一元一次方程在生活中实际应用练习

合集下载

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习宇文皓月1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采取一种高新技术后,每天多生产10台,结果用12天,不单完成任务,而且逾额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际依照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各逾额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去观赏博物馆,出租车的收费尺度是:不超出3公里的付费7元;超出3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超出3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.12.某商场一种品牌的服装标价为每件1000元,为了介入市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去观赏,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才干到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看角逐.球迷领队安插车辆若干,若每辆坐4人,车不敷,每辆坐5人,有的车未坐满.问领队安插的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,缺乏1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超出6吨,按每吨1.2元收费;如果超出6吨,未超出的部分仍按每吨1.2元收取,而超出部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去介入课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才干使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去介入一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超出每小时60千米.甲船从A 港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超出20吨,按每吨1.9元收费;如果超出20吨,未超出部分按每吨1.9元收费,超出部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成天职别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费尺度如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超出部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人角逐跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安插一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安插了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班辅佐和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才干完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才干完成任务?61.学校部分师生到离校28千米的地方观赏学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店推销了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔挺的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种分歧颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时介入做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采取“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得酬报600元.若按个人完成的工作量给付酬报,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样即可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机自己的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力建议和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了包管训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安插甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.。

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。

数学一元一次方程应用题

数学一元一次方程应用题

数学一元一次方程应用题1. 题目背景在日常生活中,我们经常会遇到一些问题需要使用数学知识进行求解。

而一元一次方程就是其中一种常用的数学工具。

通过解一元一次方程,我们可以找到未知数的值,进而解决各种实际问题。

本文将通过一些具体的应用题,来学习一元一次方程的应用。

2. 实际问题分析2.1 问题描述假设小明去超市购买商品,在结账时发现商品总价比标价高出15元。

商家告诉小明,原价中有一件商品的标价没有打折。

现在,已知小明购买的商品共有n 件,其中有x件商品参加了打折,已知每件商品的原价和折后价,请问每件商品的标价是多少?2.2 分析我们可以将这个问题分解为一个一元一次方程。

设每件商品的标价为y,折后价为z。

根据题意,我们可以得到以下方程:y - z = 15 (1) (商品总价比标价高出15元) x * z + (n - x) * y = 总价 (2) (已知每件商品原价和折后价)其中,已知n、x、总价。

3. 解题过程3.1 第一步:解方程(1)根据方程(1),我们可以得到:y = 15 + z (3)3.2 第二步:代入方程(2)将方程(3)代入方程(2)中,可以得到:x * z + (n - x) * (15 + z) = 总价 (4)3.3 第三步:整理方程(4)将方程(4)进行整理,可以得到:x * z + (n - x) * 15 + (n - x) * z = 总价 (5)进一步整理得到:x * z + 15n - 15x + nz - xz = 总价 (6)3.4 第四步:将方程(6)转化为一元一次方程将方程(6)转化为一元一次方程,可以得到:(n - x - 1) * z + (x - 1) * (y - z) - 15n + 总价 = 0 (7)3.5 第五步:求解方程(7)现在,我们已经得到了一元一次方程(7)。

