遗传学(下)刘祖洞第二版
遗传学刘祖洞第二版课后习题答案
遗传学刘祖洞第二版课后习题答案遗传学刘祖洞第二版课后习题答案遗传学是生物学的一个重要分支,研究的是遗传信息的传递和变异。
刘祖洞的《遗传学》是一本经典教材,在学习遗传学的过程中,课后习题是非常重要的辅助工具。
本文将为读者提供刘祖洞第二版《遗传学》课后习题的答案。
第一章:绪论1. 遗传学的研究对象是什么?答:遗传学的研究对象是遗传信息的传递和变异。
2. 什么是基因?答:基因是生物体内控制遗传性状的一段遗传信息。
3. 请解释“遗传信息的传递和变异”。
答:遗传信息的传递是指从父代到子代的基因传递过程,变异是指在基因传递过程中产生的遗传变异。
第二章:遗传物质的结构和功能1. DNA是由什么组成的?答:DNA是由核苷酸组成的,核苷酸由糖、磷酸和碱基组成。
2. DNA的双螺旋结构是由谁发现的?答:Watson和Crick发现了DNA的双螺旋结构。
3. DNA的复制过程是什么?答:DNA的复制过程是指在细胞分裂过程中,DNA分子通过复制,生成两条完全相同的DNA分子。
第三章:遗传信息的传递1. 什么是等位基因?答:等位基因是指在同一基因位点上,不同基因型的基因。
2. 什么是基因型?什么是表现型?答:基因型是指一个个体拥有的基因的组合,表现型是指基因型在外部环境下表现出来的形态、结构或功能。
3. 请解释孟德尔的两个基本定律。
答:孟德尔的第一定律是性状在同一个体的两个等位基因中表现出来的比例为3:1;第二定律是不同基因分离独立地遗传。
第四章:基因的变异和突变1. 什么是基因变异?答:基因变异是指基因在传递过程中发生的突发性变化,包括基因突变和基因重组。
2. 请解释基因突变的类型。
答:基因突变包括点突变、缺失突变、插入突变和倒位突变等。
3. 基因突变是如何引起遗传病的?答:基因突变会导致基因的功能异常,进而引起遗传病的发生。
第五章:染色体的结构和功能1. 什么是染色体?答:染色体是细胞核中携带遗传信息的结构体,由DNA和蛋白质组成。
遗传学课后习题及答案-刘祖洞(2020年7月整理).pdf
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
(完整版)遗传学课后习题及答案-刘祖洞
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
遗传学(刘祖洞)
遗传学(刘祖洞)课本习题参考答案第二章孟德尔定律参考答案1、为什么分离现象比显、隐性现象有更重要的意义?答:因为(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr解:序号杂交基因型表现型1 RR×rr Rr 红果色2 Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色3 Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色4 Rr×RR 1/2RR,1/2Rr 红果色5 rr×r r rr 黄果色3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr粉红红色白色粉红粉红粉红解:序号杂交配子类型基因型表现型1 Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红2 rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色3 Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd解:序号杂交基因型表现型1 WWDD×wwdd WwDd 白色、盘状果实2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd, 1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状, 1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd, 1/8wwDd,1/8wwdd3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
刘祖洞(遗传学)课后习题标准答案!全面版
刘祖洞《遗传学》参考答案全面版ﻫ第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;ﻫ(2)答:因为ﻫ只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
ﻫ2、解:序号杂交基因型表现型(1)RR×rr Rr 红果色ﻫ(2) Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色(3)Rr×Rr 1/4RR,2/4Rr,1/4rr3/4红果色,1/4黄果色(4)Rr×RR 1/2RR,1/2Rr 红果色(5)rr×rr rr黄果色ﻫ3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr× RR(2)rr ×Rr(3)Rr ×Rr粉红红色白色粉红粉红粉红ﻫ解:序号杂交配子类型基因型表现型(1)Rr× RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红(2)rr × Rrr;R,r1/2Rr,1/2rr 1/2粉红,1/2白色4、在南瓜中,果实的白色(W)(3) Rr× Rr R,r1/4RR,2/4Rr,1/4rr1/4红色,2/4粉色,1/4白色ﻫ对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd解:ﻫ序号杂交基因型表现型1WWDD×wwdd WwDd 白色、盘状果实2WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/2wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、4黄色、盘状,1/4黄色、球状ﻫ球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球4Wwdd×WwDd1/8WWDd,1/8WWdd,2/8WwDd,2/状,1/4黄色、盘状,1/4黄色、球状ﻫ8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状ﻫ5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
