,切割机等等。
本设计主要只对轧机组进行设计,本设计主要介绍了5000mm热轧宽厚板四辊可逆轧机的轧制力,支承辊与工作辊尺寸,轴承寿命和弯辊装置计算。
本说明书按照设定的最大轧制力和产品规格参数设计计算了5000mm宽厚板轧机的轧辊的尺寸参数,轴承寿命和的基本参数以及校核,选择了轴承结构与类型,轧辊平衡装置也进行了相关设计计算。
其中轧辊尺寸确定是根据来料的规格尺寸确定的。
轧辊轴承的确定根据轧机在轧制过程中的受力状况,工作条件所确定的。
轧制力的计算采用了艾克伦德公式。
关键词:宽厚板;轧机设计;辊系设计;弯辊装置5000 hot-rolled heavy plate four reversing mill roll systemdesignAbstractWith the development of economy and society, especially in wartime, large warships , large aircraft manufacturing needs , the size requirements for steel is also growing . This gave birth to the people to study and exploration of large rolled . Large heavy plate came into being. On aircraft carriers, surface warships manufacturing right, heavy plate , especially 5 -meter-wide slab demand is huge, thus mushroomed 5m heavy plate mill of the research and production is increasing. A heavy plate production lines, including the breakdown roughing mill , finishing mill , heat pits, cooling devices , cutting machine and so on. The design of the main groups only mill design , the design introduces a heavy plate rolling force 5000mm hot rolling four-high reversing mill , the size of the backup roll and work roll , and roll bending device bearing life calculation . In accordance with the instructions set maximum rolling force and product specifications designed to calculate the dimensions 5000mm heavy plate rolling mill rolls , bearing life and the basic parameters and checking, select the bearing structure and the type of roll balancing devices have also been relevant design calculations. Determine which roll size is determined according to the size of the incoming specifications . Roller bearing is determined during rolling mill according to the stress condition , determined by the working conditions . Rolling force calculation using the formula Ike LundKey Words:Heavy plate mill design; roll system design; roll bending device目录摘要 (I)Abstract (II)1 文献综述....................................................................................................... - 1 -1.1 国内................................................................................................... - 1 -1.1.1 国内宽厚板产业先驱——鞍钢股份有限公司................... - 1 -1.2 国外................................................................................................... - 2 -2 轧辊设计....................................................................................................... - 