初中数学二元一次方程组典型例题详解
初中数学二元一次方程组经典练习题(含答案)
初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
二元一次方程组经典例题
二元一次方程组经典例题一、例题例1:解方程组2x + y = 5 x - y = 1解析:1. 观察方程组的特点- 这个方程组中y的系数分别为1和-1,可以采用加减消元法。
2. 消元求解- 将方程2x + y = 5与方程x - y = 1相加,得到(2x + y)+(x - y)=5 + 1。
- 化简得2x+y+x - y=6,即3x=6,解得x = 2。
3. 回代求y- 把x = 2代入x - y = 1中,得到2 - y = 1,解得y=1。
所以方程组的解为x = 2 y = 1例2:解方程组3x+2y = 8 2x - 3y=-5解析:1. 选择消元方法- 为了消去其中一个未知数,我们可以给第一个方程乘以3,第二个方程乘以2,然后再相加来消去y。
2. 消元计算- 方程3x + 2y = 8两边乘以3得9x+6y = 24。
- 方程2x - 3y=-5两边乘以2得4x-6y=-10。
- 将这两个新方程相加:(9x + 6y)+(4x-6y)=24+( - 10)。
- 化简得9x+6y + 4x-6y = 14,即13x=14,解得x=(14)/(13)。
3. 回代求y- 把x=(14)/(13)代入3x + 2y = 8中,得到3×(14)/(13)+2y = 8。
- 即(42)/(13)+2y = 8,移项得2y = 8-(42)/(13)。
- 2y=(104 - 42)/(13)=(62)/(13),解得y=(31)/(13)。
所以方程组的解为x=(14)/(13) y=(31)/(13)例3:某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,问购买甲、乙两种票各多少张?设购买甲种票x张,购买乙种票y张。
根据题意可列方程组x + y = 40 10x+8y = 370解析:1. 消元方法选择- 由第一个方程x + y = 40可得y = 40 - x,我们可以采用代入消元法。
二元一次方程组的应用压轴题十种模型全攻略(解析版) 七年级数学下册
专题06二元一次方程组的应用压轴题十种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二元一次方程组的应用——年龄问题】 (1)【考点二二元一次方程组的应用——分配问题】 (3)【考点三二元一次方程组的应用——古代问题】 (5)【考点四二元一次方程组的应用——行程问题】 (6)【考点五二元一次方程组的应用——工程问题】 (7)【考点六二元一次方程组的应用——和差倍分问题】 (9)【考点七二元一次方程组的应用——方案问题】 (10)【考点八二元一次方程组的应用——销售、利润问题】 (12)【考点九二元一次方程组的应用——数字问题】 (14)【考点十二元一次方程组的应用——几何问题】 (16)【过关检测】 (17)【典型例题】【考点一二元一次方程组的应用——年龄问题】例题:(2023下·江苏宿迁·七年级统考期末)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【答案】C【分析】由题意得:妹妹今年的年龄为8岁,我今年的年龄为14岁,设妈妈今年的年龄为x岁,爸爸今年的年龄为y岁,再由题意:一家四口人的年龄加在一起是101岁,爸爸比妈妈大1岁,列出方程组,解方程组即可.【详解】解:现在一家四口人的年龄之和应该比十年前全家人年龄之和多40岁,但实际上1016338-=(岁),说明十年前妹妹没出生,则妹妹今年的年龄为1040388()--=(岁),我的年龄为6814+=(岁),设妈妈今年的年龄为x 岁,爸爸今年的年龄为y 岁,由题意得:8141011x y y x +++=⎧⎨=+⎩,解得:3940x y =⎧⎨=⎩,即爸爸今年的年龄为40岁,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式训练】【详解】解:设大头儿子现在的年龄是x 岁,爸爸的年龄是y 岁,由题意得:2352(5)8y x y x =+⎧⎨+=++⎩,解得:1033x y =⎧⎨=⎩,答:大头儿子现在的年龄为10岁.【点睛】本题考查二元一次方程组的实际应用,解题的关键是根据题意列出二元一次方程组.【考点二二元一次方程组的应用——分配问题】例题:(2023上·重庆·八年级重庆八中校考期中)某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知2名熟练工人和3名新工人每天共安装44辆共享单车;4名熟练工人每天安装的共享单车数与5名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车;(2)共享单车安装公司计划抽调出熟练工人若干,并且招聘新工人共同安装共享单车.如果25天后刚好交付运营公司3500辆合格品投入市场,求熟练工人和新工人各多少人.【答案】(1)每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车(2)熟练工人和新工人分别有10人、5人或6人、10人或2人、15人【分析】(1)设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意列方程组即可;(2)设熟练工人和新工人各m ,n 人,根据题意列出等式取值即可.【详解】(1)解:设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意,得:234445x y x y +=⎧⎨=⎩,解得108x y =⎧⎨=⎩,答:每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车.(2)解:设熟练工人和新工人各m ,n 人,由题意得:25102583500m n ⨯+⨯=,整理得:5470m n +=,当2m =时,15n =;当6m =时,10n =;当10m =时,5n =;答:熟练工人和新工人分别有10人、5人或6人、10人或2人、15人;【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.【变式训练】1.(2023下·福建南平·七年级统考期末)“建盏”作为一种茶器,是黑瓷的代表,更是南平的一张名片.“建盏”的焙烧方法目前有两种:“柴烧”和“电烧”,制坯的原料是用当地的红土和白土.已知某种同样规格的建盏,一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.在不考虑破损的情况下,某生产车间在一次生产中恰好用了红土1530克,白土1170克.(1)在这次生产中,“柴烧”和“电烧”建盏各生产多少个?(2)该车间计划购买礼盒,现有两种礼盒可供选择,A 礼盒可装2个建盏,B 礼盒可装6个建盏,若要把本次生产的建盏恰好全部装完,且礼盒装满,有几种购买方案?请说明理由.【答案】(1)“柴烧”建盏生产12个,“电烧”建盏生产6个(2)有四种购买方案,见解析【分析】(1)设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据“一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.”再建立方程组解题即可;(2)设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,再利用方程的正整数解可得答案.【详解】(1)解:设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据题意,得9075153060751170x y x y +=⎧⎨+=⎩解这个方程组得:126x y =⎧⎨=⎩,答:“柴烧”建盏生产12个,“电烧”建盏生产6个.(2)由(1)可知共生产18个建盏,设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,化简得39m n +=,所以93m n =-,因为m ,n 均为非负整数,所以930n -≥,所以3n ≤,且n 为非负整数,所以当30n m ==时,;当23n m ==时,,当16n m ==时,,当09n m ==时,,所以共有四种购买方案.【点睛】本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,理解题意,确定相等关系建立方程或方程组是解本题的关键.【考点三二元一次方程组的应用——古代问题】【变式训练】【考点四二元一次方程组的应用——行程问题】例题:(2023上·陕西咸阳·八年级咸阳市秦都中学校考阶段练习)一艘船从甲码头到乙码头顺流而行,用了2小时,从乙码头到甲码头逆流而行,用了2.5小时,已知轮船在静水中的平均速度为27千米/时,求水流的速度和甲、乙码头间的距离?(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度,用二元一次方程组的知识解答)【答案】水流的速度是3千米/时,甲、乙码头间的距离为60千米【分析】本题考查一元一次方程的应用,设水流的速度为x 千米/时,甲、乙码头间的距离为y 千米,则顺流的速度为()27x +千米/时,逆流的速度为()27x -千米/时,根据顺流、逆流时行驶路程相等列方程组,解方程即可.根据题意正确列出方程是解题的关键.【详解】设水流的速度是x 千米/时,甲、乙码头间的距离为y 千米,根据题意得:()()227,2.527,x y x y ⎧+=⎪⎨-=⎪⎩解得:3,60,x y =⎧⎨=⎩答:水流的速度是3千米/时,甲、乙码头间的距离为60千米.【变式训练】1.(2023下·重庆渝中·七年级重庆市求精中学校校考期中)甲乙两地相距240千米,一辆小车和一辆摩托车分别从甲、乙两地同时出发相向而行,1小时20分两车相遇.相遇后,摩托车继续前进,小车在相遇处停留1个小时后调头按原速返回甲地,小车在返回后半小时追上了摩托车,【考点五二元一次方程组的应用——工程问题】例题:(2023下·云南昆明·七年级校考阶段练习)巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)求A、B两工程队分别整治河道多少天?(2)若A工程队整改一米的工费为200元,B工程队整改一米的工费为150元,求完成整治河道时,这两工程队的工费共是多少?【答案】(1)A工程队整治河道5天,B工程队整治河道15天(2)60000元【分析】(1)设A工程队整治河道x天,B工程队整治河道y天,根据A工程队每天整治24米,B工程队每天整治16米,共用时20天完成认为列出方程组进行求解即可;(2)分别求出A、B两个工程队的工费,然后求和即可.【详解】(1)解:设A工程队整治河道x天,B工程队整治河道y天,根据题意得:20 2416360 x yx y+=⎧⎨+=⎩,解得:515 xy=⎧⎨=⎩.答:A工程队整治河道5天,B工程队整治河道15天;(2)解:根据题意得:2002451501615⨯⨯+⨯⨯2400036000=+60000(=元).答:完成整治河道时,这两工程队的工费共是60000元.【点睛】本题主要考查了二元一次方程组的实际应用,有理数四则混合计算的实际应用,正确理解题意找到等量关系列出方程组求解是解题的关键.【变式训练】1.(2023下·湖南邵阳·七年级统考期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店应各付多少元?(2)已知甲组单独完成需要12天,乙组单独完成需要24天,若装修完后,商店每天可盈利200元,你认为如何安排施工有利于商店经营?说说你的理由.(提示:三种施工方式:方式一甲单独完成;方式二乙组单独完成;方式三甲、乙两个装修组同时施工.)【答案】(1)甲单独工作一天应付工资300元,乙单独工作一天应付工资140元(2)由甲、乙两个装修队同时施工有利于商店经营,理由见解析【分析】(1)设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,进行计算即可得;(2)分别算出甲单独完成时需装修的费用和少盈利的钱,乙单独完成时需装修的费用和少盈利的钱,甲乙合作完成时需装修的费用和少盈利的钱,进行比较即可得.【详解】(1)解:设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,解得300140 xy=⎧⎨=⎩,答:设甲单独工作一天应付工资300元,乙单独工作一天应付工资140元.(2)解:甲单独完成:30012200126000⨯+⨯=(元)乙单独完成:14024200248160⨯+⨯=(元)甲、乙两队完成:(300140)820085120+⨯+⨯=(元)512060008160<<,∴由甲、乙两个装修队同时施工有利于商店经营.【点睛】本题考查了二元一次方程组的应用,解题的关键是理解题意,根据等量关系列出方程,正确计算.【考点六二元一次方程组的应用——和差倍分问题】例题:(2023上·江西九江·八年级统考阶段练习)为落实“五育并举”、提高学生的身体素质,某校在课后服务中大力开展球类运动,现需要购买一批足球、篮球.已知购买1个足球和1个篮球共需140元,购买2个足球和3个篮球共需340元,求足球和篮球的单价.【答案】足球的单价为80元,篮球的单价为60元【分析】本题考查了二元一次方程组的应用.设足球的单价为x元,篮球的单价为y元,根据“购买1个足球和1个篮球共需140元;购买2个足球和3个篮球共需340元”,即可得出关于x,y的二元一次方程组,解之即可求解.【详解】解:设足球的单价为x元,篮球的单价为y元,依题意得:140 23340 x yx y+=⎧⎨+=⎩,解得:8060 xy=⎧⎨=⎩.答:足球的单价为80元,篮球的单价为60元.【变式训练】1.(2023下·河南周口·七年级校联考阶段练习)“绿水青山就是金山银山”,保护环境从日常出行做起.