02遗传学答案刘祖洞
第二章
1. 为什么分离现象比显、隐性现象更有重要意义? 答案: 分离现象反映了遗传现象的本质, 而且广泛地存在于各生物中, 也是孟德尔定律的基础。 显隐性现象是随条件、环境而改变,它不过是一种生理现象,因此从遗传学的角度来说,分 离现象更有重要意义。 2. 在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型, 哪些表现型,它们的比例如何? (1)RR×rr (2)Rr×rr (3)Rr×Rr (4)Rr×RR (5)rr×rr 答案: (1) Rr (2) Rr rr (3) RR Rr rr (4) RR Rr (5) rr 红 黄 红 黄 1 ∶2∶ 1 1∶1 1∶1 全部红 红 黄 3 ∶ 1 3. 下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生杂种后代的基因型和 表型怎样? (1)Rr×RR (2)rr×Rr (3)Rr×Rr 粉红 红色 白色 粉红 粉红 粉红 答案: (1) RR ∶ Rr (2) Rr ∶ rr (3) RR ∶ Rr ∶ rr 红 粉红 粉红 白 红 粉红 白 1 ∶ 1 1 ∶ 1 1 ∶ 2 ∶ 1 4. 在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显 性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如 何? (1)WWDD×wwdd (2)WwDd×wwdd (3)Wwdd×wwDd (4)Wwdd×WwDd 答案: Wwdd wwDd wwdd (1) WwDd (2) WwDd 白盘 白球 黄盘 黄球 全部白盘 1 ∶ 1 ∶ 1 ∶ 1 wwDd Wwdd wwdd (3) WwDd 白盘 黄盘 白球 黄球 1 ∶ 1 ∶ 1 ∶ 1 (4) WWDd WwDd WWdd Wwdd wwDd wwdd 1 ∶ 2 ∶ 1 ∶ 2 ∶ 1 ∶ 1 3(白盘) ∶ 3(白球) ∶1(黄盘)∶1(黄球)
遗传学刘祖洞第二版课后习题答案
遗传学刘祖洞第二版课后习题答案遗传学是生物学的一个重要分支,研究的是基因传递和表达的规律。
而刘祖洞的遗传学第二版课后习题是学习这门学科的重要辅助材料。
在这篇文章中,我将为大家提供一些遗传学刘祖洞第二版课后习题的答案,希望能够帮助大家更好地理解和掌握遗传学知识。
第一章:遗传学的基本概念和遗传物质的性质1. 遗传学的基本概念是什么?遗传学是研究遗传现象及其规律的科学,主要研究物质遗传规律和信息遗传规律。
2. DNA是什么?它的基本结构是什么?DNA是脱氧核糖核酸,是构成基因的遗传物质。
它由磷酸、脱氧核糖和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、鳟嘧啶)组成,通过磷酸二酯键连接起来,形成双螺旋结构。
3. RNA有几种类型?它在细胞中的功能是什么?RNA有三种类型:mRNA、tRNA和rRNA。
mRNA负责将DNA上的遗传信息转录成蛋白质的氨基酸序列;tRNA是转运RNA,负责将氨基酸运送到蛋白质合成的位置;rRNA是核糖体RNA,是蛋白质合成的主要组成部分。
第二章:遗传的分离规律1. 什么是孟德尔的遗传规律?孟德尔的遗传规律是指在杂交实验中,纯合子的两个基因型在子代中以1:2:1的比例分离表现。
2. 什么是显性和隐性?显性是指在杂合子中表现出来的性状,隐性是指在杂合子中不表现出来的性状。
3. 什么是基因型和表型?基因型是指个体所拥有的基因的组合,表型是指个体所表现出来的性状。
第三章:基因的连锁和染色体遗传1. 什么是连锁?连锁是指两个或多个基因位点位于同一条染色体上,它们之间存在着较小的重组频率。
2. 什么是染色体?染色体是细胞核中的遗传物质,由DNA和蛋白质组成,是基因的携带者。
3. 什么是自由互换?自由互换是指染色体上的两个非姐妹染色单体间的互换,它是染色体重组的一种形式。
第四章:基因的分离和重组1. 什么是基因的分离和重组?基因的分离是指在有性生殖过程中,父本的两个等位基因分别进入子代的不同配子中;基因的重组是指染色体上的两个非姐妹染色单体间的互换。
遗传学课后习题及答案-刘祖洞
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
《遗传学》刘祖洞(第二版)遗传课后题答案
《遗传学》刘祖洞(第二版)答案第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr解:序号杂交基因型表现型1 RR×rr Rr 红果色2 Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色3 Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色4 Rr×RR 1/2RR,1/2Rr 红果色5 rr×rr rr 黄果色3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr粉红红色白色粉红粉红粉红解:序号杂交配子类型基因型表现型1 Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红2 rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色3 Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd解:序号杂交基因型表现型1 WWDD×wwdd WwDd 白色、盘状果实2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd, 1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd, 1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
遗传学课后习题答案刘祖洞完整版pdf
习题与参考答案
长江大学 农学院普通遗传学教研组
第一章 绪 论(练习)
一、解释下列名词:遗传学,遗传,变异
二、什么是遗传学?为什么说遗传学诞生于 1900 年?