6 -2.1 轧辊结构与尺寸............................................................................... - 6 -2.1.1 轧辊的结构........................................................................... - 6 -2.1.2 轧辊辊身尺寸....................................................................... - 6 -2.1.3 轧辊辊颈尺寸d和l的确定 ............................................... - 7 -2.2 轧辊力能参数计算........................................................................... - 8 -2.2.1 基本参数............................................................................... - 8 -2.3 轧辊材料选择................................................................................... - 9 -2.4 艾克伦德方法计算轧制时的平均单位压力................................. - 10 -2.4.1 变形阻力............................................................................. - 10 -2.4.2 变形速度............................................................................. - 10 -2.4.3 轧制压力............................................................................. - 11 -2.5 轧辊传动力矩................................................................................. - 12 -2.6 小结................................................................................................. - 13 -3 轧辊强度校核............................................................................................. - 14 -3.1 影响轧辊强度的因素..................................................................... - 14 -3.2 小结................................................................................................. - 17 -4 轧辊轴承..................................................................................................... - 18 -4.1 轴承的选择..................................................................................... - 18 -4.2 轴承寿命计算................................................................................. - 18 -4.3 小结................................................................................................. - 19 -5 轧辊弯辊装置............................................................................................. - 20 -5.1 液压弯辊装置................................................................................. - 21 - 参考文献......................................................................................................... - 22 - 致谢......................................................................................................... - 24 -1 文献综述有句话是这么说的:战争年代,工业的发展速度和创新水平都能得到很大的提高。