我市实行限行政策后,某天小林在某停车场观察到:该停车场停有三轮车和小轿车两种车型共30辆,已知停车场的车轮总数为110个,求三轮车和小轿车各有多少辆?(请用二元一次方程组解答)【答案】停车场有三轮车10辆,小轿车20辆【分析】设停车场有三轮车x 辆,小轿车y 辆,根据停车场停有三轮车和小轿车两种车型共30辆,停车场的车轮总数为110个,列出方程组进行求解.【详解】解:设停车场有三轮车x 辆,小轿车y 辆.由题意得:3034110x y x y +=⎧⎨+=⎩,解得:1020x y =⎧⎨=⎩;答:停车场有三轮车10辆,小轿车20辆.【点睛】本题考查二元一次方程组的应用,解题的关键是找准等量关系,正确的列出方程组.【考点七二元一次方程组的应用——方案问题】例题:(2023上·山东·八年级期末)现欲将一批荔枝运往外地销售,若用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨.现有荔枝31吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题::(1)1辆A 型车和1辆B 型车都载满荔枝一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案.【答案】(1)1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨(2)答案见解析【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.(1)设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,根据用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨列出方程组求解即可;(2)根据题意可得3431a b +=,再根据a 、b 均为非负整数解方程即可得到答案.【详解】(1)解:设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,【变式训练】1.(2023上·四川达州·八年级校考期末)下列两题任选一道12两班共计有95名学生,他们的体育平均达标率(达到标准的百分率)是60%,如果一班学(1)初二()()生的达标率是40%,二班学生的达标率是78%,那么一、二班人数各是多少人?(2)某单位新盖了一栋楼房,要从相距132米处的自来水主管道处铺设水管,现有8米长的与5米长的两种规格的水管可供选用.①请你设计一种方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?②若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱?【答案】(1)一班人数是45人,二班人数是50人;(2)①共有3种选取方案,方案1:选取4根8米长的水管,20根5米长的水管;方案2:选取9根8米长的水管,12根5米长的水管;方案3:选取14根8米长的水管,4根5米长的水管;②选取14根8米长的水管,4根5米长的水管最省钱.【分析】本题主考查了解二元一次方程组以及二元一次方程组的应用.(1)设一班人数是x人,二班人数是y人,根据“初二(1)(2)两班共计有95名学生,且他们的体育平均达标率(达到标准的百分率)是60%”,可列出关于x,y的二元一次方程组解之即可得出结论;(2)①设选取m根8米长的水管,n根5米长的水管,根据需要水管的总长度为132米,可列出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各选取方案;②利用总价等于单价乘以数量,可求【考点八二元一次方程组的应用——销售、利润问题】【变式训练】【考点九二元一次方程组的应用——数字问题】例题:(2023上·江苏·七年级校考周测)一个两位数,个位上的数字与十位上的数字的和为13,若把个位上的数字与十位上的数字对调,则所得的数比原数的2倍小4,求原来的两位数.【答案】原来的两位数是49.【分析】本题考查了二元一次方程组的应用,读懂题意,找到合适的等量关系,列出方程组,是解答本题的关键.根据题意设个位数字为x,十位数字为y,利用已知条件列出二元一次方程组,由此得到答案.【详解】解:根据题意设:个位数字为x,十位数字为y,∴()()13210104x y y x x y +=⎧⎨+-+=⎩,解得:94x y =⎧⎨=⎩,∴原来的两位数为:410949⨯+=,答:原来的两位数是49.【变式训练】1.(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5.(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.【详解】(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点睛】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【考点十二元一次方程组的应用——几何问题】例题:(2023上·吉林四平·八年级统考期末)如图,在大长方形ABCD 中放入10个相同的小长方形(图中空白部分),若大长方形的周长是104,图中阴影部分的面积是327,设小长方形的长为x ,宽为y ,求一个小长方形的周长和面积分别是多少?【答案】一个小长方形的周长为26,面积为30.【分析】本题考查了二元一次方程组,找到正确的数量关系是解题的关键.由大长方形的周长是104,图中阴影部分的面积是327.列出方程组,可求解.【详解】解:由题意可得:()()()2331043310327x y x y x y x y xy ⎧+++=⎪⎨++-=⎪⎩∴2213109x y x y +=⎧⎨+=⎩()226,30x y xy ∴+==答:一个小长方形的周长为26,面积为30.【变式训练】1.(2023上·甘肃张掖·八年级校考阶段练习)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?【答案】每块小长方形的长为36厘米,宽为12厘米【分析】本题考查了二元一次方程组的应用,观察图形、结合“大长方形宽为48厘米”列出二元一次方程组求解是解题的关键.【详解】解:设小长方形的长为x 厘米,宽为y 厘米,48x y +=⎩解得:3612x y =⎧⎨=⎩,答:每块小长方形的长为36厘米,宽为12厘米.【过关检测】一、单选题1.(2024下·全国·七年级假期作业)甲、乙两人相距42km ,若两人同时相向而行,可在6h 后相遇;若两人同时同向而行,乙可在14h 后追上甲.设甲的速度为km /h x ,乙的速度为km /h y ,列出的二元一次方程组为()A .6642141442x y y x +=⎧⎨=+⎩B .6642141442x y x y +=⎧⎨=+⎩C .66421414x y y x +=⎧⎨=⎩D .6642141442y x x y -=⎧⎨+=⎩【答案】A【解析】略2.(2024上·湖南怀化·九年级校考期末)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是()A . 4.50.51y x y x =+⎧⎨=-⎩,B . 4.521y x y x =+⎧⎨=-⎩,C . 4.50.51y x y x =-⎧⎨=+⎩,D . 4.521y x y x =-⎧⎨=+⎩,【答案】A 【分析】本题主要考查了从实际问题中抽象出二元一次方程组,设木头长为x 尺,绳子长为y 尺,根据用一根绳子去量一根木头的长、绳子还剩余4.5尺,可得 4.5y x =+,根据将绳子对折再量木头,则木头还剩余1尺可得0.51y x =-,据此列出方程组即可.【详解】解:可设木头长为x 尺,绳子长为y 尺,0.51y x =-⎩故选:A .3.(2024上·陕西宝鸡·八年级统考期末)某校课外小组的学生分组做课外活动,若每组7人,则余下3人:若每组8人,则少5人.设课外小组的人数为x ,应分成的组数为y ,可列方程组()A .7385y x y x =+⎧⎨+=⎩B .7385y x y x +=⎧⎨-=⎩C .7385y x y x =-⎧⎨=-⎩D .7385y x y x =+⎧⎨=+⎩【答案】B【分析】本题主要考查了根据实际问题列方程组,审清题意、找准等量关系是解题的关键.设课外小组的人数为x ,应分成的组数为y ,根据等量关系“若每组7人,则余下3人”和“每组8人,则少5人”即可列出方程组.【详解】解:设课外小组的人数为x ,应分成的组数为y ,根据“每组7人,则余下3人;每组8人,则少5人”可得方程组:7385y x y x +=⎧⎨-=⎩.故选B .4.(2023上·山东青岛·八年级校考阶段练习)如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ,则每块墙砖的面积是()2cm .A .425B .525C .600D .800【答案】B 【分析】本题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.设墙砖的长为cm x ,宽为cm y ,根据等量关系“3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ”列出二元一次方程组求出x 、y 的值,然后再求面积即可.【详解】解:设墙砖的长为cm x ,宽为cm y ,根据题意得:3102240y x x y -=⎧⎨-=⎩,解得:3515x y =⎧⎨=⎩,所以墙砖的面积为:23515525cm ⨯=.故选:B .二、填空题【答案】92【分析】本题考查二元一次方程组的应用.根据图中的数据,可以列出相应的二元一次方程组,然后即可求得小长方形的长和宽,然后即可计算出图中阴影部分的面积.【详解】解:设小长方形的长为cmx,宽为由图可得:212418x y yx y+-=⎧⎨+=⎩,10x=⎧三、解答题9.(2023上·山东青岛·八年级校考阶段练习)古代有一个官兵分布的问题:“一千官兵一千布,一官四尺无【答案】90cm【分析】本题考查了二元一次方程组的应用,设1支塑料凳子的高度为加ycm,即可根据题意列出方程组求解.【详解】设1台A 型机器人每小时拣垃圾a 吨,1台B 型机器人每小时拣垃圾b 吨,根据题意,得()23 2.623 3.6a b a b +=⎧⎨+=⎩,解得0.40.6a b =⎧⎨=⎩,故1台A 型机器人每小时拣垃圾0.4吨,1台B 型机器人每小时拣垃圾0.6吨.【点睛】本题考查了方程组的应用,熟练列出方程组是解题的关键.14.(2023下·湖南岳阳·七年级统考阶段练习)小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?【答案】215mm 【分析】设每个小长方形的长是mm x ,宽是mm y ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,1个长加1的和等于两个宽的和,于是得方程组,解出即可.【详解】解:设小长方形的长是mm x ,宽是mm y ,由图(1),得35x y =,由图(2),得12x y +=,所以3512x y x y=⎧⎨+=⎩,解得53x y =⎧⎨=⎩,∴小正方形的长为5mm ,宽为3mm ,∴小长方形的面积为25315mm =⨯=,答:每个小长方形的面积是215mm .【点睛】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.(1)放入1个小球水面升高______cm,放入1个大球水面升高(2)如果使水面上升到50cm,应放入大球、小球各多少个?【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出二元一次方程组.(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,根据题意列出二元一次方程组求解即可;(2)根据题意得到3431a b +=,然后由a ,b 都是正整数求解即可.【详解】(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,依题意得:210211x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩.答:1辆A 型车载满萝卜一次可运送3吨,1辆B 型车载满萝卜一次可运送4吨.(2)∵现有萝卜31吨,计划同时租用A 型车a 辆,B 型车b 辆,∴3431a b +=,∵a ,b 都是正整数,∴当9a =时,1b =;当5a =时,4b =;当1a =时,7b =;∴该物流公司共有3种租车方案:方案1:租用9辆A 型车,1辆B 型车方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.。
人教版苏科版初中数学二元一次方程组(经典例题含答案)