根据已知条件,我们可以用此方程求解每件商品的标价。

将方程(7)中的变量z替换为折后价,变量y替换为标价,将已知的n、x和总价带入,即可得到每件商品的标价。

一元一次方程的应用练习题运用一元一次方程解决实际问题

一元一次方程的应用练习题运用一元一次方程解决实际问题

一元一次方程的应用练习题运用一元一次方程解决实际问题一元一次方程是初中数学中的一种基本的代数方程,它可以用来解决很多实际问题。

在本文中,我们将通过一些具体的练习题来展示一元一次方程的应用,并探讨如何使用它来解决实际问题。

问题一:小明和小红一起去超市购物,他们共花费了45元。

如果小明付了35元,那么小红付了多少元?解答:设小红付的钱数为x元。

根据题意,可以得到一元一次方程35 + x = 45。

我们可以通过解这个方程来找到小红付的钱数。

解方程35 + x = 45得到 x = 45 - 35,化简得到x = 10。

所以小红付了10元。

问题二:甲乙两个工人同时开始修建一段公路,甲工人每天能完成2km,乙工人每天能完成3km。

如果他们共同修建了8天,公路的总长度是多少?解答:设公路的总长度为x km。

根据题意,可以得到一元一次方程2x + 3x = 8,表示甲乙两人修建公路的总长度等于8。

解方程2x + 3x = 8得到5x = 8,化简得到x = 8 / 5。

所以公路的总长度为8 / 5 km。

问题三:苹果店正在举行促销活动,每个顾客购买3个苹果可以享受9折优惠,小明购买了n个苹果,他付了18元,请问n的值是多少?解答:设小明购买的苹果数量为n个。

根据题意,可以得到一元一次方程3n * 0.9 = 18,表示小明购买苹果付的钱数等于18。

解方程3n * 0.9 = 18得到2.7n = 18,化简得到n = 18 / 2.7。

所以n的值是18 / 2.7。

以上是几个应用一元一次方程解决实际问题的例子。

通过解题过程可以看出,在遇到具体问题时,我们可以设定一个未知数,并通过一元一次方程来建立数学模型,进而解决问题。

一元一次方程在实际生活中的应用非常广泛,通过掌握这种解题方法,我们可以更好地理解和应用数学知识。

值得注意的是,在解题过程中,我们需要始终保持逻辑的严谨性,并确认我们所得出的解是否符合实际情况。

一元一次方程生活有趣案例

一元一次方程生活有趣案例

一元一次方程生活有趣案例1、某人乘车行121千米的路程,一共用了3小时.第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米.第三段路程为20千米,第一段和第二段路程各有多少千米?2、某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?3、从每千克0.8元的苹果中取出一部分,又从每千克0.5元的苹果中取出一部分混合后共15千克,每千克要卖0.6元,问需从两种苹果中各取出多少千克?4、某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的,问甲、乙两队单独做,各需多少天?6、甲、乙两个仓库共有20吨货物,从甲仓库调出到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?7、一班打草600千克,二班比一班多打150千克,二班比三班多打100千克,把三班打的草按9:11分给一、二两个生产队,各应分多少千克?8、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?9、一个两位数,个位上的数字是十位上的数字的2倍.先将这个两位数的两个数字对调,得到第二个两位数,再将第二个两位数的十位数字加上1,个位数字减去1,得到第三个两位数.若第三个两位数恰好是原来两位数的2倍,求原来两位数的大小.10、小王骑车从A地到B地共用了4小时.从B地返回A地,他先以去时的速度骑车行2小时, 后因车出了毛病,修车耽误了半小时,接着他用比原速度每小时快6千米的速度回到A地,结果返程比去时少用了10分钟.求小王从A地到B 地的骑车速度.11、某人每小时可走平路8千米,可走下坡路10千米,可走上坡路6千米.他从甲地到乙地去,先走一段上坡路,再走一段平路,到乙地后立即返回甲地.往返共用了2小时36分钟.若甲乙两地间的路程为10千米,问在这10千米路程中,上坡路及平路各有多少千米?12、有两支成分不同且长度相等的蜡烛,其中一支3小时可燃烧完,另一支4小时燃烧完.现在要求到下午四点钟时,其中一支蜡烛的剩余部分恰是另一支剩余部分的二倍,问应在何时点燃这两支蜡烛?13、某同学要把450克浓度为60%的硝酸铵溶液配成浓度为40%的溶液,但他未经考虑便加入300克水.(1) 请通过计算说明,该同学加进的水是超量的.(2) 这时需加进硝酸铵多少克?配成浓度为40%的硝酸铵溶液多少克?14、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的,丙班分到的比乙班少20本,问共有多少练习本?15、汽车从A地往B地送货.如果往返都以每小时60千米的速度行驶,那么可以按时返回.可是当司机到达B地后才发现,从A地到B地每小时只走了55千米,为了按时返回A地,汽车应以多大速度往回开?16、从家里骑摩托车到火车站,如果每小时行30千米,那么比开车时间早到15分钟;如果每小时行18千米,那么比开车时间迟到15分钟.现在打算在开车时间前10分钟到达,那么骑摩托车的速度应该是多少?17、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.18、好马走15天的路程,劣马需走30天,已知劣马每天走150千米,问好马每天走多少千米?19、一艘轮船发生漏水事故,海水以每分钟24桶的速度涌进底舱,发现时已漏进600桶海水.水手立即开动两部抽水机向外抽水,经50分钟将舱内的水抽完,已知甲机抽水量是乙机的,问甲、乙两机每分钟各抽水多少桶?20、现有浓度为10%.及浓度为20%的两种酒精溶液.问各取多少可配制成浓度为14%的酒精溶液100升?。

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。

它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。

本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。

问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。

已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。

解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。

根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。

将方程化简得:8x + 30 = 72。

再继续化简得:8x = 72 - 30 = 42。

最后得到:x = 42 ÷ 8 = 5.25。

由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。

问题二:小明用某种运算规则将这个数x变为y,其中x = 5。

若x × y = 60,求y的值。

解答二:根据问题可列出一元一次方程:5 × y = 60。

将方程化简得:y = 60 ÷ 5 = 12。

所以小明用这种运算规则将5变为12。

问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。

解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。

根据题意,可列出一元一次方程:x + 2 = 25。

将方程化简得:x = 25 - 2 = 23。

所以小明爸爸今年的年龄是23岁。

通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。

无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。

总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。

在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。

一元一次方程应用题50道

一元一次方程应用题50道

一元一次方程应用题50道1.张爷爷用62元批发了28千克西红柿,现在已经卖了22千克,每千克3.5元,剩下的每千克卖2.5元,西红柿买完后,张爷爷一共能赚多少钱?2.生活中,1千克废纸可以产生0.75千克再生纸,五(1)班4月份回收的废纸生产了8.8千克再生纸,问五(1)班4月份共回收了多少废纸?3..小虎在计算12.6除以一个数时,把除数的小数点向右移动了一位,结果得0.84,这道题的除数应该是多少?4.在地球上重1千克的物体,在月球上约重0.167千克。

(1)壮壮在地球上的体重是52.5千克,他在月球上大约重多少千克?(2)在月球上重9.35千克的人,在地球上大约重多少千克?(得数保留整数)5.刘飞从家出发,经过邮局到少年宫,一共用了7分钟。

(1)刘飞平均每分钟大约走多少千米?(得数保留一位小数)(2)照这样的速度,刘飞从家直接到少年宫只要5分钟,从刘飞家直接到少年宫的路程是多少米?(得数保留整数)6.今年乌龟爷爷是76岁,它的两个孙子分别是28岁和X岁,19年后,乌龟爷爷的年龄等于两个孙子的年龄和,写出等量关系,列方程求出乌龟爷爷另一个孙子的年龄。