三辊轧机毕业设计
三辊轧机毕业设计三辊轧机毕业设计在现代工业生产中,金属材料的加工是一个非常重要的环节。
而三辊轧机作为一种常用的金属加工设备,被广泛应用于钢铁、有色金属等行业。
本文将围绕三辊轧机的毕业设计展开讨论,探讨如何设计一台高效、稳定的三辊轧机。
一、设计目标与需求分析在进行任何设计之前,首先需要明确设计目标和需求。
三辊轧机作为金属加工设备,其主要目标是实现高效、精准的金属材料加工。
因此,我们需要考虑以下几个方面的需求:1. 加工能力:三辊轧机的加工能力是评估其性能的重要指标。
我们需要确定所设计的三辊轧机能够满足加工不同类型、规格的金属材料的需求。
2. 稳定性:稳定性是保证加工质量的关键因素。
设计的三辊轧机需要具备良好的稳定性,确保在高速运转时不会出现过大的振动和摆动。
3. 自动化程度:随着工业自动化的发展,自动化程度成为了设计的重要考虑因素。
我们需要思考如何将三辊轧机的操作过程实现自动化,提高生产效率。
二、结构设计与优化在确定设计目标和需求后,我们需要进行结构设计与优化。
三辊轧机的结构设计需要考虑以下几个方面:1. 辊筒结构:辊筒是三辊轧机的核心组成部分,其结构设计需要考虑辊筒材料的选择、尺寸的确定以及表面处理等因素。
通过优化辊筒结构,可以提高加工效率和加工质量。
2. 传动系统:传动系统是三辊轧机的重要组成部分,其设计需要考虑传动效率、传动精度和传动稳定性。
我们可以采用先进的传动技术,如伺服电机和变频器,来提高传动系统的性能。
3. 控制系统:控制系统是实现自动化程度的关键。
设计的三辊轧机需要配备先进的控制系统,能够实现自动调节辊间距、控制辊筒转速等功能,提高生产效率和加工质量。
三、安全性与维护性考虑在设计三辊轧机时,安全性和维护性同样需要考虑。
我们需要采取一系列措施来确保操作人员的安全,并简化设备的维护工作:1. 安全防护装置:设计的三辊轧机需要配备完善的安全防护装置,如安全门、急停按钮等,以保护操作人员的安全。
2050四辊轧机传动装置毕业设计论文
2050四辊轧机传动装置毕业设计论文2050四棍轧机(F5)设计摘要目前,随着国民经济高速的发展,钢铁企业也迅猛发展。
带钢的应用变得更加广泛,例如:厂房设备、机械设备、桥梁、高速公路等。
为了适应新形式的发展需要,我国自行设计制造了2050热带钢连轧机,产品质量达到国际先进水平。
它是2050四棍热连轧机的第五架轧机,本文通过对F5精轧机的设计计算,了解了机械设计的一般设计方法,通过对局部结构进行改造,使结构更合理。
本设计的设计内容是根据轧件要求,确定轧制力,轧制力矩,并对电机、主传动装置等进行了合理的选择和校核。
选取主要部件如轧辊,机架,齿轮座等结构尺寸并校核,另外还对轧机系统的环保和经济技术进行了合理的分析。
关键词:机架;轧制力;轧辊;环保;校核。
The Design of the 2050 Four Roller Mill (F5) AbstractAt present,along with national economy high speed development, iron and steel enterprise also swift and violent development. The belt-shaped steel becomes more widespread, for example: Workshop equipment ,mechanical device ,bridge highway and so on . For the new situation development need .quality of the products of the 2050 hot strip tandem mill .Which is designed and manufactured by our own country,The F5 finishing mill is the fifth frame of the four-high hot tandem mill.Here, by designing and calculating to the F5 finishing mill, I find out the general design procedures of mechanism designs .By improving on the part structure and carrying the optimize design .The contents of my design are to ascertain the rolling force and rolling torque ,And to the electrical machinery ,the main drive and so on has carried on the reasonable select and the examination ,The next step is to selectthe structure dimensions of the critical pieced which contain the mill rolls ,Moreover also has carried on the reasonable analysis to the rolling mill system environmental