班级小组姓名成绩(满分120)一、认识二元一次方程组例1.方程:①10x +=;②2x y +=;③24x =;④2x y z ++=;⑤322x y x -=;⑥1xy =;⑦154y x+=;中,属于二元一次方程的有.②⑤(两个)例1.变式1.甲班有男生x 人,女生y 人,其中男生比女生的2倍少8人,列出关于x ,y 的二元一次方程是.28x y =-例1.变式2.若22113102n m x y +--+=是关于,x y 的二元一次方程,则m =,n =.1,-1例1.变式3.下列方程组中,二元一次方程组的个数是(C)()()()()()()11112241541234562423267336x y x x y y y x x x y x y x z x y x y x y ⎧⎧+==+===+=⎧⎧⎧⎧⎪⎪⎨⎨⎨⎨⎨⎨-=+=-=+=⎩⎩⎩⎩⎪⎪+=-=⎩⎩A.1个 B.2个 C.3个 D.4个二、求解二元一次方程组(一)代入法解二元一次方程组(二)加减法解二元一次方程组例2.已知360x y +-=,用含x 的代数式表示y 为,用含y 的代数式表示x为.66,636333x xy x y y --==--或例2.变式1.解方程组:31328x y x y +=-⎧⎨-=⎩①②例2.变式2.解方程组:32725x y x y -=⎧⎨+=⎩①②()31331281,1221x y y y y y x x y =-----==-=-==⎧⎨=-⎩解:由①得 ③将③代入②得:解得:将,代入③得 则方程组的解为+1233325131x x x y y x y ===+===⎧⎨=⎩解:由①②得 4解得:将,代入②得 解得:则方程组的解为例2.变式3.长方形的周长为60cm,长和宽之差为20cm,则这个长方形的面积等于125cm².三、应用二元一次方程组——鸡兔同笼(一)列二元一次方程组解应用题例3.用一根绳子环绕一棵大树,若环绕大树4周,则绳子还多1尺;若环绕大树5周,则绳子又少3尺.设这根绳子有x 尺,环绕大树一周需要y 尺,则下列所列方程组正确的是(B)A.4153y x y x =+⎧⎨=-⎩ B.4153y x y x+=⎧⎨-=⎩ C.4153x y x y+=⎧⎨-=⎩ D.4153x y x y-=⎧⎨+=⎩例3.变式1.某车间有56名工人生产螺栓和螺母,每人每天平均生产螺栓16个或螺母24个,问怎样分配工人才能恰好使每天生产的螺栓和螺母按1∶2配套?设分配x 人生产螺栓,y 人生产螺母,依题意列方程组是(A )A.5621624x y x y+=⎧⎨⨯=⎩ B.5622416x y x y+=⎧⎨⨯=⎩ C.561624x y x y+=⎧⎨=⎩ D.562416x y x y+=⎧⎨=⎩例3.变式2.如下图,一个大长方形是由七个一样大小的小长方形拼成,已知大长方形的周长34cm,求小长方形的长和宽.()25525342.x y x y x x y y y ==⎧⎧⎨⎨++==⎩⎩∴解:设小长方形的长为 cm,宽为 cm,由题意得:解得:小长方形的长为 5 cm,宽为 2 cm 例3.变式3.8年前父亲的年龄是儿子年龄的4倍,从现在起8年后父亲的年龄成为儿子年龄的2倍,求父亲和儿子现在的年龄.解:设父亲现在的年龄是x 岁,儿子现在的年龄是y 岁,-8=4(y -8),+8=2(y +8).解得=40,=16.所以父亲现在40岁,儿子现在16岁.四、应用二元一次方程组——增收节支(一)行程问题的应用例4.某人骑摩托车从A 地到B 地,以20km/h 的速度前进.回来因有事绕道而行,因而多走了8km.这时骑车的速度比原来每小时多行2km,并且比去时多用了15分钟,求A、B 两地的距离及此人去时所花的时间.km/h 20251552286045km/h .4x y y x x y x y =⎧=⎧⎪⎪⎨⎨⎛⎫+=+= ⎪⎪⎪⎩⎝⎭⎩∴解:设A、B两地的距离为 ,去所花的时间为 小时,由题意得:解得:A、B两地的距离为 25 ,去所花的时间为 小时例4.变式1.从小华家到姥姥家,有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?解:设小华到姥姥家上坡路有xkm ,下坡路有ykm ,那么小华从姥姥家回来,需要走上坡路ykm ,下坡路xkm ,根据题意得:由①得:10x +6y =33③由②得:10y +6x =39④③×10得:100x +60y =330⑤④×6得:36x +60y =234⑥⑤﹣⑥得:x =1.5,将x =1.5代入③得:15+6y =33,∴y =3;∴,所以,小华到姥姥家有1.5km 上坡路,3km 下坡路,共有4.5km .答:姥姥家离小华家4.5km .例4.变式2.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.解:设快车速度为x m /s ,慢车速度为y m /s .(x +y )=168+184,(x -y )=168+184,因此快车的速度为55m /s ,慢车的速度为33m /s .例4.变式3.已知某一铁路桥长1000m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1min,整列火车完全在桥上的时间为40s,求火车的长度和速度.解:设火车的长度为x m ,火车的速度为y m /s,则根据题意,得000+x =60y ,000-x =40y .=200,=20.所以火车的长度为200m ,火车的速度为20m /s .(二)工程问题的应用例5.某工厂接受一批订货,按计划规定的天数,如果每天平均生产26件,差38件不能完成任务;如果平均每天生产30件,可超额10件完成任务,则这批订货有多少件,原计划几天完成任务?26+38350301012.x y y x x y x y ==⎧⎧⎨⎨-==⎩⎩∴解:设这批订货有 件,原计划 天完成,由题意得:解得:这批订货有 350 件,原计划 12 天完成例5.变式1.零陵制衣厂某车间计划用10天时间加工一批出口童装和成人装共360件.该车间的加工能力是:每天能单独加工童装45件或成人装30件.①该车间安排几天加工童装,几天加工成人装,才能如期完成任务?②若加工一件童装可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元?解:①设该车间应安排x 天加工童装,y 天加工成人装,才能如期完成任务,则,解得:.答:该车间应安排4天加工童装,6天加工成人装,才能如期完成任务;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.例5.变式2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设分配x名工人生产螺钉,y名工人生产螺母,则一天生产的螺钉数为1200x个,生产的螺母数为2000y个.根据题意,得+y=22,×1200x=2000y.+y=22,x=5y,=10,=12.所以为了使每天生产的产品刚好配套,应安排10名工人生产螺钉,12名工人生产螺母.例5.变式3.某地为了尽快排除堰塞湖险情,决定在堵塞体表面开挖一条泄流槽,经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?解:设原计划每天挖土石方x万立方米,增调人员和设备后每天挖y万立方米,依据题意,可列出方程组:=2x+1,x+(5-2)y=13.4.=1.3,=3.6.所以原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米.(三)增收节支问题的应用例6.我校八年级一班和二班去年参加植树活动时,一班比二班多种了50棵,今年参加植树活动时,一班比去年多种了12%,二班比去年多种了15%,结果一班仍比2班多种了50棵树,一班、二班去年各种了多少棵树?()()50250112%115%50200.x y x y x x y y =+=⎧⎧⎨⎨+=++=⎩⎩∴解:一班去年种了 棵树,二班去年种了 棵树,由题意得:解得:一班去年种了 250 棵树,二班去年种了 200 棵树例6.变式1.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元.”爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%.”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).()()()()()()()()3+2=3623150%+2120%=4515150%=150%2=3120%=120%15=18x y x y x x y y x y =⎧⎧⎨⎨++=⎩⎩++⨯++⨯解:上月萝卜的单价是 元/斤,排骨的单价是 元/斤,由题意得:解得:这天萝卜的单价是元/斤排骨的单价是元/斤例6.变式2.某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比总支出多950万元.今年的总产值和总支出各是多少万元?解:设去年的总产值是x 万元,去年的总支出是y 万元,由题意,得-y =500,1+15%)x -(1-10%)y =950.=2000,=1500.所以(1+15%)x =2300,(1-10%)y =1350.所以今年的总产值是2300万元,总支出是1350万元.例6.变式3.学校书法兴趣小组准备到文具店购买A、B 两种类型的毛笔,文具店的销售方法是:一次性购买A 型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B 型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付145元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付129元.这家文具店的A、B 两种类型毛笔的零售价各是多少?解:设该家文具店A 型毛笔的零售价为每支x 元,B 型毛笔的零售价为每支y元,根据题意,得x +15y +25(y -0.6)=145,x +20(x -0.4)+15y +5(y -0.6)=129.=2,=3.所以这家文具店A 型毛笔的零售价为每支2元,B 型毛笔的零售价为每支3元.五、应用二元一次方程组——里程碑上的数(一)数字问题的应用例7.一个两位数,个位数字为x ,十位数字为()2x +,则这个两位数可以表示为.()102+x x+如果将两个数字对调,则现在的两位数与原两位数的和为.2222x +例7.变式1.一个三位数,它的十位上的数字是百位上数字的3倍,个位上的数字是百位上数字的2倍,设这个三位数个位上的数字是x ,十位上的数字为y ,百位上的数字为z .(1)用含,,x y z 的代数式表示这个三位数:;10010z y x ++(2)用含z 的代数式表示这个三位数:;132z (3)写出所有满足条件的三位数:.132,264,396例7.变式2.一个两位数的十位数字与个位数字的和是8,如果这个两位数加上54,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.+=8110+54107.x y x y x x y y x y =⎧⎧⎨⎨+=+=⎩⎩∴解:设原来的两位数十位数字为,个位数为,由题意得:解得:原来的两位数为17例7.变式3.有一个两位数,如果把这个数两个数位上的数字对调,那么所得的新数比原数小27;又若将这个两位数除以它的各位数字之和的2倍,商是3,余数是7,这个两位数是多少?()()1010=278103275.x y x y y x x x y x y y +-+⎧=⎧⎪⎨⎨+=⨯++=⎪⎩⎩∴解:设两位数十位数字为,个位数为,由题意得:解得:两位数为85六、三元一次方程组(一)三元一次方程组及其解的概念例8.三元一次方程组156x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是(A )A.105x y z =⎧⎪=⎨⎪=⎩ B.124x y z =⎧⎪=⎨⎪=⎩C.104x y z =⎧⎪=⎨⎪=⎩D.410x y z =⎧⎪=⎨⎪=⎩例8.变式1.1039x y y z z x +=⎧⎪+=⎨⎪+=⎩的解为,它的解能使代数式8x my z -+的值为-16,则m =.82161x y z =⎧⎪=⎨⎪=⎩例8.变式2.解三元一次方程组232523z x yx y z x y z =+⎧⎪-+=⎨⎪+-=⎩①②③()()23254252333425223235235x y x y x y x y x y y y x y x x y z x y z -++=-=+-+===-=====+==⎧⎪∴=⎨⎪=⎩解:将①代入②得:即:将①代入③得:即:将代入得:将,代入①得:方程组的解为例8.变式3.已知()282413830x y y z x -+-+-=,求x y z ++的值.8041083021434132344x y y z x x y z x y z -=⎧⎪-=⎨⎪-=⎩⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩∴++=++=解:由题意得:解得※七、二元一次方程与一次函数(一)二元一次方程与一次函数例9.方程22x y -=的解有个,用含x 的代数式表示y 为,此时y 是x 的函数.22,y x =-无数,一次例9.变式1.函数21y x =-+与39y x =-的图象交点坐标为,这对数是方程组的解.()392,3,21y x y x =-⎧-⎨=-+⎩例9.变式2.图中的两直线1l 与2l 的交点P 的坐标可以看成是方程组的解.11222y x y x ⎧=-+⎪⎨⎪=--⎩例9.变式3.某地区一种商品的需求量1y (万件)、供应量2y (万件)与价格x (元/件)分别近似满足下列函数关系式:160y x =-+,2236y x =-.需求量为0时,即停止供应.当12y y =时,该商品的价格称为稳定价格,需求量称为稳定需求量.(1)求该商品的稳定价格与稳定需求量;(2)价格在什么范围时,该商品的需求量低于供应量?(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?解:(1)当12y y =时,有60236x x -+=-,解得32x =,此时326028y =-+=,即该商品的稳定价格为32元/件,稳定需求量为28万件.(2)因为“需求量为0时,即停止供应”,所以,当10y =时,有60x =.又由图象结合可知,当价格大于32元/件而小于60元/件时,该商品的需求量低于供应量;(3)设政府部门对该商品每件应提供a 元补贴.则()28460284236x x a +=-+⎧⎨+=+-⎩解得:286x a =⎧⎨=⎩所以政府部门对该商品每件应提供6元补贴.※八、用二元一次方程组确定一次函数表达式(一)用二元一次方程组确定一次函数表达式例10.已知函数3y x b =+的图象经过点(-1,2)和(a ,4),则a =.13-例10.变式1.一个一次函数的图象平行于直线2y x =-,且经过点A(-4,2),求这个函数的表达式.()()=224,224262 6.y kx b y x k b b y x +=-∴=--=-⨯-+=-∴=-- 解:设所求一次函数表达式为,它的图象平行于直线 又其图象过点由题意得:解得:所求一次函数表达式为例10.变式2.直线l 与直线21y x =+的交点的横坐标为-1,与直线2y x =-+的交点的纵坐标为1,求直线l对应的函数表达式.二元一次方程组经典例题答案第11页共11页()()1211211,121,1=1110.x y x y l y x l y x y kx b k b k k b b y x =-=+=-∴=+--=-+++==⎧⎧⎨⎨-+=-=⎩⎩∴=解:将 代入 得 ,与直线 的交点坐标为同理可以求出: 与直线 的交点坐标为设所求一次函数表达式为,解得:所求一次函数表达式为例10.变式3.一天早晨6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间t(h)的关系可用下图中的折线表示,根据图示提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)求出汪老师在返校途中路程s(km)与时间t (h)的函数关系式;(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述.解:(1)开会地点离学校有60千米;(2)设汪老师在返校途中s 与t 的函数关系式为()0s kt b k =+≠.由图可知,图象经过点(11,60)和点(12,0),116060120720k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:则s 与t 的函数关系式为()607201112s t t =-+≤≤(3)如:汪老师由上午6点钟从学校出发,乘车到市里开会,行了40公里时,发生了堵车,堵了约30分钟才通车,在8点钟准时到达会场开了3个小时的会,会议一结束就返校,结果在12点钟到校.(言之有理即可)。