7.客轮与货轮分别从甲乙两个码头同时相向航行,客轮的速度是25.5千米/时,货轮的速度是22.5千米/时,4.5小时后,两船相距4千米,问甲乙两码头之间的航程是多少千米?8.一个圆形花坛的周长是152.4米,在圆形花坛的周围一共安装20盏灯,相邻两盏灯间隔多少米?9.等腰三角形的周长是37.5厘米,其中一条腰的长度等于底边长度的2倍,底边长多少厘米?腰长多少厘米?10.超市购进一批桌椅,一张桌子比一把椅子贵163.5元,这个钱数正好相当于椅子价格的3倍,一张椅子的价格是多少元?11.一根绳子长86.4米,对折3次后,平均每段长多少米?12.在下列式子里填上合适的运算符号和括号,使等式成立。

0.5 0.5 0.5 0.5 0.5=30.5 0.5 0.5 0.5 0.5=40.5 0.5 0.5 0.5 0.5=613.某出租车的起步价为8元,行驶超过2千米后,每千米收费1.2元(超出的部分不足1千米的按1千米计算),李阿姨从家乘出租车去电影院,下车时付了17.6元,她家离电影院最多有多远?14.小明去商店买练习本,买8本还差2.8元,买4本还剩0.8元。

一元一次方程应用题初一简单

一元一次方程应用题初一简单

一元一次方程应用题初一简单在初中数学学习中,一元一次方程是一个重要的概念。

它在解决实际问题时有着广泛的应用。

本文将介绍一些初一水平下的简单应用题,帮助读者更好地理解和掌握一元一次方程的使用。

情景一:购买文具小明去文具店买铅笔和橡皮,铅笔每支1元,橡皮每个0.5元。

他一共花了9元买了10支铅笔和橡皮。

请问他买了几支铅笔和几个橡皮?假设小明买了x支铅笔,y个橡皮。

根据题意,可以列出方程组:1.x + y = 102.x + 0.5y = 9通过解方程组,可以得到小明买了6支铅笔和4个橡皮。

情景二:植树某村庄共植树苗300棵,如果每天植树苗数目一样,需要植树苗几天?假设每天植树苗数目为x棵,需要植树m天。

根据题意,可以列出方程:x * m = 300通过解方程,可以得到每天需要植树100棵,植树m天。

情景三:体育课班级有男生和女生共30人参加体育课活动,男生的人数是女生的2倍。

男生站成一排,女生站成一排,男生一排站4个人,女生一排站3个人。

请问男生和女生各有几人?假设男生有x人,女生有y人。

根据题意,可以列出方程组:1.x + y = 302.4x = 3y通过解方程组,可以得到班级里有20名男生和10名女生。

结语一元一次方程是一个简单而重要的数学概念,通过上述情景的应用题,我们可以看到方程可以帮助我们解决各种实际问题。

希望读者在学习数学的过程中,能够灵活运用一元一次方程,提高解决问题的能力。

注意:以上仅为示例,实际题目可能更为复杂,需结合实际情况灵活运用解题方法。

一元一次方程应用题(50道)

一元一次方程应用题(50道)

一元一次方程应用题(50道)一元一次方程应用题(50道)1. 池塘问题:有一个池塘,里面有一些鱼和青蛙。

已知鱼和青蛙的总数为36,头数为100,请问池塘里有多少只鱼和青蛙?2. 苹果贩卖问题:小明每天贩卖一些苹果和橙子。

已知他卖出的苹果数目是橙子的2倍,他总共卖出了15个水果。

请问他每天贩卖多少个苹果和橙子?3. 铁路站台问题:火车站上有一辆高铁和一辆普速列车,一共有30个车厢。

已知高铁的车厢数是普速列车的2倍,问高铁和普速列车各有多少个车厢?4. 小明和小红问题:小明比小红大2岁,两人年龄之和是28岁。

请问小明和小红分别多少岁?5. 汽车和自行车问题:青松和小明一起从A城到B城,青松骑自行车,每小时的速度是12km/h;小明开汽车,每小时速度是60km/h。

已知他们离开A城和到达B城的时间差2个小时,求A城到B城的距离。

6. 水果和蔬菜问题:在一次农贸市场活动中,小王和小李带来各自的水果和蔬菜卖。

已知小王卖出了10个水果和5个蔬菜,而小李卖出了8个水果和7个蔬菜。

小王的水果每个价格是3元,蔬菜每个价格是2元;小李的水果每个价格是4元,蔬菜每个价格是1元。

请分别计算小王和小李卖出水果和蔬菜的总金额。

7. 儿童和成人门票问题:某游乐园门票分为儿童票和成人票。

已知一天销售的门票总数为48张,总金额为240元。

儿童票的价格是每张15元,成人票的价格是每张20元。

请问儿童票和成人票分别售出了多少张?8. 书包和铅笔盒问题:小明的书包和铅笔盒总共有9个,书包比铅笔盒的数量多3。

请问书包和铅笔盒各有多少个?9. 电脑和手机问题:小王带着电脑和手机出门,电脑的重量是手机的2倍,他们的总重量是6kg。

请问电脑和手机各有多重?10. 停车费问题:某停车场停车费为每小时8元。

小明停车了4小时,停车费用为多少元?11. 毛巾和浴巾问题:某商店有毛巾和浴巾两种商品,已知毛巾的价格是浴巾的三分之一。

小张花了27元买了3个毛巾和2个浴巾,请问每个毛巾和浴巾的价格分别是多少元?12. 配菜问题:在一次聚餐中,小明带来了甲菜和乙菜两种配菜。

一元一次方程应用题专题练习

一元一次方程应用题专题练习

一元一次方程应用题专题练习这种方程是最简单的方程之一,但在各种实际问题中却有广泛的应用,包括代数问题,几何问题,经济问题等等。

下面我们将通过一些具体的例子来讨论一元一次方程的应用。

例题2:商店举行特价促销活动,商品原价为x元,降价后的价格为x-30元,如果顾客购买该商品后只需支付60元,则原价是多少?解析:设原价为x元,则降价后的价格为x-30元。