protection and the economical technology .Key words: framework ,rolling force ,mill rolls ,environmental protection ,check目录2050四棍轧机(F5)设计 (1)Abstract (2)1 绪论 (1)1.1选题背景 (1)1.2轧钢生产工艺 (2)1.3热轧的优点 (2)1.4热轧的缺点 (2)1.5传统热轧带钢生产的新技术和新设备 (3)1.6课题研究方法及内容 (3)2 总体方案设计 (4)3 主电机容量的选择 (5)3.1轧制力的计算 (5)3.1.1基本数据的确定 (5)3.1.2 轧制力计算 (6)3.2 轧制力矩的计算 (8)3.3 选择主电机 (10)3.3.1 电机初选 (10)3.3.2 计算机轴上的力矩 (11)3.3.3 电机容量校核 (12)4 减速机设计 (13)4.1 计算各轴的动力参数 (13)4.2 齿轮的设计 (14)4.3 输出轴的设计计算 (17)4.3.1 初步确定轴的最小直径: (17)4.3.2 传动轴受力分析: (18)4.3.3 求支座反力和传动轴应力集中点处得弯矩值: (19)4.3.4 校核轴的强度 (19)5 压下装置的选择 (21)6 轧辊的强度计算 (22)6.1 工作辊强度计算 (22)6.2 支承辊强度计算 (22)6.3 轧辊的变形计算 (25)7 机架的设计计算 (26)7.1 结构尺寸 (26)7.2 强度计算 (27)7.2.1 惯性矩的计算 (27)7.2.2 截面系数的计算 (27)7.2.3 强度计算 (28)7.3 机架的变形计算 (29)8 齿轮座倾翻力矩及轧辊轴承的计算 (31)8.1 齿轮座倾翻力矩的计算 (31)8.2 轧辊轴承的计算 (31)9 轧机润滑方式的选择 (34)10 设备的经济效益和环保分析 (35)10.1 设备投资的经济分析 (35)10.2 设备的环境保护设施 (35)结束语 (36)致谢 (37)参考文献 (38)1 绪论1.1选题背景轧钢机也称为轧钢机械,一般把将被加工的材料在旋转的轧辊间受压力产生的塑性变形即轧制加工机器称为轧钢机,这是简单定义。
毕业设计(论文)-四辊冷轧机压下系统设计[管理资料]
四辊冷轧机压下系统设计摘要轧辊调整装置的作用主要是调整轧辊在机架中的相对位置,以保证要求的压下量、精确的轧件尺寸和正常的轧制条件。
压下装置也称上辊调整装置,它是用途最广的一种轧辊调整装置,安装在所有的二辊、三辊、四辊和多辊轧机上,就驱动方式而言,压下装置可分为手动的、电动的、和液压三类。
本论文介绍了轧机的发展历史和未来,介绍并分析了轧机的几种压下形式,列举了其各自的优缺点以及各种压下形式的工作原理。
首先通过实习和所查资料确定设计方案并进行方案评述,根据实际情况选择了电动压下方式。
其次根据所给定的基本参数计算轧制力以及选择电动机容量,设计压下螺丝和压下螺母并进行强度和刚度校核;选择轴承并进行寿命校核,设计蜗杆传动和减速器中的齿轮传动,并进行环保性和经济性分析等。
关键词: 冷轧机;电动压下;压下螺丝;蜗杆传动;齿轮Design on Pressure System of Four-roller coldrolling millAbstractThe role of roller adjustment device to adjust roll mainly the relative position in the rack to ensure that the requirements reduction, precise size and normal rolling Rolling. Reduction device, also known as the roller adjustment device, which is the most widely used as a roller adjustment device, installed in all of the two rollers, three rollers, four rollers and multi-roll rolling mill, the drive mode, the pressure device divided manually, electric, and hydraulic three. This paper describes the history and future of the mill, rolling mill introduced and analyzed several pressure form, listed with their respective advantages and disadvantages, and various forms of pressure works. First of all, to find information through the established practice and the design and conduct programs reviewed, according to the actual way to choose a power reduction. Second, according to the calculation of basic parameters of a given choice of rolling