七年级初一数学第八章 二元一次方程组知识点-+典型题及解析
七年级初一数学第八章二元一次方程组知识点-+典型题及解析一、选择题1.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x人,分成y组,那么可得方程组为()A.6374y xy x=-⎧⎨=+⎩B.6374y xy x=+⎧⎨=+⎩C.6374x yx y+=⎧⎨-=⎩D.6374y xy x=+⎧⎨+=⎩2.同时适合方程2x+y=5和3x+2y=8的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.31xy=⎧⎨=⎩D.31xy==-⎧⎨⎩3.已知方程组31331x y mx y m+=+⎧⎨+=-⎩的解满足0x y+>,则m取值范围是()A.m>1 B.m<-1 C.m>-1 D.m<14.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.504x yy x+=⎧⎨=⎩B.504x yx y+=⎧⎨=⎩C.504x yy x-=⎧⎨=⎩D.504x yx y-=⎧⎨=⎩5.已知关于x,y的方程组72x mymx y m+=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为()A.54xy=⎧⎨=-⎩B.14xy=⎧⎨=-⎩C.41xy=⎧⎨=-⎩D.-54xy=⎧⎨=⎩6.已知关于x,y的方程组35,4522x yax by-=⎧⎨+=-⎩和234,8x yax by+=-⎧⎨-=⎩有相同解,则a,b的值分别为()A.2-,3 B.2,3 C.2-,3-D.2,3-7.在解方程组2278ax bycx y+=⎧⎨+=⎩,时,甲同学正确解得32xy=⎧⎨=⎩,乙同学把c看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( ) A .2a =-,4b =,5c = B .4a =,5b =,2c =- C .5a =,4b =,2c =D .不能确定8.若关于x ,y 的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2B .10C .2-D .49.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩10.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩二、填空题11.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.12.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.13.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.14.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.15.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.16.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________17.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.18.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.19.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 20.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数.22.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.23.阅读下列材料,然后解答后面的问题.已知方程组372041027x y z x y z ++=⎧⎨++=⎩,求x+y+z 的值.解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③, 把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值.24.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.25.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)收费(元)357.54927(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.26.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设学生数为x人,分成y组,根据组数和总人数的数量关系建立方程组求解即可.【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-, 如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+,故有:6374y x y x =-⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.B解析:B 【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择. 【详解】解:方法一:把各个选项的答案依次代入,只有B 答案适合方程组; 方法二:由题意,得25,328x y x y +=⎧⎨+⎩①=,②①×2-②得,x=2, 代入①得,2×2+y=5,y=1故原方程组的解为2,1.x y =⎧⎨=⎩故选:B . 【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.3.C解析:C 【分析】直接把两个方程相加,得到12mx y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m +=+⎧⎨+=-⎩,直接把两个方程相加,得: 4422x y m +=+,∴12mx y ++=, ∵0x y +>, ∴102m+>, ∴1m >-; 故选:C. 【点睛】本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12mx y ++=,然后进行解题. 4.B解析:B 【解析】分析:设小长方形的长为xcm ,宽为ycm ,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可. 详解:设小长方形的长为xcm ,宽为ycm ,则可列方程组:504x y x y +=⎧⎨=⎩. 故选B.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.5.A解析:A 【分析】由这组公共解与m 无关,所以把两个方程相加变形为:()190,x y m x y +-+--=从而可得答案. 【详解】解:①+②得:9,mx x my y m ++-=+90,mx x my y m ∴++---=()190,x y m x y ∴+-+--=结合题意得:1090x y x y +-=⎧⎨--=⎩ 解得:54x y =⎧⎨=-⎩,所以这个公共解为54x y =⎧⎨=-⎩.故选A . 【点睛】本题考查的是二元一次方程组的公共解与字母系数无关的问题,掌握与该字母无关,则含有该字母的项合并后系数为零是解题的关键.6.B解析:B 【分析】将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可. 【详解】由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B. 【点睛】此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.7.B解析:B 【详解】由甲同学的解正确,可知3c+2×7=8,解得c=-2,且3a+2b=22①,由于乙看错c ,所以 -2x+6b=22②,解由①②构成的方程组可得a=4,b=5. 故选B.8.D解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5k y =, 把5k y =代入②得:115k x =,把115kx=,5ky=代入2310x y+=,得:11231055k k⨯+⨯=解得:2k=,∴225x=,25y=,∴222455x y-=-=.【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.B解析:B【解析】分析:首先利用②-①和②+③得出关于a和b的二元一次方程组,从而求出a和b的值,然后将a和b代入任何一个式子得出c的值,从而得出方程组的解.详解:0?25?34?a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a-2b=-5 ④, ②+③可得:5a-2b=-9⑤,④-⑤可得:-4a=4,解得:a=-1,将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121abc=-⎧⎪=⎨⎪=-⎩,故选B.点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.10.D解析:D【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确. 故选D . 【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键. 二、填空题11.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式, 解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案. 【详解】解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元), 6月份的管理费为:1(1)60065012n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元),百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),当百货区新增3n ,杂项区新增n 时,满足条件,所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20.【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 12.40【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】 解:∵12903991313= ,129031171111=, ∴1≤b ≤50,51<a ≤100,若a +b ≤100时, 由题意可得:1311129011()990b a a b +=⎧⎨+=⎩, ∴60150a b =-⎧⎨=⎩(不合题意舍去), 若a +b >100时,由题意可得131112909(990b a a b +=⎧⎨+=⎩), ∴7040a b =⎧⎨=⎩, 故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.13.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.14.13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解解析:13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x袋,乙种干果y袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解】解:设1克巴旦木成本价m元,和1克黑加仑成本价n元,根据题意得10(0.04 +m+n) ×(1+30%)=5.2解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x袋,乙种干果有y袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y解得:1330 xy=故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.15.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.16.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可. 【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键.17.320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。