根据题意,购买该商品支付的金额为60元,即x-30=60。

解这个方程可以得出x的值,即商品的原价。

例题3:一条长方形花坛的长是x米,宽是x/3米,花坛的面积是6平方米,这条花坛的周长是多少米?解析:设花坛的长为x米,则宽为x/3米。

花坛的面积是6平方米,即长乘宽等于6平方米,即x*(x/3)=6、解这个方程可以得出x的值,即长方形花坛的长和宽。

根据长方形的周长公式C=2*(长+宽),可以得到长方形花坛的周长。

通过以上例题可以看出,一元一次方程可以用来解决各种实际问题。

几何问题中可以应用一元一次方程来求解长度,面积,周长等问题;代数问题中可以应用一元一次方程来求解未知数的值;经济问题中可以应用一元一次方程来求解价格,成本,收入等问题。

在解决实际问题时,我们通常需要先列方程,然后解方程,最后验证结果。

列方程是根据问题中所给的条件,用字母表示未知数,建立数学模型。

解方程是根据所列方程求解未知数的值。

验证结果是将求解得到的值代入原方程中验证是否符合问题的条件。

在解一元一次方程的过程中,常用的解法有逆运算法、消元法、方程图法等。

根据问题的实际情况,选择不同的解法来解决问题。

总结:一元一次方程是一种简单而常用的方程形式,广泛应用于各个领域的实际问题中。

通过实例可以看出,运用一元一次方程可以解决各种数学问题,提高数学解题的能力和思维能力。

在解决实际问题时,应该注意建立数学模型,合理选择解法,并进行结果的验证,以确保解答正确。

小学一元一次方程应用题100例附答案(完整版)

小学一元一次方程应用题100例附答案(完整版)

小学一元一次方程应用题100例附答案(完整版)1. 小明买了5 个练习本,每个练习本x 元,一共花了10 元,求每个练习本多少钱?-方程:5x = 10-答案:x = 2 (元)2. 学校图书馆有科技书和故事书共80 本,科技书的数量是故事书的3 倍,设故事书有x 本,求故事书的数量。

-方程:x + 3x = 80-答案:x = 20 (本)3. 一辆汽车以每小时60 千米的速度行驶,行驶了x 小时,一共行驶了300 千米,求行驶的时间。

-方程:60x = 300-答案:x = 5 (小时)4. 果园里苹果树比梨树多20 棵,梨树有x 棵,苹果树有50 棵,求梨树的数量。

-方程:50 - x = 20-答案:x = 30 (棵)5. 小明有一些零花钱,买文具用去10 元,还剩下x 元,原来一共有30 元,求剩下的钱。

-方程:x + 10 = 30-答案:x = 20 (元)6. 一个长方形的长是宽的2 倍,宽是x 厘米,周长是30 厘米,求宽的长度。

-方程:2(x + 2x) = 30-答案:x = 5 (厘米)7. 老师给学生分糖果,如果每人分5 颗,还剩下10 颗;如果每人分7 颗,正好分完。

设学生有x 人,求学生人数。

-方程:5x + 10 = 7x-答案:x = 5 (人)8. 一本书有200 页,小明已经看了x 页,还剩下80 页没看,求小明已经看的页数。

-方程:x + 80 = 200-答案:x = 120 (页)9. 甲乙两地相距400 千米,一辆汽车从甲地开往乙地,速度是每小时x 千米,行驶了5 小时后到达乙地,求汽车的速度。

-方程:5x = 400-答案:x = 80 (千米/小时)10. 学校买了一批篮球,每个篮球80 元,一共花了x 元,买了5 个篮球,求一共花的钱。

-答案:x = 400 (元)11. 仓库里有一批货物,运走了x 吨,还剩下30 吨,这批货物原来有50 吨,求运走的货物重量。

解一元一次方程实际问题专项练习题

解一元一次方程实际问题专项练习题

解一元一次方程实际问题专项练习题
在解一元一次方程时,我们常常会遇到一些实际问题。

这些问题可以通过建立方程并解方程来求解。

下面是一些解一元一次方程实际问题的专项练题。

1. 题目一
一个长方形的宽度是长度的一半,周长为30米。

求长方形的长度和宽度。

解答
设长方形的长度为x,则宽度为x/2。

根据周长的定义,可以得到方程:
2(x + x/2) = 30
简化该方程可得:
2x + x = 30
合并同类项后得到:
3x = 30
解方程可以得到长方形的长度:
x = 10
将x的值代入宽度的方程,可以得到长方形的宽度:x/2 = 10/2 = 5
因此,该长方形的长度为10米,宽度为5米。