force and motor capacity, design pressure once again screws and screw down nuts and check the strength and rigidity; choice for life bearings and check the design of the worm drive and gear box transmission, and for environmental protection and economic analysis.Key words:cold rolling mill; electric pressure; pressure nut; worm; Gear目录1 绪论 (1)选题背景 (1)国内外研究成果 (1)课题研究的内容 (3)2总体方案设计 (4)3 压下电机的选择 (6)轧制力的计算 (6)第一道次的轧制力计算 (6)第二道次的轧制力计算 (7)第三道次的轧制力计算 (9)第四道次的轧制力计算 (10)第五道次的轧制力计算 (12)压下螺旋传动设计 (14)材料选择 (14)压下螺丝和螺母主要尺寸的确定 (14)驱动压下螺丝的力矩 (15)压下螺丝的强度计算 (16)螺母的强度计算 (17)压下电机的容量选择 (18)速比分配 (19)4. 圆柱齿轮的设计 (20)选定齿轮相关参数及工作情况 (20)按齿面接触强度设计 (20)按齿根弯曲强度设计 (22)几何尺寸计算 (23)5 蜗杆传动的设计 (25)选择蜗杆传动类型 (25)选择材料 (25)按齿面接触疲劳强度进行设计 (25)蜗杆与蜗轮的主要参数与几何尺寸 (26)齿根弯曲疲劳强度校核 (27)受力分析 (28) (28)6.设备可靠性与经济评价 (32)结论 (33)致谢 (34)参考文献 (35)1 绪论选题背景钢产量是一个国家经济实力的体现,为了生产更多的钢材就要有更先进的炼钢轧钢技术,现代轧机发展的趋向是连续化、自动化、专业化和大型化,产品质量高,消耗低。
平辊轧机设计大学毕设论文
辽宁科技大学本科生毕业设计(论文)第Ⅰ页Φ380H平辊轧机设计摘要Φ380H平辊轧机是轧制生产线上的主要设备之一,其主要由传动系统与压下系统两部分构成,其作用主要是用来轧制不同规格的钢坯。
本文通过对Φ380H平辊轧机的设计,将所学理论知识与实践相结合,培养了我们独立思考能力和分析问题、解决问题的能力,并提高了对创新意识的培养。
设计的主要内容包括Φ380H平辊轧机设计方案的确定与论证,使设计方案能够达到使用要求,并且合理可行,然后进行轧制力能参数的计算,并根据算出的结果来选择电动机并进行校核、计算,同时对其中的主要零部件,如轧辊、机架、连接轴、传动轴、压下螺丝等进行强度计算,并对压下螺丝的自锁、牙强度、和耐磨性的校核,保证了使用的安全性与可靠性,最后对润滑方式进行了简单分析。
关键词:轧机;轧辊;机架;轧制力The Design Of Φ380H MillAbstractThe level of Φ380H mill is one of the main equipments in a rolling mill production line.The main pressure system from the drive system with two components, its role is primarily used for rolling billets of different specifications. In this paper, the level of Φ380H mill design theory will be the combination of knowledge and practice to cultivate our capacity for independent thinking and analysis of issues, problem-solving skills, and increased awareness of the culture of innovation. The key elements of the design level of Φ380H mill design and feasibility studies to determine, so that the use of design to meet requirements and is reasonably practicable, and then rolling force can be calculated parameters,And in accordance with the results calculated to select the motor and check the calculation, while the main components, such as roller, rack, connecting shaft, transmission shaft, screws and so on down to the strength calculation of pressure from the screw lock, tooth strength and wear resistance of the check to ensure that the use of the safety and reliability, the