初中数学二元一次方程组经典例题及相关答案
一、路程问题1、公式:路程=时间×速度(s=v×t,s:路程、v:速度、t:时间)公式变形:时间=路程÷速度(t=s/v)速度=路程÷时间(v=s/t)2、模型:相遇模型:两者所走的路程之和=两者原相距路程追击问题:快者所行路程-慢者所行路程=两者原相距路程3、例题:例1、某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km.求两车速度?答案:解:设甲乙两车的速度分别为 x km/h、y km/h根据题意,得5y=6x x=50(km/h)4y=4x+30+10 y=60(km/h)解析:若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车 6x=5y若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km. 4y=4x+30+10例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?答案:解:设汽车、拖拉机两车的速度分别为 x km/h 、y km/h根据题意,得(x+y )*34=160 x=90 (km/h ) 21x=23y y=30 (km/h )汽车行驶的路程:(2134+)*90=165 km 拖拉机行驶的路程:(2334+)*30=85 km 解析:汽车、拖拉机同时由甲、乙两地相向而行,1小时20分相遇,即汽车、拖拉机同时出发行驶1小时20分钟两车行驶的路程相加为160km 。
(x+y )*34=160相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
即拖拉机行驶23小时的路程,同汽车行驶21小时的路程相同。
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。
初二数学二元一次方程组试题答案及解析
初二数学二元一次方程组试题答案及解析1.下面四条直线中,直线上每个点的坐标都是方程x-2y=2的解的是()A. B. C. D.【答案】C.【解析】∵x﹣2y=2,∴y=x﹣1,∴当x=0,y=﹣1,当y=0,x=2,∴一次函数y=x﹣1,与y轴交于点(0,﹣1),与x轴交于点(2,0),即可得出C符合要求.故选C.【考点】一次函数与二元一次方程(组).2.福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条。
(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?【答案】(1)制作衬衫和裤子的人分别为15人,9人;(2)需要安排18名工人制作衬衫.【解析】本题中每人每天生产的衬衫或裤子的数目不变,每件衬衫或裤子的利润也不变,这是解题的关键.(1)设安排x人制作衬衫,安排y人制作裤子.由关键语句“现有24名制作服装的工人”和“每天制作的衬衫和裤子数量相等”,可得到等量关系.(2)同样的,设制作衬衫和裤子的人数为a,b,利用“现有24名制作服装的工人”和“每天获得利润不少于2100元”,也可列出方程组求解.试题解析:解:设制作衬衫和裤子的人为x,y.可得方程组解得:答:制作衬衫和裤子的人为15人,9人.(2)设安排a人制作衬衫,b人制作裤子,可获得要求的利润2100元.可列方程组:解得:答:需要安排18名工人制作衬衫.【考点】二元一次方程组的应用.3.为实现区域教育均衡发展,我市计划对某县、两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所类学校和两所类学校共需资金230万元;改造两所类学校和一所类学校共需资金205万元.(1)改造一所类学校和一所类学校所需的资金分别是多少万元?(2)若该县的类学校不超过5所,则类学校至少有多少所?(3)我市计划今年对该县、两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到、两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?【答案】(1)(2)若该县的类学校不超过5所,则类学校至少有15所。
部编数学七年级下册第8章二元一次方程组(解析版)含答案
第8章 二元一次方程组一、单选题1.下列方程组中是二元一次方程组的是( )A .141y x x v ì+=ïíï-=îB .43624x y y z +=ìí+=îC .41x y x y +=ìí-=îD .22513x y x y +=ìí+=î【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组 141y x x v ì+=ïíï-=î中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组 中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组 中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.2.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =ìí=î,那么这个方程可以是( )A .3416x y -=B .1254x y +=C .1382x y +=D .2()6x y y-=【答案】D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】解:将41x y =ìí=î依次代入,得:A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D .【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.3.由132x y -=可以得到用x 表示y 的式子为( )A .223x y -=B .223x y =-C .2133x y =-D .223xy =-【答案】B【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.4.某船顺流航行的速度为a ,逆流航行的速度为b ,则水流速度为( )A .2a b+B .2a b-C .-a b D .以上都不对【答案】B【分析】顺流航行的速度等于船在静水中的速度加上水流的速度,逆流航行的速度等于船在静水中的速度减去水流的速度,利用两个公式列方程组,再解方程组即可得到答案.【详解】解:设水流的速度为,x 船在静水中航行的速度为,y 则,a y x b y x =+ìí=-î①②①-②得:2,x a b =-,2a b x -\= 所以水流的速度为:.2a b - 故选:.B 【点睛】本题考查的是二元一次方程组的应用,掌握顺流航行与逆流航行的速度公式是解题的关键.5.将13x y -=-代入21x y -=的可得( )A .1213x x --´=B .()2113x x --=C .2213x x ++=D .2213x x -+=【答案】D【分析】将13x y -=-代入21x y -=,再进行整理,即可得到答案.【详解】解:将13x y -=-代入21x y -=,得:1123-æ=ö--ç÷èøx x ,即122+3-=x x 故选D .【点睛】本题考查的是二元一次方程的解法,先将已知代入方程得出一个关于x 的方程,运用代入法是解二元一次方程常用的方法.6.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( )A .0B .6C .6-D .2【答案】B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=ìí++=î①② ,②-①得:30a += ,3a =- ,把3a =-代入①得:()130b +-+= ,2b = ,解得:32a b =-ìí=î ,把32a b =-ìí=î代入代数式2x ax b ++得:232x x -+,当1x =-时,2326x x -+=.故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键.7.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( )A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +ìí+-î,解得:=3=2a b ìí-î,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.8.己知方程组42ax by ax by -=ìí+=î的解为21x y =ìí=î,则2a ﹣3b 的值为( )A .4B .6C .﹣4D .﹣6【答案】B【分析】将x 和y 的值代入到方程组,原方程组变成关于a 、b 的方程组.再仔细观察未知数的系数,相同或者相反,可以运用加减消元解题.【详解】解:∵方程组42ax by ax by -=ìí+=î的解为21x y =ìí=î,∴2422a b a b -=ìí+=î①②.由①+②得a =32,②−①得b =−1.将a =32,b =−1代入2a −3b ,即2×32−3×(−1)=3+3=6.故选:B .【点睛】此题主要考查二元一次方程组的代入消元法,灵活运用代入消元或加减消元是解题的关键.9.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有( )A .24622x y y x +=ìí=-îB .24622x y x y +=ìí=+îC .21622x y y x +=ìí=+îD .24622x y y x +=ìí=+î【答案】B 【分析】根据“学生共有246人,其中男生人数y 比女生人数x 的2倍少2人”列方程组即可.【详解】解:由题意得24622x y x y +=ìí=+î,故选B .【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.10.关于x ,y 的二元一次方程组59x y k x y k +=ìí-=î的解也是二元一次方程2x +3y =﹣6的解,则k 的值是( )A .﹣34B .34C .43D .﹣43【答案】A【分析】先用含k 的代数式表示x 、y ,即解关于x ,y 的方程组,再代入2x +3y =﹣6中可得.【详解】解:解方程组 59x y k x y k +=ìí-=î,得:x =7k ,y =﹣2k ,把x ,y 代入二元一次方程2x +3y =﹣6,得:2×7k +3×(﹣2k )=﹣6,解得:k =﹣34,故选:A .【点睛】本题主要考查二元一次方程组的解法,解题的关键是用含k 的代数式表示x 、y .二、填空题11.用16元钱买了80分、120分的两种邮票共17枚,则买了80分的邮票________枚,120分的邮票________枚.【答案】 11 6【分析】设购买80分的邮票x 枚,购买120分的邮票y 枚,根据题意列方程组得:170.8 1.216x y x y +=ìí+=î,解方程组即可求解.【详解】解:设购买80分的邮票x 枚,购买120分的邮票y 枚,根据题意列方程组得:170.8 1.216x y x y +=ìí+=î①②,由①得:17y x =-,代入②可得:()0.8 1.21716x x +-=,整理可得:0.4 4.4x -=-,解得:11x =,所以17116y =-=.故答案为:11、6.【点睛】本题考查了二元一次方程组的实际应用,解题的关键是准确列出二元一次方程组.12.已知二元一次方程组941175y x x y ì+=ïïíï+=ïî的解为,x a y b ==,则a b -=_____.【答案】11【分析】把a 、b 代入方程组,解方程求解即可得到答案.【详解】解:∵二元一次方程组941175y x x y ì+=ïïíï+=ïî的解为x a y b =ìí=î∴941175b a a b ì+=-ïïíï+=ïî①②,②-①×4得到19195a -=-,解得5a =,把5a =代入①解得16b =∴51611a b -=-=.故答案为:11.【点睛】本题考查二元一次方程组的解和解二元一次方程组,解题的关键在于能够熟练掌握相关知识进行求解..13.若二元一次方程组23151x y ax by -=ìí+=î和51cx dy x y -=ìí+=î同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=ìí+=î【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=ìí+=î和51cx dy x y -=ìí+=î同解,∴可通过解方程组23151x y x y -=ìí+=î求得这个解,故答案为:23151x y x y -=ìí+=î.