2. 题目二
一个有两个水桶,一个大桶和一个小桶。

大桶比小桶多装10
升水。

如果将小桶里的水倒入到大桶里,大桶就比小桶多装2升水。

求大桶和小桶分别能装多少升水。

解答
设小桶能装的水量为x升,则大桶能装的水量为x +10升。


据题目要求,可以得到方程:
(x + 2) - x = 10
简化该方程可得:
2 = 10
该方程没有解。

根据题意可知,出现这种情况是不可能的。

因此,该题无解。

以上是解一元一次方程实际问题的专项练题。

通过建立方程并解方程,我们可以求解实际问题中的未知数,解决实际生活中的各种应用问题。

*注意:本文档仅供参考,请勿引用未经证实的内容。

*。

一元一次方程的实例分析

一元一次方程的实例分析

一元一次方程的实例分析一元一次方程是代数学中最基本的方程之一,也是我们在日常生活中广泛应用的数学概念。

它在解决各类实际问题时起着重要的作用。

本文将通过几个实例来分析一元一次方程的运用,展示其在实践中的价值。

例一:购买苹果小明去超市购买苹果,经过称重得知他购买的苹果的总重量是x千克。

超市每千克苹果的价格是y元。

已知小明购买苹果的总价为20元,我们可以通过一元一次方程求解每千克苹果的价格。

假设苹果的总重量是x千克,每千克的价格是y元,则根据题意,我们可以得到以下方程:x * y = 20这是一个一元一次方程,通过调整变量的位置,我们可以解得:y = 20 / x这个方程告诉我们,每千克苹果的价格与苹果的总重量成反比。

当苹果总重量增加时,单位价格会减少。

例二:行程问题小张开车驶向目的地,已知他以恒定的速度行驶,行驶时间为t小时。

已知小张行驶的总路程是s公里,我们可以通过一元一次方程求解出他的行驶速度。

假设小张以v公里/小时的速度行驶,则根据题意,我们可以得到以下方程:v * t = s这是一个一元一次方程,通过调整变量的位置,我们可以解得:v = s / t这个方程告诉我们,行驶速度与行驶路程成正比,与行驶时间成反比。

例三:成绩评定某次考试中,小红共完成了n道题目,并获得了总分p。

已知每道题目的分值是x分,我们可以通过一元一次方程求解小红的平均得分。

假设小红的平均得分是y分,则根据题意,我们可以得到以下方程:n * y = p这是一个一元一次方程,通过调整变量的位置,我们可以解得:y = p / n这个方程告诉我们,平均得分与总分成正比,与题目数量成反比。

当总分增加或者题目数量减少时,平均得分会增加。

通过以上三个实例的分析,我们可以看到一元一次方程在解决实际问题中的巨大潜力。

它能够帮助我们解决购买、行程、评定等各类问题,并提供具体的数学解决方案。

在日常生活中,我们可以通过运用一元一次方程,更好地理解和解决各类实际问题。

一元一次方程与实际应用

一元一次方程与实际应用

一元一次方程与实际应用
1.货币问题:一元一次方程可以用来解决货币计算问题。

例如,小明
在超市买了苹果和香蕉,苹果单价为3元,香蕉单价为2元,他总共花了
8元。

现在我们可以用方程3x+2y=8来表示这个问题,其中x为苹果的数量,y为香蕉的数量。

通过解方程,可以得到苹果的数量和香蕉的数量。

2.速度问题:一元一次方程也可以用来解决速度计算问题。

例如,小
明骑自行车从A地到B地,全程50公里,他以10公里/小时的速度骑行。

如果他骑了t小时,那么我们可以用方程10t=50来表示这个问题。

通过
解方程,可以得到小明骑行的时间。

4.面积计算问题:一元一次方程还可以用来解决面积计算问题。

例如,一个矩形的长是x,宽是2x,已知它的面积为300平方米,我们可以用方
程x*2x=300来表示这个问题。

通过解方程,可以得到矩形的长和宽。

5.飞行时间问题:一元一次方程还可以用来解决飞行时间问题。

例如,一架飞机以400公里/小时的速度飞行,飞行了t小时后飞行了800公里。

我们可以用方程400t=800来表示这个问题。

通过解方程,可以得到飞机
的飞行时间。

综上所述,一元一次方程在实际生活中有着广泛的应用,可以解决各
种计算问题。

通过学习一元一次方程,我们可以更好地理解和解决实际问题,提高数学思维能力。

利用一元一次方程求解实际问题练习题

利用一元一次方程求解实际问题练习题

利用一元一次方程求解实际问题练习题背景介绍:一元一次方程是数学中最基础也是最常见的方程类型之一,其形式为ax + b = 0,其中a和b为已知数,x为未知数。

本文将通过一些实际问题练习题的解答,展示如何利用一元一次方程解决实际问题。

问题一:一个小贩卖了24个香蕉,如果每个香蕉卖1元,那么小贩总共收入多少元?解答:假设小贩共卖出x个香蕉,根据题意,每个香蕉卖1元,因此小贩总收入等于卖出的香蕉数量乘以每个香蕉的价格。

根据一元一次方程的性质,可以得到以下等式:x * 1 = 24将方程化简,得到:x = 24因此,小贩总共收入24元。

问题二:某电视机原价6000元,商家打八折促销,现价是多少?解答:假设现价为x元,根据题意,商家打八折,即现价为原价的80%。

根据一元一次方程的性质,可以得到以下等式:80% * 6000 = x将百分数转换为小数,得到80% = 0.8,表示80/100,化简方程,得到0.8 * 6000 = x计算得到:x = 4800因此,电视机的现价是4800元。

问题三:一辆汽车每小时行驶60千米,行驶t小时,总共行驶多少千米?解答:假设汽车总共行驶的距离为x千米,根据题意,汽车每小时行驶60千米,因此总共行驶的距离等于每小时行驶的速度乘以行驶的时间。