三、在达尔文前后有哪些思想与达尔文理论有联系?
四、
和
是生物界最普遍和最基本的两个特征。
五、
、
和
是生物进化和新品种选育的三大因素 。
第一章 绪 论(参考答案)
(3)每条长链的内侧是扁平的盘状碱基,碱基一方面与脱氧核糖相联系,另一方面通过 氢键(hydrogen bond)与它互补的碱基相联系,相互层叠宛如一级一级的梯子横档。互 补碱基对 A 与 T 之间形成两对氢键,而 C 与 G 之间形成三对氢键。上下碱基对之间的距 离为 3.4Å。
(4)每个螺旋为 34Å(3.4nm)长,刚好含有 10 个碱基对,其直径约为 20Å。
二链的起始rna链转录的起始首先是rna聚合酶在因子的作用下结合于dna动子部位并在rna聚合酶的作用下使dna双链解开形成转录泡为rna合成提供10单链模板并按照碱基配对的原则结合核苷酸然后在核苷酸之间形成磷酸二脂键使其相连形成rna因子在rna链伸长到89个核酸后就被释放然后由核心酶催化rna的延伸
一、遗传学:遗传学是研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象就是遗传。 变异:亲代与子代之间、子代个体之间,总是存在着不同程度的差异
二、答:真正系统研究生物的遗传和变异是从孟德尔开始的。他在前人植物杂交试验的 基础上,于 1856-1864 年从事豌豆杂交试验,进行细致的后代记载和统计分析,1866 年发表“植物杂交试验”论文,首次提出分离和独立分配两个遗传基本规律,认为性状 遗传是受细胞里的遗传因子控制的。这一重要理论当时未能受到重视,直到 1900 年, 狄.弗里斯、柴马克和柯伦斯三人同时重新发现孟德尔规律,这时才引起人们的重视, 所以说遗传学诞生于 1900 年。 三、答:达尔文前的拉马克的用进废退学说,达尔文后的魏斯曼的种质连续论等。 四、遗传和变异是生物界最普遍和最基本的两个特征。 五、遗传、变异和选择是生物进化和新品种选育的三大因素 。
(完整版)遗传学复习(刘祖洞_高等教育出版社_第二版)
一.绪论遗传学:是研究生物遗传和变异的科学遗传:亲代与子代之间相似的现象变异:亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。
二.孟德尔定律1.性状:生物体或其组成部分所表现的形态特征和生理特征称为性状2.单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面的特征特性。
3.相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状显性性状(dominant character ):F1中表现出来的那个亲本的性状。
如红花。
隐性性状(recessive character):F1中没有表现出来的那个亲本的性状。
如白花。
F2中,两个亲本的性状又分别表现,称为性状分离。
显性个体:隐性个体= 3:1。
分离规律及其实现的条件?分离规律1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。
2)杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到子代中。
实现条件1)研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。
2)在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均等的机会相互自由结合。
3)受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。
4)杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。
三.遗传的染色体学说1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。
答:有丝分裂和减数分裂的区别列于下表:有丝分裂的遗传意义:首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。
遗传学下册部分章节答案