last of the Lubrication Analysis of a simple manner.Keywords: rolling mill; roll; rack; rolling force目录摘要 (Ⅰ)Abstract (Ⅱ)1 绪论 (1)1.1 选题背景和目的 (1)1.2 课题的研究方法和内容 (1)1.3 国内外线材轧机的发展概况和新技术 (2)1.3.1 线材轧机的发展历史 (2)1.3.2 国外线材轧机的发展 (2)1.3.3 国内线材轧机的发展 (3)1.3.4 国内外先进技术 (3)2 方案设计 (5)2.1 线材轧机的轧制力能参数设计 (5)2.1.1 孔型系统的选择 (5)2.1.2 轧制总压力和轧制力矩的设计 (5)2.2 主电机的选择 (5)2.3 轧机机架的设计 (5)2.4 轧辊系统设计 (6)2.4.1 轧辊的设计 (6)2.4.2 轧辊轴承的设计 (6)2.4.3 轧机轧辊调整机构的设计 (6)2.5 轧机主传动装置设计 (6)2.6 系统的润滑 (7)3 孔型设计 (8)3.1 孔型系统的选择 (8)3.1.1 椭圆—圆孔型系统的变形系数 (8)3.1.2 椭圆—圆孔型系统的孔型构成 (8)3.2 孔型尺寸的计算 (10)4 轧辊轧制总压力与轧辊驱动力矩 (12)4.1 轧制力的计算 (12)4.1.1 平均单位压力的计算 (12)4.1.2 接触面水平投影面积的计算 (13)4.2 轧辊驱动力矩的计算 (14)5 轧机主电动机力矩及电动力功率 (16)5.1 主电动机力矩 (16)5.2 电机容量的选择 (16)5.3 附加摩擦力矩 (17)5.4 空转力矩 (17)5.5 电动机的校核 (18)6 机架的设计 (19)6.1 机架的选择及结构参数 (19)6.2 机架强度的计算及校核 (19)6.3 机架的变形计算 (24)7 轧辊与轧辊轴承设计 (26)7.1 轧辊的设计 (26)7.1.1 轧辊参数的选择 (26)7.1.2 轧辊的强度校核 (26)7.2 轧辊轴承的校核 (29)7.2.1 轧辊轴承的选择 (29)7.2.2 轴承寿命计算 (30)8 压下装置 (32)8.1 压下螺丝螺纹尺寸的确定 (32)9 主传动装置设计 (33)9.1 联轴器的选择及计算 (33)9.2 联接轴的选择及计算 (33)9.3 减速机的设计 (34)9.3.1 计算各轴的动力参数 (34)9.3.2 齿轮设计 (35)10 润滑方式的选择 (43)10.1 润滑方式的类型 (43)结束语 (45)致谢 (46)参考文献 (47)1 绪论1.1选题背景和目的线材用途十分广泛,除直接用作建筑钢筋外,还可加工成各类专用钢丝,如弹簧用钢丝、焊丝、镀锌丝、通讯线、钢帘线、钢绞线等;还可加工成其他金属制品,如铆钉、螺钉、铁钉等。
1780立辊轧机侧压系统设计
辽宁科技大学本科生毕业设计第I页
1780立辊轧机侧压系统设计
摘要
现代带钢热轧过程中,立辊轧机一般被布置在粗轧机前,它的主要作用是破鳞和调宽。
为了满足不同的使用要求,穿过轧辊间的钢板的宽度是不同的,而轧辊间隙的调整就是通过立辊轧机的侧压系统来实现的。
本设计的主要内容就是通过大学里所学的知识对立辊轧机的侧压系统进行综合的分析、研究、设计和完善,其作用不仅是各种知识的结合运用,也是对我四年的学习成果和能力的一次检验。
本设计第一章描述了立辊轧机的用途和特点,以及国内外的发展状况;第二章确定了总体设计方案,主要讨论了轧辊系统,万向接轴,侧压系统的结构和特点;第三章是结构参数的确定,通过压下量来确定轧辊的辊径和辊身长度;第四章主要是通过侧压系统的力矩计算来选择电机;第五章对主要零部件进行校核,设计,包括蜗杆蜗轮,侧压螺丝螺母;第六章是对润滑系统讨论;第七章是对经济效益的分析。
最后是对设计成果的总结及对设计指导老师和同学的感谢。
334199028
关键词:立辊轧机;侧压系统;侧压螺丝;侧压螺母。
四辊可逆轧机的主传动系统 毕业设计
第一章绪论1.1、选题背景及目的大学生活即将结束,为了检验我们的所学是否能够真正应用到实际当中,使我们认识到作为一个合格的设计人员应该具备的基本素质,学校为我们安排了这次毕业设计。
用半年时间完成一个设计方案。
设计开始,我们先到了鞍山钢铁集团公司的冷轧厂,然后到了上海宝刚股份有限公司的特刚分公司和热轧厂,在那里我看到了2050四辊可逆轧机,并在师傅的带领下参观了2050和1580两条国内先进的生产线,对整个轧钢设备有个初步了解。
热轧厂的师傅细心的讲解了轧机的工作原理。
轧机是现代钢厂中最常见的一种冶金设备。
因此,轧机设备的好坏对轧钢厂的效益有很大的影响。
我们的任务是通过所学的理论知识设计一台四辊可逆轧机的主传动系统。
因为实际条件有限,我们的设计只是经过相关理论与经验公式的推导来设计我们所选的冶金设备,经过理论校核检验是否达到设计要求。
1.2、轧钢生产在国民经济中的主要地位与作用轧钢生产是将钢锭及连续铸坯轧制成材的生产环节。
用轧制的方法生产钢材,具有生产率高、品种多、生产过程连续性强、易于实现自动化等优点。
钢材的生产方法有轧制、锻造、挤压、拉拔等。
用轧制方法得到的钢材,具有生产过程连续性、生产效率高、品种多、质量好、易与机械化、自动化等优点,因此得到广泛的应用。
目前,约有90﹪的钢都是经过轧制成材的。
有色金属成材,主要也用轧制的方法。
轧钢生产在国民经济中所起的作用是十分显著的。
钢铁工业生产中,除少量的钢用铸造或铸造方法制成零件外,炼钢厂生产的钢锭与连铸坯有85~90%以上要经过轧钢车间轧成各种钢材,供应国民经济各部门。