根据一元一次方程的性质,可以得到以下等式:60 * t = x将方程化简,得到:x = 60t因此,汽车总共行驶60t千米。

问题四:小明的年龄是小红的2倍,小明今年18岁,那么小红今年多少岁?解答:假设小红今年的年龄为x岁,根据题意,小明的年龄是小红的2倍,因此可以得到以下等式:2x = 18将方程化简,得到:x = 9因此,小红今年9岁。

通过以上几个实际问题练习题的解答,我们可以看到一元一次方程在解决实际问题时的应用。

通过设立适当的未知数和等式,我们可以利用一元一次方程求解实际问题中的未知数,从而得到问题的解答。

总结:一元一次方程是数学中最基础也是最常见的方程类型之一,通过本文对实际问题练习题的解答,我们深入了解了如何利用一元一次方程来求解实际问题。

(完整版)一元一次方程应用题专题

(完整版)一元一次方程应用题专题

(完整版)一元一次方程应用题专题
引言
一元一次方程是数学中最基本的方程之一。

在实际生活和工作中,我们经常遇到各种与一元一次方程有关的问题,例如物品购买、速度计算等。

本文将探讨一些实际应用中的一元一次方程题目。

应用题一:物品购买
假设你去商场购买了一批物品,其中某些物品的单价为x元,
数量为n个。

你花了y元购买了这些物品,现在你想知道每个物品
的单价和数量是多少。

解题思路:
设物品的单价为x元,数量为n个。

根据题目中的条件可列出
方程:
nx = y
我们可以通过解这个方程来求解x和n的值。

应用题二:速度计算
假设小明骑自行车以v1 km/h的速度从A地到B地,骑摩托车以v2 km/h的速度从B地到C地。

已知A地到B地的距离为d1公里,B地到C地的距离为d2公里。

现在我们想知道小明从A地到C地的总时间。

解题思路:
设从A地到B地的时间为t1小时,从B地到C地的时间为t2小时。

根据题目中的条件可列出方程:
t1 = d1/v1
t2 = d2/v2
我们可以通过解这两个方程来求解t1和t2的值,从而得到小明从A地到C地的总时间。

结论
通过以上两个应用题的解答,我们可以看到一元一次方程在实际生活中的应用范围非常广泛。

掌握一元一次方程的解题方法,可以帮助我们解决各种实际问题,提高解决问题的能力。

参考文献
[1] 清华大学附属中学数学组, 高中数学第三卷-一元一次方程. 北京: 清华大学出版社, 2009: 1-20.。

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习(含答案)一元一次方程是数学中常见的代数方程,具有形如ax + b = 0的一次项和常数项的式子,其中a和b为已知数,x为未知数,a不等于0。

一元一次方程的解即为能够使等式成立的未知数值。

在现实世界中,我们经常会遇到各种需要运用一元一次方程的问题。

下面是一些具体的应用题,帮助我们更好地理解和运用一元一次方程。

1. 购买书籍:小明花了50元买了一本书,并且还剩下10元。

这本书的原价是多少元?解:设这本书的原价为x元,根据题意可得:x - 50 = 10。

整理方程可得:x = 60。

所以,这本书的原价为60元。

2. 鸡兔同笼:在一个笼子里面关了一些鸡和兔子,总共有10个头和26只脚。

问鸡和兔子各有多少只?解:设鸡的数量为x,兔子的数量为y,由题意可得方程组: x + y = 102x + 4y = 26通过解方程可得:x = 4,y = 6。

所以,鸡有4只,兔子有6只。

3. 少女的年龄:某大街上有一个调查团队正在进行抽样调查,一名少女告诉团队成员,她今年的年龄和3年前的年龄之和为35岁。

问这名少女今年几岁?解:设这名少女今年的年龄为x岁,由题意可得方程:x + (x - 3) = 35。

整理方程可得:2x = 38,解得x = 19。

所以,这名少女今年19岁。

4. 骑车还是坐地铁:小刚每天上学都可以选择骑自行车或坐地铁。

骑自行车需要花费10分钟,而坐地铁只需要5分钟。

如果小刚骑自行车上学,他可以多睡10分钟;而如果坐地铁上学,他可以多睡20分钟。

问小刚上学要花费多长时间?解:设小刚骑自行车上学需要的时间为x分钟,由题意可得方程:x + 10 = x + 20 - 5。

整理方程可得:10 = 15,这是不成立的。

所以,这个问题没有实际解。

5. 买苹果:小明花了80元买了一些苹果,然后又花了30元买了一些梨,最后还剩下15元。

若苹果的单价是2元/个,梨的单价是3元/个,那么小明分别买了几个苹果和几个梨?解:设小明买的苹果数量为x个,梨的数量为y个,由题意可得方程组:2x + 3y = 80 - 15x + y = 80 - 15 - 30通过解方程可得:x = 25,y = 10。