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.14.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=ìí++=î;解得:33x y =-ìí=-î,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.15.若357a b c ==,且3249a b c +-=,则a b c ++=_________.【答案】-15【分析】先设比例系数为k ,代入3a+2b-4c=9,转化为关于k 的一元一次方程解答.【详解】解:设357a b c k ===,则a=3k ,b=5k ,c=7k ,代入3a+2b-4c=9,得9k+10k-28k=9,解得:k=-1,∴a=-3,b=-5,c=-7,于是a+b+c=-3-5-7=-15.故答案为:-15.【点睛】本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值.16.正数a 的两个平方根是方程322x y +=的一组解,则a =_____.【答案】4【分析】先根据平方根的性质可得0x y +=,再代入方程322x y +=求出x 的值,由此即可得出答案.【详解】由题意得:0x y +=,322x y +=Q ,2()2x x y \++=,将0x y +=代入得:202x +´=,解得2x =,则2224a x ===,故答案为:4.【点睛】本题考查了平方根、二元一次方程的解等知识点,熟练掌握平方根的性质是解题关键.17.若1,2x y =ìí=-î是关于x ,y 的方程1ax by -=的一组解,且3a b +=-,则52a b -的值为______.【答案】-43【分析】要求5a-2b 的值,要先求出a 和b 的值.根据题意得到关于a 和b 的二元一次方程组,再求出a 和b 的值.【详解】解:将1,2x y =ìí=-î代入1ax by -=,得21a b +=,因为3a b +=-,所以得到关于a 和b 的二元一次方程组213a b a b +ìí+-î==两式相减,得4b =,将4b =代入3a b +=-,得7a =-,所以5243a b -=-.【点睛】运用代入法,得关于a 和b 的二元一次方程组,再解方程组求解是解决此类问题的关键.18.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (241)=_________,F (635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.【答案】7 14 5 4【详解】分析: (1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解: :(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=ìí=î或25xy=ìí=î或34xy=ìí=î或43xy=ìí=î或52xy=ìí=î或61xy=ìí=î.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=ìí=î或43xy=ìí=î或52xy=ìí=î,∴()()612F sF tì=ïí=ïî或()()99F sF tì=ïí=ïî或()()108F sF tì=ïí=ïî,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x 、y 的二元一次方程.三、解答题19.解下列方程组:(1)4(1)3(1)22423x y y x y --=--ìïí+=ïî; (2)2()1346()4(2)16x y x y x y x y -+ì-=-ïíï+--=î.【答案】(1)1451x y =ìí=î;(2)22x y =ìí=î.【分析】(1)先将原方程的第一个方程去括号、移项、合并同类项,第二个方程去分母,化简成4532144x y x y -=ìí+=î,再利用代入消元法解题;(2)先将原方程的第一个方程去分母、去括号、移项、合并同类项,第二个方程去括号,化简,整理成4532144x y x y -=ìí+=î,再利用代入消元法解题.【详解】解:(1)4(1)3(1)22423x y y x y --=--ìïí+=ïî整理得,4532144x y x y -=ìí+=î①②由①得,45y x =-③把③代入②得,32(45)144x x +-=11154x \=14x \=把14x =代入③得414551y =´-=1451x y =ì\í=î(2)2()1346()4(2)16x y x y x y x y -+ì-=-ïíï+--=î整理得,5111258x y x y -=-ìí-+=î①②由②得,58x y =-③把③代入①得5(58)1112y y --=-1428y\=2y\=把2y=代入③得,5282x=´-=\22xy=ìí=î.【点睛】本题考查代入消元法解二元一次方程组,是重要考点,掌握相关知识是解题关键.20.在等式y=ax2+bx+c中,当x=﹣1时,y=3;当x=0时,y=1,当x=1时,y=1,求这个等式中a、b、c的值.【答案】a=1,b=﹣1,c=1.【分析】根据题意列出三元一次方程组,解方程组即可.【详解】由题意得,311a b cca b c-+=ìï=íï++=î,解得,a=1,b=﹣1,c=1.【点睛】本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值,得到方程组的解.21.甲地到乙地全程是3.3km,一段上坡、一段平路、一段下坡.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需51min,从乙地到甲地需53.4 min.从甲地到乙地时,上坡、平路、下坡的路程各是多少?【答案】甲地到乙地,上坡路1.2 km、平路0.6 km、下坡路1.5 km.【分析】设甲地到乙地,上坡、平路、下坡路各是x千米,y千米,z千米,根据全程3.3km,甲到乙要51分钟,乙到甲要53.4分钟.分别列出方程,组成方程组,再求解即可.【详解】解:设甲地到乙地,上坡、平路、下坡路各是xkm,ykm,zkm,根据题意得:3.3513456053.454360x y zx y zx y zìï++=ïï++=íïï++=ïî.解得1.20.61.5xyz=ìï=íï=î.答:甲地到乙地,上坡路1.2 km 、平路0.6 km 、下坡路1.5 km .【点睛】本题考查了三元一次方程组的应用,解答此题的关键是找出题目中的等量关系,列出方程组,用代入消元法或加减消元法求出方程组的解.22.几个人一起买物品,若每人出8元,则盈余3元;若每人出7元,则还差4元,人数和价格各是多少?【答案】共有7人,价格为53元.【分析】设有x 人,物品价格是y 元.根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】解:设有x 人,物品价格是y 元,由题意可得:8374x y x y -ìí+î==,解得:753x y =ìí=î 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程组的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程组.23.材料:解方程组()1045x y x y y --=ìí--=î时,可由①得1x y -=③,然后再将③代入②得415y ´-=,求得1y =-,从而进一步求得01x y =ìí=-î这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=ìí--=î【答案】7656x y ì=ïïíï=ïî【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x æö+=ç÷èø,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=ìïí--=ïî①②由①得322x y -=③,把③代入②得33422x æö+´=ç÷èø,解得76x =,把76x =代入③,得73262y ´-=,解得56y =,故原方程组的解为7656x y ì=ïïíï=ïî.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.24.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表所示:第一次第二次甲种货车辆数(单位:辆)25乙种货车辆数(单位:辆)36最大运货物吨数(单位:吨)15.535现租用该公司3辆甲种货车及4辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?【答案】660元.【分析】设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,先根据表格建立方程组,求出x 、y 的值,再根据这次租用的甲、乙两种货车的数量和每吨运费列出运算式子,由此即可得.【详解】设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,由题意得:2315.55635x y x y +=ìí+=î,解得42.5x y =ìí=î,则货主应付运费为()344 2.530660´+´´=(元),答:货主应付运费660元.【点睛】本题考查了二元一次方程组的实际应用,依据题意,正确建立方程组是解题关键.25.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?并说明理由.【答案】(1)小明他们一共去了8个成人,4个学生;(2)购团体票更省钱.【分析】(1)设去了x个成人,则去了(12−x)个学生,根据爸爸说的话,可确定相等关系为:成人的票价+学生的票价=350元,据此列方程求解;(2)计算团体票所需费用,和350元比较即可求解.【详解】(1)设成人人数为x人,则学生人数为(12-x)人.根据题意,得35x+352(12-x)=350.解得x=8.则12-x=12-8=4.答:小明他们一共去了8个成人,4个学生.(2)如果买团体票,按16人计算,共需费用为35×0.6×16=336(元).因为336<350,所以购团体票更省钱.答:购团体票更省钱.【点睛】考查利用方程模型解决实际问题,关键在于设求知数,列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.26.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【答案】(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】(1)设一个暖瓶x元,则一个水杯(38-x)元,根据题意得:2x+3(38-x)=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.。
七年级数学下册第八章二元一次方程组题型总结及解题方法(带答案)
七年级数学下册第八章二元一次方程组题型总结及解题方法单选题1、若关于x 、y 的二元一次方程组{ax +3y =74x +y =9 与{−x +5y =35x +by =8的解相同,则√a −b 的值为( ) A .1B .±1C .2D .±2答案:C分析:先解方程组{−x +5y =34x +y =9,再把方程组的解代入ax +3y =7和5x +by =8,求出a 、b 的值,代入计算即可.解:∵关于x 、y 的二元一次方程组{ax +3y =74x +y =9 与{−x +5y =35x +by =8的解相同, ∴方程组{−x +5y =34x +y =9的解满足四个方程, 解方程组{−x +5y =34x +y =9得,{x =2y =1 , 把{x =2y =1分别代入ax +3y =7和5x +by =8得, 2a +3=7,10+b =8,解得,a =2,b =−2;∴√a −b =√2+2=2,故C 正确.故选:C .小提示:本题考查了解二元一次方程组、二元一次方程的解和算术平方根,解题关键是明确同解方程的意义,熟练掌握解二元一次方程组的步骤.2、如图所示的是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比两块竖放的墙砖低30cm ,两块竖放的墙砖比两块横放的墙砖高50cm ,则每块墙砖的截面面积是( )A .600cm 2B .900cm 2C .1200cm 2D .1500cm 2答案:B分析:设每块墙砖的长为x cm ,宽为y cm ,观察图形,根据长方形墙砖长宽之间的关系,即可得出关于x ,y 的二元一次方程组,解之即可求出x ,y 的值,再利用长方形的面积计算公式,即可求出每块墙砖的截面面积. 解:设每块墙砖的长为x cm ,宽为y cm ,由题意得:{2x −3y =302x −2y =50, 解得:{x =45y =20, ∴xy =45×20=900,∴每块墙砖的截面面积是900cm 2. 故选:B小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、已知{x =2y =1是二元一次方程组{mx +ny =8nx − my =1的解,则2m −n 的算术平方根为( ) A .±2B .√2C .2D .4答案:C分析:把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.∵{x =2y =1是二元一次方程组{mx +ny =8nx − my =1的解, ∴{2m +n =82n −m =1, 解得{m =3n =2∴√2m −n =√2×3−2=√4=2即2m −n 的算术平方根为2故选C .小提示:此题考查了解二元一次方程组,以及算术平方根,熟练掌握运算法则是解本题的关键.4、方程x −y =−2与下面方程中的一个组成的二元一次方程组的解为{x =2y =4,那么这个方程可以是( ) A .3x −4y =16B .4x −y =−2C .14x +y =0D .2(x +y )=6x 答案:D分析:根据方程组的解的定义及二元一次方程组的定义求解.