遗传学(刘祖洞)下册部分章节答案第九章遗传物质的改变(一)染色体畸变1什么是染色体畸变?答:染色体数目或结构的改变,这些改变是较明显的染色体改变,一般可在显微镜下看至腹称为染色体变异或畸变。
2.解释下列名词:缺失;重复;倒位;易位答:缺失(deletion或deficiency ) -------- 染色体失去了片段。
重复(duplicati on或repeat) ------------ 染色体增加了片段。
倒位(in version ) ------ 染色体片段作1800的颠倒,造成染色体内的重新排列。
易位(translocation ) ----- 非同源染色体间相互交换染色体片段,造成染色体间的重新排列。
3•什么是平衡致死品系,在遗传学研究中,它有什么用处?答:同源染色体的两个成员各带有一个座位不同的隐性致死基因,由于两个致死基因之间不发生交换,使致死基因永远以杂合态保存下来,不发生分离的品系,叫平衡致死品系(bala need lethsl system)。
在遗传研究过程中,平衡致死系可用于保存致死基因。
4.解释下列名词:(1)单倍体,二倍体,多倍体;(2)单体,缺体,三体;(3)同源多倍体,异源多倍体答:(1)凡是细胞核中含有一个完整染色体组的叫做单倍体( haploid);含有两个染色体组的叫做二倍体(diploid );超过两个染色体组的统称多倍体( polyploid )。
(2)细胞核内的染色体数不是完整的倍数,通常以一个二倍体( 2n)染色体数作为标准,在这个基础上增减个别几个染色体,称非整倍性改变。
例如:2n-1是单体(monsomic), 2n-2 是缺体(nullisomic ), 2n+1 是三体(trisomic )。
(3)同源多倍体(autopolyploid ) ------ 增加的染色体组来自同一个物种的多倍体。
异源多倍体(allopolyloid ) ------ 加倍的染色体组来自不同物种的多倍体,是两个不相同的种杂交,它们的杂种再经过染色体加倍而形成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章遗传物质的改变(一)染色体畸变应用前几章中讲过的一些遗传学基本定律,如分离和组合、连锁与交换,可在子代中得到亲代所不表现的新性状,或性状的新组合。
但这些“新”性状,追溯起来并不是真正的新性状,都是它们祖先中原来有的。
只有遗传物质的改变,才出现新的基因,形成新的基因型,产生新的表型。
遗传物质的改变,称作突变(mutation)。
突变可以分为两大类:(1)染色体数目的改变和结构的改变,这些改变一般可在显微镜下看到;(2)基因突变或点突变(genic or pointmutations),这些突变通常在表型上有所表达。
但在传统上,突变这一术语留给基因突变,而较明显的染色体改变,称为染色体变异或畸变(chromosomal variations or aberrations)。
第一节染色体结构的改变因为一个染色体上排列着很多基因,所以不仅染色体数目的变异可以引起遗传信息的改变,而且染色体结构的变化,也可引起遗传信息的改变。
一般认为,染色体的结构变异起因于染色体或它的亚单位——染色单体的断裂(breakage)。
每一断裂产生两个断裂端,这些断裂端可以沿着下面三条途径中的一条发展:(1)它们保持原状,不愈合,没有着丝粒的染色体片段(seg-ment)最后丢失。
(2)同一断裂的两个断裂端重新愈合或重建(restitution),回复到原来的染色体结构。
(3)某一断裂的一个或两个断裂端,可以跟另一断裂所产生的断裂端连接,引起非重建性愈合(nonrestitution union)。
依据断裂的数目和位置,断裂端是否连接,以及连接的方式,可以产生各种染色体变异,主要的有下列四种(图9-1):(1)缺失(deletion或deficiency)——染色体失去了片段;(2)重复(duplication或repeat)——染色体增加了片段;(3)倒位(inversion)——染色体片段作180°的颠倒,造成染色体内的重新排列;(4)易位(translocation)——非同源染色体间相互交换染色体片段,造成染色体间的重新排列。
下面先介绍研究染色体畸变的几种材料,再讨论各种染色体畸变,说明它们的遗传学效应,最后再说明一个育种上应用的例子。