一元一次方程与生活实例

一元一次方程与生活实例

一元一次方程与生活实例一元一次方程是数学中最基础且常见的方程类型之一,也是我们生活中经常遇到的实际问题的数学建模工具。

一元一次方程的求解可以帮助我们解决各种实际问题,例如计算距离、速度、价格等。

本文将通过几个生活实例,展示一元一次方程的应用。

第一个实例是用一元一次方程计算距离。

假设小明骑自行车去上学,骑行的速度是12千米/小时,骑行的时间是1.5小时。

我们可以使用一元一次方程来计算小明骑行的距离。

设小明骑行的距离为x,由距离等于速度乘以时间的公式可得方程12 * 1.5 = x。

通过解这个方程,我们可以求得小明骑行的距离。

第二个实例是用一元一次方程计算购物总价。

假设小红去商场购买衣服,她购买了x件衣服,每件衣服的价格是70元,她总共花费了420元。

我们可以使用一元一次方程来计算小红购买的衣服数量。

设小红购买的衣服数量为x,由购物总价等于单价乘以数量的公式可得方程70 * x = 420。

通过解这个方程,我们可以求得小红购买的衣服数量。

第三个实例是用一元一次方程计算运动员的平均速度。

假设一名运动员以相同的速度跑了2000米和3000米两段距离,用时分别是10分钟和15分钟。

我们可以使用一元一次方程来计算运动员的平均速度。

设运动员的平均速度为x,由速度等于距离除以时间的公式可得方程(2000 + 3000) / (10 + 15) = x。

通过解这个方程,我们可以求得运动员的平均速度。

通过以上几个实例,我们可以看到一元一次方程在生活中的广泛应用。

它不仅可以用来计算距离、价格和速度等问题,还可以用来解决更加复杂的实际问题。

在实际应用中,我们可以根据问题的特点和要求,建立相应的一元一次方程,并通过求解方程来得到问题的解答。

因此,熟练掌握一元一次方程的求解方法对我们解决实际问题非常重要。

总结起来,一元一次方程在生活中有着广泛的应用,可以用来解决各种实际问题。

通过对一元一次方程的学习和理解,我们能够将数学知识与生活实际相结合,更好地应用数学解决问题。

实际问题与一元一次方程练习题及答案

实际问题与一元一次方程练习题及答案

实际问题与一元一次方程练习题及答案1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套,现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?3.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?5.一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?6.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。

今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?7.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?8.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净?9.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。

现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?10.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。

解一元一次方程的实际应用

解一元一次方程的实际应用

解一元一次方程的实际应用在我们的日常生活和学习中,数学无处不在,而一元一次方程作为数学中的重要基础知识,有着广泛且实用的应用。

学会解一元一次方程,能够帮助我们解决很多实际问题,让我们更加清晰地理解事物之间的数量关系,并做出合理的决策。

比如说购物场景。

假设你去商场买衣服,看中了一件标价为_____元的外套,商场正在进行促销活动,全场打 8 折。

那么这件外套打折后的价格是多少呢?我们可以设打折后的价格为 x 元,根据折扣的计算方法,原价乘以折扣等于现价,可列出方程:08×_____ = x ,通过解方程就能得出这件外套打折后的具体价格。

再来看出行方面的例子。

假如你打算乘坐出租车去某个地方,出租车的起步价是_____元(包含_____公里),超过起步公里数后每公里收费_____元。

如果你的行程总共是_____公里,那么车费是多少呢?我们设总车费为 y 元,当行程超过起步公里数时,可以列出方程:y =_____ +(_____ _____)×_____ ,通过这个方程就能算出所需支付的车费。

在工作中,一元一次方程也能发挥作用。

比如你在一家工厂上班,按件计酬,每生产一件合格产品能获得_____元的报酬。

已知你在一段时间内共获得了_____元的工资,并且生产的合格产品数量为 x 件,那么可以列出方程:_____×x =_____ ,从而求出你生产的合格产品数量。

还有水电费的计算问题。

已知每吨水的价格是_____元,每个月的水费固定支出是_____元。

如果这个月的水费总共是_____元,用了 x吨水,那么可以列出方程:_____×x +_____ =_____ ,由此就能算出这个月的用水量。

在投资理财中,一元一次方程同样有其用武之地。

假设你把_____元钱存入银行,年利率是_____%,存了 x 年,到期后的本息和为_____元。

根据利息的计算公式:本息和=本金+本金×年利率×时间,可以列出方程:_____ +_____×_____%×x =_____ ,通过解方程就能知道存款的年限或者预测一定年限后的本息和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5一元一次方程在生活中实际应用练习列方程解应用题的一般步骤:① 审题:要认真读题,善于分析问题,弄清题意和题中的数量关系,找出已知量和未知量;② 设未知数:用字母表示题目中的一个未知数;③ 找相等关系:找出能够表示应用题全部含义的一个相等关系:④ 列方程:根据相等关系列出方程,且注意方程两边的式子单位要相同;⑤ 解方程:根据前面所学知识,求出未知数的值;⑥ 验证:检验所求出的解既要使方程成立,又要符合实际意义:⑦ 写答:写出答案(包括单位名称)问题 1、行程问题行程问题中的三个基本量及其关系: 路程=速度×时间.基本题目类型:相遇问题、追及问题、时钟走动题等1、运动场跑道周长 400m ,小红跑步的速度是爷爷的倍,他们从同一起点沿跑道的同一 3方向同时出发,(1)5 分钟后小红第一次追上了爷爷,你知道他的跑步速度吗? (追及问题、同向而行)分析: 相等关系 小红跑的路程-爷爷跑的路程=400m解:设爷爷跑步的速度为 x 米/分钟,则小红跑步的速度为 5 3x 米/分钟5 5 5依题意有: 5 ⨯ x - 5x = 400 解得 x = 120 那么 x= ×120=2003 3 3答:爷爷跑步的速度为 120 米/分钟,小红跑步的速度为 200 米/分钟(2)若小红追上爷爷后立即转身沿相反方向跑,几分钟后小红再次与爷爷相遇?(相遇问题,相向而行)分析:相等关系:相遇时小红跑的路程+爷爷跑的路程=400m解:设x分钟后小红再次与爷爷相遇依题意有:200x+120x=400解得x=1.25答:1.25分钟后小红再次与爷爷相遇2、甲骑车从A到B,乙骑车从B到A,甲每小时比乙多走2千米。