解:把方程组的解代入A ,左边=6−16=−10≠16,故不是A 的解;B 是分式方程,不是二元一次方程,故排除B ;把方程组的解代入C ,左边=12+4≠0,故不是C 的解;把方程组的解代入D ,左边=2(2+4)=12,右边=12,故是D 的解;故选:D .小提示:本题考查了二元一次方程组的解,代入验证是解题的关键.5、如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .{x +y =90x =y −15B .{x +y =90x =2y +15C .{x +y =90x =15−2yD .{x +y =90x =2y −15答案:A分析:此题中的等量关系有:∠ABD +∠DBC =90°,∠ABC =2∠DBC −15° ,根据等量关系列出方程即可.设∠ABD 和∠DBC 的度数分别为x °,y °,则有{x +y =90x +y =2y −15整理得:{x +y =90x =y −15, 故选:A .小提示:本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.6、解方程组{2x +3y =5①x −2y =−1②时,经过下列步骤,能消去末知数y 的是( ) A .①×2−②×3B .①×3−②×2C .①×3+②×2D .①×2+②×3答案:D分析:由消去未知数y ,可得方程组中y 的未知数系数化为绝对值相等,符号相反,①×2+②×3可消去y . 解:∵消去未知数y ,解方程组{2x +3y =5①x −2y =−1②中y 的未知数系数化为绝对值相等,符号相反, ∴①×2+②×3可消去y .故选:D小提示:本题考查二元一次方程组加减消元法,关键是化某一未知数系数化为绝对值相等,系数相同用减法,系数相反用加法.7、五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .22答案:B分析:设1艘大船与1艘小船分别可载x 人,y 人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x +y )即可.设1艘大船与1艘小船分别可载x 人,y 人,依题意:{x +2y =32①2x +y =46②(①+②)÷3得:x+y=26故选:B.小提示:本题考查二元一次方程组的实际应用;注意本题解出(x+y)的结果即可.8、利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A.73cmB.74cmC.75cmD.76cm答案:D设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h-y+x=79,由第二个图形可知桌子的高度为:h-x+y=73,两个方程相加得:(h-y+x)+(h-x+y)=152,解得:h=76cm.故选D.9、方程组{2x+y=33x−z=7x−y+3z=0的解为()A.{x=2y=1z=−1B.{x=2y=−1z=1C.{x=2y=−1z=−1D.{x=2y=1z=1答案:C分析:根据代入消元法解三元一次方程组即可求解.解:{2x+y=3①3x−z=7②x−y+3z=0③,由①得y=3−2x④,由②得z=3x−7⑤,将④⑤代入③得,x−(3−2x)+3(3x−7)=0,解得x=2,将x=2代入④得y=−1,将x=2代入⑤得z=−1,∴原方程组的解为{x=2y=−1z=−1.故选C.小提示:本题考查了解三元一次方程组,掌握代入消元是解题的关键.10、一个三角形三条边长的比是2:4:5,最长的边比最短的边长6cm,这个三角形的周长为().A.20cm B.21cm C.22cm D.20cm或22cm答案:C分析:设三角形三边分别为2xcm、4xcm、5xcm,由最长边比最短边长6cm,列方程即可求解.解:设三角形三边分别为2xcm、4xcm、5xcm.则:5x-2x=6,解得:x=2,∴三角形三边分别为4cm、8cm、10cm,∴这个三角形的周长为22cm.故选:C.小提示:本题考查了一元一次方程的应用及三角形的知识,解题的关键是根据三角形的三边的比设出三边的长,难度不大.填空题11、有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.答案:100或85.分析:设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.小提示:本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.12、已知x ,y 满足方程组{x +5y =63x −y =2,则x +y 的值为______. 答案:2分析:利用整体思想①+②的得出结果,之后等式两边都除以4,即可得出x +y 的值.解:{x +5y =6①3x −y =2②, ①+②得4x +4y =8,∴x +y =2;所以答案是:2.小提示:本题主要考查了二元一次方程组的解,掌握用整体思想解决问题是解题的关键.13、一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.答案:643分析:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可. 解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:{y =x +1100×2x +10y +x −(100x +10y +2x)=297, 解得:{x =3y =4, ∴2x =6,即原三位数为643,所以答案是:643.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14、某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.答案:3##三分析:设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出x =12−3y 4,由于x ≥1,y ≥1且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.解:设:购买甲种奖品x 件,乙种奖品y 件,4x +3y =48,解得x =12−3y 4,∵x ≥1,y ≥1且x ,y 都是正整数,∴y 是4的整数倍,∴y =4时,x =12−3×44=9, y =8时,x =12−3×84=6,y =12时,x =12−3×124=3,y =16时,x =12−3×164=0,不符合题意, 故有3种购买方案,所以答案是:3.小提示:本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键.15、已知x 、y 满足方程组{3x +y =2021x +3y =2022,则x −y =______. 答案:−12##﹣0.5分析:方程组两方程相减得2x -2y =﹣1,两边同除以2得出x ﹣y 即可.解:{3x +y =2021①x +3y =2022② ①-②得,2x -2y =﹣1,两边同除以2得,x -y =−12, 所以答案是:−12小提示:此题考查了二元一次方程组,整体法的应用是求解此题的关键.解答题16、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料.该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a %,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a 的值.答案:(1)甲生产15件,乙生产20件,恰好使两种原材料全部用完(2)a =30分析:(1)设甲生产x 件,乙生产y 件,根据题意得,{4x +3y =120①2x +y =50② ,进行计算即可得; (2)用市场变化后的总销售额减去原计划的总销售额即可得.(1)解:设甲生产x 件,乙生产y 件,根据题意得,{4x +3y =120①2x +y =50②由②得,y =50−2x ③将③代入①得:4x +3×(50−2x)=1202x =30x =15,将x =15代入③得:y =50−2×15=20,解得{x =15y =20则甲生产15件,乙生产20件,恰好使两种原材料全部用完.(2)解:根据题意得,3×(1+a%)×15+(1−10%)×5×20−(3×15+5×20)=3.5解得a =30.小提示:本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.17、学校举办“艺术周”创意设计展览,如图,现有一个大正方形和四个一样的小正方形,小明、小聪、小方分别用这些正方形设计出了图1,图2,图3三种图案:(1)根据图1,图2中所标数据,求出大正方形和小正方形的边长分别是多少厘米?(2)图3中四个小正方形的重叠部分也是三个一样的小正方形,求阴影部分的面积.答案:(1)大正方形边长12cm ,小正方形边长4 cm(2)8513分析:(1)设大正方形和小正方形的边长分别是x cm 和y cm ,根据题意列方程组即可得到结论;(2)设四个小正方形的重叠部分形成小正方形的边长为a cm ,根据题意列方程得到a =43,根据正方形的面积公式即可得到结论.(1)设大正方形边长x cm ,小正方形边长y cm ,依题意得{x +2y =20x −2y =4, 解得{x =12y =4, 答:大正方形和小正方形的边长分别是12cm 和4cm ;(2)设有重叠的小正方形边长a cm ,依题意得3(4−a )+4=12,解得a =43,∴阴影面积=122−4×42+3×(43)2=8513. 小提示:本题考查了二元一次方程组的应用,正方形的面积的计算,正确的识别图形是解题的关键.18、解下列二元一次方程组:(1){y =2x 3x +y -10=0(2){2x +3y =53x +2y =-5答案:(1){x =2y =4; (2){x =−5y =5. 分析:(1)根据代入消元法,将①代入②即可求得y ,再将y 代入①,即可求解;(2)根据加减消元法,①×2−②×3即可求得x ,再将x 代入②,即可求解.(1)解:{y =2x ①3x +y -10=0②, 将②代入①,可得:3x +2x -10=0,解得:x =2,将x =2代入①,可得:y =4,∴方程组的解为{x =2y =4; (2)解:{2x +3y =5①3x +2y =-5②, 由①×2-②×3,得:4x −9x =10+15,解得:x =−5,将x =−5代入①,可得:−10+3y =5,解得:y=5,∴方程组的解为{x=−5.y=5小提示:本题考查解二元一次方程组,解题的关键是熟练掌握二元一次方程组的解法-加减消元法和代入消元法.。
初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)
初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)1、方程mx-3y=3x+ny-1是关于x,y的二元一次方程,则m,n的取值范围是 .答案:m≠3,n≠-3.解析:mx-3y=3x+ny-1可整理为(m-3)x-(3+n)y=-1.∵mx-3y=3x+ny-1是关于x,y的二元一次方程.∴m-3≠0且n+3≠0.解得:m≠3,n≠-3.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.2、若x4-3︱m︱+y3︱n︱=2009是关于x,y 的二元一次方程,且mn<0,0<m+n≤3,则m-n的值是( ).B.2C.4D.-2A.43答案:A.解析:根据二元一次方程的定义,x和y的次数必须都为1.所以4-3︱m︱=1,且3︱n︱=1.解得m=±1,n=±1.3又∵mn<0,0<m+n≤3.∴m=1,n=-1.3.∴m-n=43考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.3、若x=a,y=b是方程2x+y=0的一个解,且a≠0,则ab的符号是( ).A. 正号B. 负号C. 可能是正号也可能是负号D. 既不是正号也不是负号答案: B.解析:∵x=a,y=b是方程2x+y=0的一个解.∴2a+b=0.即b=-2a. 又a ≠0. ∴a,b 异号. ∴ab 为负数.考点:方程与不等式——二元一次方程组——二元一次方程(组)的解.4、求方程5x-3y=-7的正整数解. 答案:{x =1−3ty =4−5t (t 为非整数) .解析:x=3y−75经观察:x 0=1,y 0=4为方程的一组解.原方程的通解为{x =1−3ty =4−5t(t 为非整数).考点:方程与不等式——二元一次方程组——二元一次方程(组)的解.5、如果方程x-y=3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是( )A.3x-4y=16B. 14x +2y =5 C.12x +3y =8 D.2(x-y)=6y 答案:D.解析:x-y=3可得x=3+y.代入各选项计算只有D 选项的解为:{x =4y =1.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.6、若x+3y=3x+2y=7,则x= ,y= . 答案:x=1,y=2.解析:根据题意得:{x +3y =7 ①3x +2y =7 ②.①×3-②得7y=14. 解得:y=2. 将y=2代入①得x=1.考点:方程与不等式——二元一次方程组——解二元一次方程组.7、对于有理数,规定新运算:x*y=ax+by+xy,其中a,b 是常数,等式右边是通常的加法和乘法运算,已知2*1=7,(-3)*3=3,求13*6的值.答案:2539.解析:由题意得{2a +b +2=7−3a +3b −9=3.解得{a =13b =133.