研究染色体畸变的几种好材料每种生物的每个细胞都有一定数目的染色体,各个染色体的形状也是恒定的。
所以如果它们的数目或形状改变了,就可以知道有了畸变。
例如玉米的染色体就是研究染色体畸变的好材料。
玉米的10条染色体在形态上可以互相区别(图3-2)。
特别是在减数分裂的粗线期,那时染色体是细长的染色丝,两条同源染色丝紧密地配合在一起。
细长的细线上又有各种标记,如着丝粒的位置,两臂的相对长短,球节(knob)的存在与否,和染色丝上着色较浓的染色粒(chromomere)的分布等(图9—2)。
对每一染色体来讲,这些标记都是以一定的形式直线地排列着,所以如果这些标记不见了或重复出现,或者它们的原有排列顺序改变了,就是染色体畸变的明确证据。
果蝇的染色体在减数分裂时,形状很小,研究不易。
可是果蝇和其它双翅目昆虫的幼虫唾腺细胞中,核特别大,其中的染色体比减数分裂时的染色体和其它体细胞的染色体要大上几百倍。
图9-3是黑腹果蝇(Drosophila melanogaster)的唾腺染色体。
图9-4是普通染色体与唾腺染色体的对照模式,这模式说明唾腺染色体是怎样形成的。
唾腺染色体上有明显的横纹,横纹的相对大小和空间排列是恒定的,可以作为识别唾腺染色体的标志。
这些横纹在染色后看得特别清楚,但是在不染色的活细胞中也可明晰地看到。
一般认为唾腺染色体是处于间期或前期状态。
由于唾腺细胞内的染色体连续复制,复制后形成的染色丝并不相互分开,而是纵向地密集在一起,所以唾腺染色体是多线染色体(polytene chromo-some)。
多线染色体中每一染色丝是一条跟蛋白质结合在一起的DNA双链,据说在两条横纹之间的区域,其螺旋化程度较低,而在横纹的地方,螺旋化程度要高一些,但总的说来,比其它体细胞染色体还是低得多。
因为同源的唾腺染色体总是紧密地结合在一起,象在减数分裂的粗线期一样,所以两条同源染色体间有差别时,很容易看出来。
由于这些原因,唾腺染色体也是研究染色体畸变的好材料。
缺失当染色体的一个片段不见了,其中所含的基因也随之丧失了。
如果同源染色体中一条染色体有缺失,而另一条染色体是正常的,那末在同源染色体相互配对时,因为一条染色体缺了一个片段,它的同源染色体在这一段不能配对,因此拱了起来,形成一个弧状的结构(图9-5)。
缺失影响个体的生活力。
如果缺失的部分太大,那个体通常是不能生活的。
一般缺失纯合体的生活力比缺失杂合体的生活力更低,这是容易理解的,因为在纯合体中,缺失基因所担负的重要机能都不能进行了。
不致死的缺失往往引起不寻常的表型效应。
一个杂合体Aa,缺失了带有显性基因A的一个染色体片段,隐性基因a就在表型上显现出来。
例如在玉米中,糊粉层核是3n,如果除了显性基因C以外,其它对色素形成所需要的基因都存在,那末基因型Ccc的糊粉层是有色的。
假使带有显性基因C的那个染色体的端部有了缺失,那末在有丝分裂过程中,经过“断裂·融合·桥的循环”(breakage-fusion-bridge cycle),显性基因C所在的那个染色体片段可能从某些细胞中消失,结果糊粉层是花斑,那就是说,一个籽粒的糊粉层上,有色组织和无色组织掺杂在一起。
图9-6说明这样的花斑是怎样起源的。
因为一个显性基因的缺失,致使原来不应显现出来的一个隐性等位基因的效应显现了出来,所以这种现象叫做拟显性现象(pseudodominance)。
通常缺失本身也可引起独特的表型效应。
例如在果蝇中,缺失Notch(缺刻翅)处于杂合态时,翅缘上产生一个明显的凹口,而在雄性果蝇中是致死的,所以它的作用像一个隐性致死基因,而有显性的表型效应。
Notch或者牵涉到包括3C7在内的唾腺染色体的较长一段的缺失,或者仅限于3C7这一特定区域的缺失,但都使小眼不齐基因(facet,fa)出现拟显性现象,所以fa基因一定是在3C7这一横纹之中(见图9-7)。
在人中,染色体缺失通常也显示有害影响。
例如第5染色体短臂缺失(5P-)的儿童出现一系列症状,包括两眼距离较远,耳位低下,智力迟钝,生活力差等,患儿多在生命早期死亡。
患儿最明显特征是哭声轻,音调高,很像猫叫,所以称为猫叫综合征(“cri-du-chat”syndrome)。