可见在现代钢铁企业中,作为使钢成材的轧钢生产,在整个国民经济中占据着异常重要的地位,对促进我国经济快速发展起十分重要的作用。
1.3、国内外轧钢机械的发展状况十九世纪中叶轧钢机械只是轧制一些熟铁条的小型轧机,设备简陋,产量不高;有的轧机是用原始的水轮来驱动。
大上个世纪五十年代以后,钢的产量大增;各先进工业国的铁路建设与远洋航运的发展,蒸汽驱动的中型、大型轧机先后出现了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
森吉米尔二十辊轧机摘要森吉米尔冷轧机与四辊轧机或其他类型轧机的本质区别是轧制力的传递方向不同。
森吉米尔冷轧机轧制力从工作辊通过中间辊传到支撑辊装置,并最终传到坚固的整体机架上。
这种设计保证了工作辊在整个长度方向的支撑。
这样辊系变形极小,可以在轧制的整个宽度方向获得非常精确的厚度偏差。
森吉米尔冷轧机基本上是单机架可逆式布置,灵活性大,产品范围广。
但是亦有极个别呈连续布置的森吉米尔轧机。
卷取机用于卷取带材,并可形成轧制张力。
由传动的直流电机通过减速机带动卷筒旋转。
张力是薄带和极薄带材轧制过程中最重要的参数之一,它对带材厚度均匀性、表面质量和物理一力学性能都有极大的影响。
卷筒采用四棱锥结构,实心的四棱锥轴在液压缸活塞杆推动下作轴向移动时,卷筒被胀开或收缩。
四棱锥的锥面倾斜角一般为7°~7°30″。
还有很多细节方面,都是森基米尔冷轧机冷轧钢板的工艺特点,下面我们就森基米尔冷轧机的结构性、机架、测厚仪、开卷机、板形控制等等,具体剖析。
关键词:森吉米尔冷轧机辊系卷筒张力目录摘要 (I)1.森吉米尔轧机的性能与工艺流程 (5)1.1森吉米尔结构性能的特点 (5)1.1.1森吉米尔结构性能的特点 (5)1.1.2森吉米尔轧机的具工艺流程体 (6)1.1.3目前森吉米尔轧机的发展水平 (6)2.机架 (7)2.1工作机座 (7)2.1.1工作机座 (7)2.2机架 (8)2.2.1 机架 (8)2.3轧辊 (9)2.3.1轧辊系统 (9)2.3.2轧机调整机构 (10)2.3.3 压下调整机构 (10)2.3.4轧制线标高调整机构 (11)2.3.5轴向辊形调整机构 (13)3.测厚仪 (16)3.1.1测厚仪 (16)3.1.2接触式测厚仪 (16)4.开卷机 (17)4.1开卷机 (17)4.2上料机构 (17)4.2.1上料机构 (17)4.2.2上料小车 (18)4.2.3固定上料装置 (18)4.2.4开卷箱 (18)4.2.5喂料机构 (18)5.板形控制 (19)5.1板形控制 (19)5.1.1板形控制 (19)5.2平直度 (20)5.2.1平直度 (20)6.轧机润滑 (21)6.1轧机润滑 (21)6.1.1冷却系统的作用 (21)6.1.2工艺润滑 (21)6.1.3背衬轴承润滑 (22)6.2冷却 (22)6.2.1冷却 (23)6.2.2冷却剂 (23)6.2.3工艺润滑一冷却剂的品种 (23)6.2.4工艺润滑一冷却系统 (24)7.总结7.1总结 (25)1森吉米尔轧机的性能与工艺流程1.1森吉米尔结构性能的特点1.1.1森吉米尔结构性能的特点(1)具有整体铸造(或锻造)的机架,刚度大,并且轧制力呈放射状作用在机架的各个断面上。
(2)工作辊径小,道次压下率大,最大达60%。
有些材料不需中间退火,就可以轧成很薄的带材。
(3)具有轴向、径向辊形调整,辊径尺寸补偿,轧制线调整等机构,并采用液压压下及液压AGC系统,因此产品板形好,尺寸精度高。
(4)设备质量轻,轧机质量仅为同规格的四辊轧机的三分之一。
轧机外形尺寸小,所需基建投资少。
1.1.2森吉米尔轧机的具工艺流程体原料(我们所称的黑皮)→经过退火和酸洗变成白皮(2D)→经过轧机进行轧制(轧制到所需的厚度)→再进入退火和酸洗处理(2B)→在经过平整进行平整处理→进入拉矫部门处理和质量检验→如果检验有钢卷有异常(如果没异常将直接进入剪切处理,最后包装形成成品)→将进入修磨进行修磨或重卷→然后经过剪切再处理→最后包装形成成品1.1.3目前森吉米尔轧机的发展水平(1)轧制带材最大宽度。
目前轧制带材最宽的是法国的一台ZR22-80型轧机,轧制宽度最大为2032mm的软钢及硅钢,厚度偏差为±O.005mm。
(2)轧制带材最小厚度。
轧制带材最小厚度与其宽度和钢种有关。
美国轧制硅钢最小厚度为O.002mm,其宽度为120mm。
日本轧制不锈钢,当宽度为1220mm时,最小厚度为 O.127mm;宽度为200mm时,最小厚度为O.01mm;轧制有色金属时,最薄可达O.0018mm(ZR32-4 1/4型,轧制紫铜)。
(3)轧制速度。
美国的ZR21-44型轧机轧制低碳钢的最大速度达1067m/min;美国、日本等国轧制硅钢及不锈钢的ZR21型轧机轧制速度可达800m/min。
一套完整的二十辊森吉米尔轧机,一般包括轧机工作机座、卷取机、开卷机及上料喂料机构、AGC系统、液压系统、冷却系统、排油烟系统等部分。
图1.1为一台五工位的ZR-33WF-18型森吉米尔冷轧机机列布置图。
图1.1森吉米尔冷轧机机列布置图2机架2.1工作机座2.1.1工作机座森吉米尔轧机的特点之一,是机架为一个整体铸(锻)钢件,并和齿轮机座安装在同一底板上。
作用在工作辊上的轧制力,通过中间辊呈放射状分散到各支撑辊装置上,而各支撑辊装置为多支点梁的形式,将轧制力沿辊身长度方向传递给整体机架。
该种形式的轧机的刚度高于其他形式的轧机。