两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地的距离。

(分析如下图)3、旅游者游览某水路风景区,乘坐摩托艇顺水而下,然后返回登艇处,水流速度是2千米/时。

摩托艇在静水中的速度是18千米/时,为了使游览时间不超过3小时,旅游者驶出多远就应回头?分析相等关系来回时间的和=34、客车和货车分别在两条平行的铁轨上行驶,客车长150米,货车长250米。

客车比货车每秒多行4米。

(1)问两车相向行驶,从相遇到全部错开(即从两车头相遇到两车尾离开),需10秒钟,求两车的速度。

分析:相等关系客车行程+货车行程=两车长度之和(2)若同向行驶,客车从后面追上货车,从客车车头追上货车车尾到客车车尾离开货车车头,问共需多少秒?分析:相等关系客车行程-货车行程=两车长度之和行程问题练习:1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,求甲乙两地距离。

(36千米)2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?(11.25千米)3、在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后二人第一次相遇?(20分钟后)4.一列客车长200m,一列货车长280m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?(客18米/秒货12米/秒)5、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。

(1)行人和自行车的速度为每秒多少米?(2)求这列火车的身长是多少米?(286米)6、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(追不上)7、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。

出发地到目的地的距离是60公里。

问:步行者在出发后经多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)?((2+10/13)小时)8、(1)在6点和7点间,何时时钟分针和时针重合?(约6点33分重合)分析:设从6点起,经过x分钟,分针和时针重合。

整个钟表盘,可以看作是一个360度的圆。

时针对应有12格,每1格表示一小时,每2格之间的度数是360÷12=30,也就是说时针每小时走30度,那么时针每分钟走30÷60=0.5度分针对应有60格(每2个时针间隔间有5格,12×5=60,对应1分钟=60秒),那么每分钟走360÷60=6度(2)下午4:05分时,时针和分钟的夹角是多少度?故:4+(+)x=1解得x=69、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(36千米)11、一个旅行者从下午三点钟步行到当天晚上八点钟,他先走的是平路,然后爬山,到达山顶后就沿原路先下坡,再走平路,回到出发点。

已知他在平路上每小时走4英里,爬山每小时走3英里,下坡每小时走6英里,那么这个旅行者一共走多少英里?问题2:工程问题工程问题:工作量=工作效率×工作时间(工作量一般设为1)1、将一批会计报表输入电脑,甲单独做需20小时完成,乙单独做需12小时完成。

现在先由甲单独做4小时,剩下的部分由甲,乙合做完成,甲、乙两人合做的时间是多少?分析:相等关系:甲单独做的工作量+甲乙合做的工作量=全部的工作量解:设甲乙合做的时间是x小时由题知:甲工作效率1/20乙工作效率1/12甲4小时完成的工作量4×1/20=4/2011202012答:甲乙合做的时间是6小时。

2、一项工程,甲独做需12天完成,乙独做需24天完成,丙独做需6天完成,现在甲与丙合做2天后,丙因事离开,由甲乙合做,问甲乙还要几天才能完成这项工程。

(4天)3、一农场有甲乙两台打谷机,甲机的工作效率是乙机的2倍;若甲机打完谷子的2后,乙3机继续打完,前后所需的时间比同时用两台打谷机打完全部谷子所需的时间多4天,若分别用甲、乙打谷机打谷,打完谷子各需多少天?(甲6天,乙12天)4、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?工程问题练习1、有一个水池,用两个水管注水。

如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。

问还需要多少时间才能把水池注满?(4小时)②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。

如果三管同时开放,多少小时才能把一空池注满水?(3.75小时)2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?(4天)3、整理一批图书,由一个人做要40小时完成。

现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作。

(2个人)问题3:和差倍分问题(比例、比赛积分、年龄、生产、做工等各类问题)1、扶贫小组共有成员45人,根据需要分甲、乙、丙三组,这三组人数之比为2:3:4,求这三个组的人数.分析:相等关系,三个小组的人数和=45解:没其中一份为x,则甲、乙、丙三组人数分别为2x、3x、4x根据题意:2x+3x+4x=45解这个方程得:x=5∴2x=103x=154x=20答:甲乙丙三组人数分别为10人,15人,20人.2、一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3,现做一批这样的桌子,恰好用去木材3.8m3,共做多少张桌子?(100张)3、把内径为10cm的圆柱形玻璃杯装满水,倒入一个长方体铁盒内,这个长方体的内底面是边长为13cm的正方形,内高为8cm,问当铁盒装满水时,玻璃杯中水的高度下降多少?(列出方程即可)4、两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。

问本月原计划每组各生产多少个零件?(1组320,2组360)5、今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:捐款(元)人数568■10■127表中有两处看不清楚,请你帮助确定表中数据。

(8元17人,10元25人)6、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?(乙现在20岁)和差倍分问题练习1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了多少道题?(8道)2、已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,且甲乙丙三叔的和等于130,求这三个数?(20,60,50)3、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?(5胜2平0负)4、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?(567,756,1134)5、3.我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.某游客乘出租车从客运中心到三星堆,付了车费10.4元,从客运中心到三星堆大约有多少公里?(8公里)6、图纸上某零件的长度为4cm,它的实际长度是32cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

(96cm)7、一时期,日元与人民币的比价为25:1,那么日元50万,可以兑换人民币多少元?(20000)8、魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:(1)如果把0.5千克的菜放在秤上,指针转过多少角度?(9度)(2)如果指针转了540,这些菜有多少千克?(30千克)9、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。

相关文档
最新文档