重复除了正常的染色体组(chromosome complement)以外,多了一些染色体部分,这种额外的染色体部分叫做重复片段。
重复可以发生在同一染色体上的邻近位置,也可在同一染色体的其它地方,甚至也可在其它染色体上。
如果一条染色体有重复的片段,而另一染色体是正常的,那末在粗线期染色体或唾腺染色体上也出现一个弧状的结构,不过这时拱出来的一段是重复的片段,因为它的同源染色体上没有这一段,不能配对,所以就拱了出来。
染色体重复了一个片段,这额外片段上的基因也随之重复了。
重复的遗传学效应比缺失来得缓和,但重复太大,也会影响个体的生活力,甚而引起个体的死亡。
我们在图9-6中已经清楚地表明,在玉米中,断裂·融合·桥的循环可以产生缺失,同时也会引起重复。
如果重复的片段包括糊粉层色素基因C,那末一个核内显性基因的数目就可有各种变化,或是一个、两个,或是三个、四个,甚而更多一些。
当基因数目有这样一系列变化的时候,胚乳花斑上的色泽强度往往也出现从浅到深的顺序变化,暗示着色泽的深浅可能跟显性基因的数目有对应关系。
鉴于在正常糊粉层中,有一个显性基因C,颜色最浅,有两个显性基因C,颜色深些,而有三个显性基因C颜色最深,就为我们色泽强度和基因数目有对应关系的推论进一步提供了实验的根据。
染色体的某些区域的重复可以产生特定的表型效应,像基因一样。
例如果蝇的显性基因B(Bar,棒眼)的主要表型效应是使复眼中的小眼数减少,所以复眼呈棒状,而不是正常的卵圆形。
从唾腺染色体来看,知道棒眼果蝇的X染色体上至少有4个明显的横纹重复了。
这种重复可能是由不等交换(unequal crossover)产生的。
纯合的棒眼雌蝇(B/B)所产生的子裔中,大约有1/1600的机会复眼极度细小,叫做重棒眼(BB,double bar)。
检查这种个体的唾腺染色体,发现有4个明显横纹的区域又重复了一次,计有三份。
可见这个区域的重复,有累加作用,重复次数增加,复眼中的小眼数减少(图9-8)。
一般讲,重复难以检出,但从进化观点来讲是很重要的;因为它们提供额外的遗传物质,有可能执行新的功能。
这将在第十五章的“新基因怎样起源的”一节中详细说明。
易位一条染色体的一段搭到一条非同源染色体上去,叫做易位。
如果两条非同源染色体互相交换染色体片断,叫做相互易位(reciprocal translocation)。
设一条染色体的直线分化顺序是ABCDE,另一条染色体的直线分化顺序是LMNO,则相互易位的结果,可以出现有两条新顺序的染色体ABCNO和LMDE(图9-9)。
相互易位的两个染色体片段可以是等长的,也可以是不等长的。
易位的细胞学效应比较复杂,我们这里的讨论只限于最常见的相互易位。
相互易位的纯合体没有明显的细胞学特征,它们在减数分裂时的配对是正常的,所以跟原来的未易位的染色体相似,可以从一个细胞世代传到另一细胞世代。
在易位杂合体中,在粗线期时,由于同源部分的紧密配对,出现了富有特征性的十字形图像。
以后随着分裂过程的进行,十字形图像逐渐开放,成为一个圆圈或8字形(图9-10)。
在花粉母细胞中,大约有50%的图形呈圆形,50%的图形呈8字形,说明4个着丝粒趋向两极是随机的。
从图9-10可以看到,如果相互易位的两对染色体形成一个大圆圈,那末不论那两个邻近的染色体分到同一极去,都使所形成的细胞造成重复和缺失。
所以邻近分离(adjacent segregation)形成不平衡配子,常有致死效应。
如果相互易位的两对染色体形成8字形,两个邻近的染色体交互地分向两极,这样每一细胞才能有一套完整的染色体。
然而交互分离(alternate segregation)时,易位染色体和非易位染色体进入不同配子中,所以这种分离的结果是,非同源染色体上的基因间的自由组合受到严重抑制,出现假连锁现象(pseudolinkage)。
这是易位的一个遗传学效应。
这在果蝇雄体中尤其清楚,因为果蝇雄体没有交换,是完全连锁的。
例如雄蝇对第2和第3染色体的易位(2—3)是杂合体,而在非易位的第2和第3染色体上分别带有基因bw(brown eye,褐眼)和e(ebony body,黑檀体)。
当易位杂合体雄蝇用纯合的隐性雌蝇回交时,只产生野生型(bw/+e/+)和双突变体(bw/bwe/e);而单一突变型褐眼(bw/bwe/+),黑檀体(bw/+e/e)都不会在子裔中出现的。