如:轧制同样规格带材的四辊冷轧机的刚度为4000kN/mm,Sundwig四柱式二十辊冷轧机的刚度为4000~5000 kN/mm,而Sendzimir二十辊冷轧机的刚度则为5000-6000kN/mm。
森吉米尔二十辊轧机结构如图2.1所示。
图2.1森吉米尔20辊轧机结构2.2机架2.2.1 机架森吉米尔轧机机架,是在整体铸钢件中加工出8个梅花状通孔,用以安装支撑辊装置;与梅花通孔垂直的侧面开有通过带材的四棱锥形窗口。
分散传到各支撑辊装置上的轧制压力,在8个梅花状通孔位置被整体机架所吸收。
森吉米尔轧机机架于20世纪30年代末40年代初设计出来时,仅用于十二辊轧机,以及一些非常小的二十辊轧机,如ZR-32型、ZR-34型,为桌面型轧机,其机架形状为立方体形状。
随着轧机的增大,设计者开始削去机架各个顶角,呈多面体形状,见图2-6。
目前大多数二十辊森吉米尔轧机仍为这种形状的轧机。
图2.2机架横截面(上部)受力图图2.2所示为支撑辊装置作用于机架上的作用力。
从上半部分机架受力情况不难看出,B、C两处力的作用是使机架顶部向上弯曲,而A、D两处的力则给机架以反方向作用。
由于B、C两处与A、D两处的受力大小是不同的,所以需将机架设计成相应的不同形状,以达到均衡受力。
轧制力在轧辊长度方向最终是通过支撑辊装置的轴承座(鞍座)传递给机架的,机架厚度和形状设计的目的是使机架变形程度最小,受力最为均衡。
机架承受的弯曲力矩,从机架边缘到中心是连续加大的,中心部位力矩最大,因此机架的断面也应该是中心部位最大,往两边逐渐变小。
根据机架的受力情况,可以计算出机架梁上的不均匀变形。
先由计算机对所有轴承支座受力进行计算,再根据计算结果推出机架的实际模型——最新式的接近于鼓形的机架形状。
2.3轧辊2.3.1 轧辊系统二十辊森吉米尔轧机辊系是按1-2-3-4呈塔形布置,上下对称设置在机架的8个梅花孔内。
上下两个工作辊分别靠在两个第一中间辊上;上下两对第一中间辊又支撑在3个第二中间辊上;而6个第二中间辊则支撑在外层固定于梅花孔里的8个支撑辊组上。
图2.3机架辊系图之一图2.4机架辊系图之二图2.4所示的8个支撑辊组分别是A、B、C、D、E、F、G、H,每个支撑辊的数个短圆柱轴承和鞍座安装在同一轴上。
除辊组B、C外,其余各支撑辊结构基本相同;B、C辊组视有无径向辊形调整机构其结构有所不同。
轧机中心线两侧的4个第二中间辊是传动辊,由电机通过万向接轴来传动。
两个工作辊是靠4个传动辊和第一中间辊的摩擦力而驱动的。
8个支撑辊组的心轴及背衬轴承的位置,对机架而言是能够变化的,以准确地控制两个工作辊之间的距离(即轧机辊缝)。
这是森吉米尔轧机的基本控制运动,这种控制是快速的,对轧辊而言是平行的,并且位置非常准确。
2.3.2轧机调整机构森吉米尔轧机具有多种调整机构。
在轧制过程中,通过手动或自动控制系统,可以十分灵活地实现各种必须的调整,从而获得高精度的、板形优良的成品带材。
这些调整机构分为3大类:压下调整机构、辊形调整机构、轧辊直径补偿调整机构。
2.3.3 压下调整机构压下调整机构包括上压下调整机构,即压下机构;下部压上调整机构,即轧制线标高调整机构。
A 压下机构森吉米尔二十辊轧机的压下,是通过转动两个上部中间支撑辊组B及C的偏心环来实现的。
偏心环安装在鞍座的滚针轴承上,因此它比普通轧机的压下螺丝所受的运动阻力矩要小得多;在轧制的过程中也能够很轻便灵活地回转。
B、C支撑辊组的结构。
B、C支撑辊组偏心环的转动,是靠上下移动压下双面齿条回转与其啮合的一对扇形齿轮,从而转动偏心轴(轴及偏心环),实现工作辊的压下及抬起。
如图2.5所示,双面齿条向上移动时,工作辊则向下进行压下;齿条向下移动时,工作辊则抬起。
一般工作辊压下或抬起的距离仅为双面齿条上移或下移量的二十几分之一。
早期的森吉米尔轧机是采用电动压下机构进行压下的。
电动机传动一根蜗杆,蜗杆旋转带动蜗轮转动,蜗轮转动使处于蜗轮中心的双面齿条作上下移动。
现代森吉米尔二十辊轧机都采用液压压下机构调整轧机的开口度。
由机架上面的前后两个液压缸活塞杆直接驱动压下双面齿条,齿条使固定在B、C支撑辊组偏心环两端的扇形齿轮回转。
2.3.4轧制线标高调整机构轧制线标高调整,是通过转动两个下部中间支撑辊组F、G的偏心轴来完成的(图2.5)。
图2.5辊系结构图2.6轧制线标高调整机构轧制线的标高必须与前后导向辊标高相同。
如果标高差值较大,将引起轧制带材呈波浪形。
随着工作辊、中间辊和支撑辊的磨损与重磨,必须随时进行轧制线标高的调整。
调整的方法是:移动机架下面的一根双面齿条,使固定在F 、G 支撑辊偏心轴一端的扇形齿轮回转,支撑辊背衬轴承便向上或向下移动,下工作辊随之向下或向上工作辊支承辊二中间辊一中间辊液压锁紧移动,以保证轧制线标高不变。
这样工作辊的端面支撑在其各自的止推轴承上;其次是对称调整辊缝,以利于穿带和工作辊插入。
同时,从轧制开始到轧出成品规格,不需要再次调整下部轧辊组,便可得到轧制压下的全部行程。
F、G支撑辊结构如图2.6所示。
图2.8 F、G支撑辊组结构图1-背衬轴承;2-鞍座;3-偏心环;4-心轴;5-扇形齿轮;6-键2.3.5轴向辊形调整机构轴向辊形调整机构除了可以促使带材沿横向尺寸均匀外,还可以用来消除在轧制过程中由于工作辊弯曲变形而产生的带材边浪。
轴向辊形调整机构的基本原理是:在上下两对第一中间辊上,在相反的两端将轧辊加工成锥形,以其相向或相反的轴向移动来调整重合的平行部分(即有效平面量)的长度,这样就可以调节带材边部的形状。
图2.8为轴向辊形调整机构示意图。
第一中间辊轴向调整提供了用最少的准备时间(轧制两个宽度之间),轧制不同宽度、厚度和硬度的钢带的方法。