∴x*y=13x+133y+xy. ∴13*6 = 13×13+133×6+13×6=2539.考点:式——探究规律——定义新运算.方程与不等式——二元一次方程组——解二元一次方程组.8、已知方程组{ax +by =−16cx +20=−4 的解应为{x =8 y =−10 ,小明解题时把c 抄错了,因此得到的解是{x =12 y =−13,则a 2+b 2+c 2的值为 . 答案:34.解析:把相应的解恰当地代入原方程组,先求出a 、d 、c 的值.a=3,b=4,c=-3,a 2+b 2+c 2=34.考点:方程与不等式——二元一次方程组——解二元一次方程组.9、已知等式(2A-7B)x+(3A-8B)=13x+17对一切实数x 都成立,求A 、B 的值. 答案:{A =3B =−1.解析:因为两个多项式相等且对一切实数x 都成立,所以等式两边的对应项系数相等.即{2A −7B =13 3A −8B =17.解方程组得{A =3B =−1.考点:方程与不等式——二元一次方程组——解二元一次方程组.10、根据要求,解答下列问题:(1) 解下列方程组(直接写出方程组的解即可)① {x +2y =3 2x +y =3的解为 .② {3x +2y =10 2x +3y =10 的解为 .③ {2x −y =4 −x +2y =4的解为 .(2) 以上每个方程组的解中,x 值与y 值的大小关系为 . (3) 请你构造一个具有以上外形特征的方程组,并直接写出它的解. 答案:(1)① {x =1 y =1 ② {x =2 y =2 ③ {x =4y =4.(2) x=y.(3){3x +2y =25 2x +3y =25,解得{x =5y =5.解析:(1)略.(2)以上每个方程组的解中,x 值与y 值的大小关系为x=y. (3){3x +2y =25 2x +3y =25,解得{x =5y =5.考点:方程与不等式——二元一次方程组——解二元一次方程组.11、解下列关于x,y 的方程组:{361x +463y =−102 ①463x +361y =102 ②.答案:{x =1y =−1.解析:①+②得824x+824y=0.∴x+y=0.将x=-y 代入①得-361y+463y=-102. 解得:y=-1. ∴x=1.方程组的解为{x =1y =−1.考点:方程与不等式——二元一次方程组——解二元一次方程组.12、若方程组{2a −3b =13 3a +5b =30.9的解是{a =8.3b =1.2,则方程{2(x +2)−3(y −1)=13 3(x +2)+5(y −1)=30.9的解为 . 答案:{x =6.3y =2.2.解析:将x+2和y-1分别看作a 和b,比较两个方程组可得{x +2=8.3y −1=1.2.解得{x =6.3 y =2.2.考点:方程与不等式——二元一次方程组——解二元一次方程组——加减消元法.13、解方程组:{2(x−y)3−(x+y)4=−1123(x +y )−2(2x −y)=3.答案:{x =2y =1.解析:方程组可化为:{5x −11y =−1 ①–x +5y =3 ②.由②得 x=5y-3 ③.③代入①得 5(5y-3)-11y=-1. 解得 y=1.把y=1代入③得 x=5-3=2. ∴方程组的解为{x =2y =1.考点:方程与不等式——二元一次方程组——解二元一次方程组.14、解下列关于x,y 的方程组:{x+3a2+y−2b 3=a2 ①x+3a2−y−2b 3=a2 ②.答案:{x =−2ay =2b.解析:①+②得:x+3a=a,∴x=-2a. ①-②得:y-2b=0,∴y=2b.∴{x =−2a y =2b.考点:方程与不等式——二元一次方程组——解二元一次方程组.15、若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的取值为( ).A.3B.-3C.-4D.4 答案:D.解析:解 {3x −y =7 2x +3y =1得 {x =2y =−1.代入y=kx-9得-1=2k-9. 解得:k=4.考点:方程与不等式——二元一次方程组——解二元一次方程组.16、若关于x,y 的方程组{3x +2y =8 ax +by =10 与 {4x +2y =10bx +ay =14的解相同,则a+b= .答案:8.解析:由题意,得{3x +2y =8 4x +2y =10,解得{x =2y =1.∴{2a +b =102b +a =14,两式相加,得a+b=8. 考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.17、已知关于x 、y 的二元一次方程组{3x −4y =mx +2y =2m +3的解x 、y 是一对相反数,试求m 的值.答案:m 的值为−75 .解析:由题意可知x=−y,代入方程式可得 {−3y −4y =m−y +2y =2m +3.整理可得 {m =−7yy =2m +3.把y=2m+3代入m=-7y 可得m=-14m-21. 解得m=−75.考点:数——有理数——相反数.方程与不等式——二元一次方程组——含字母参数的二元一次方程组.18、m 为正整数,已知二元一次方程组 {mx +2y =10 3x −2y =0有整数解,则m 2= .答案:4.解析:{x =10m+3y =15m+3.若x 为正整数,m=2,7. 若y 为正整数,m=2,12. 则方程组为整数解得m=2.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.19、已知m 是整数,方程组{4x −3y =66x +my =26有整数解,求m 的值.答案:m=-4,-5,4,-13 . 解析:整理得 {x =3m+392m+9y =342m+9 .满足x 为整数,则m=-4,-5 ,4 ,-13. 同时满足y 为整数,则m=-4,-5 ,4 ,-13.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.20、已知关于x,y 的方程组{ax −y =ax −y =1. (1) 当a ≠1时,解这个方程组. (2) 若a=1,方程组的解得情况怎样?(3) 若a=1,方程组{ax −y =ax −y =2的解得情况怎样? 答案:(1){x =1y =0.(2)方程组有无数多个解. (3)原方程组无解.解析:(1)两式相减,整理得(a-1)x=a-1.∵a ≠1,∴x=1,y=0. ∴方程组的解为{x =1y =0.(2)当a=1时,方程(a-1)x=a-1的解为一切实数,方程组有无数多个解. (3)方程组整理得(a-1)x=a-2,当a=1时,0=-1.∴原方程组无解.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.21、如果关于x,y 的方程组{ax +3y =92x −y =1无解,则a= .A.6B.-6C.5D.-5 答案:B.解析:用换元法变为含参一元一次方程,或通过特殊值法.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.22、如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个椭圆形果冻的质量也相等,则每一块巧克力的质量是 g .答案:20.解析:设每块巧克力的重量为 克,每块果冻的重量为y 克.由题意得{3x =2y x +y =50,解得{x =20y =50.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.23、如图所示, 块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x 厘米和y厘米,则依据题意列方程组正确的是( ).A. {x +2y =75 y =3xB. {x +2y =75 x =3yC. {2x −y =75 y =3xD. {2x +y =75x =3y答案:B.解析:有题意可列方程组为 {x +2y =75x =3y..考点:方程与不等式——二元一次方程组——二元一次方程组的应用.24、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 . 答案:{5x +2y =10 2x +5y =8.解析:依题可知:{5x +2y =102x +5y =8.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.25、现有190张铁皮,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,那么用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 答案:110张制盒身, 80张制盒底,可以正好制成一批完整的盒子. 解析:设x 张铁皮制盒身,y 张铁皮制盒底.根据题意得{x +y =1902×8x =22y .解得{x =110 y =80.答: 110张制盒身, 80张制盒底,可以正好制成一批完整的盒子. 考点:方程与不等式——二元一次方程组——二元一次方程组的应用.26、某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图 2),再将它们制作成甲乙两种无盖的长方体小盒(如图1 ).现将300张长方形硬纸片和150张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?(注:图1中向上的一面无盖)答案:可以做成甲种小盒30个、乙种小盒60个. 解析:设可以做成甲、乙两种小盒各x 、y 个.根据题意可列方程组:{4x +3y =300 x +2y =150,解得{x =30y =60.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.27、“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见下表.爸爸拿出自己的积分卡,对小华说:“这里积有8200分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?答案:小华兑换了2个保温杯和8支牙膏.解析:因为积分卡中只有8200分,要兑换10件礼品,所以不能选择兑换电茶壶.设小华兑换了x 个保温杯和y 支牙膏. 依题意,得{x +y =102000x +500y =8200−200.解得{x =2 y =8.答:小华兑换了2个保温杯和8支牙膏.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.28、在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为s=ma+nb-1,其中m,n 为常数.(1)在下面的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形.(2) 利用(1)中的格点多边形确定m,n 的值.答案: (1)画图见解析.(2) {m =1n =12.解析: (1)图如下:(2)三角形:a=4,b=6,S=6.平行四边形(非菱形):a=3,b=8,S=6.菱形:a=5,b=4,S=6.任选两组代入S=ma+nb-1.如:{6=4m +6n −1 6=3m +8n −1 ,解得{m =1n =12. 考点:式——探究规律——定义新运算.方程与不等式——二元一次方程组——解二元一次方程组.三角形——三角形基础——三角形面积及等积变换.四边形——四边形基础——四边形面积.29、已知方程2(n -3)x 2︱m ︱-︱n ︱+3(m-2)y 3︱n ︱-4︱m ︱=2是关于x,y 的二元一次方程,求m,n 的值.A.m=-2,n=-3B. m=2,n=-3C. m=-2,n=3D. m=2,n=3答案:A.解析:略.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.30、解方程组{ax +by =2 cx −7y =8时,一学生把c 看错而得{x =−2 y =2 ,而正确的解是{x =3 y =−2 ,那么a,b,c 的值是( ).A. a=4,b=7,c=2B. a=4,b=5,c=-2C.a,b 不能确定,c=-2D.不能确定答案:B.解析:把{x =−2 y =2和{x =3 y =−2分别代入ax +by =2得{3a −2b =2 ① –2a +2b =2 ②. ①+②得a=4,代入①得b=5.把{x =3 y =−2代入cx −7y =8得3c+14=8. ∴c=-2.考点:方程与不等式——二元一次方程组——解二元一次方程组.31、小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组{3x +△y =11△x +2y =−2中第一个方程y 的系数和第二个方程x 的系数看不到了,现在已知小丽的运算结果是{x =1 y =2,你能由此求出原来的方程组吗?答案:{3x +4y =11−6x +2y =−2. 解析:设第一个方程中y 的系数为a,第二个方程中x 的系数为b.则原方程组可写为{3x +ay =11bx +2y =−2. 将{x =1 y =2代入二元一次方程组{3x +ay =11bx +2y =−2,解得{a =4 b =−6. ∴原方程组为{3x +4y =11−6x +2y =−2. 考点:方程与不等式——二元一次方程组——二元一次方程(组)解.32、《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x,y 的系数与相应的常数项.把图所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23. 类似地,图2所示的算筹图我们可以表述为( ).A. {2x +y =114x +3y =27B. {2x +y =114x +3y =22C. {3x +2y =19x +4y =23D. {2x +y =64x +3y =27答案:A.解析:图2所示的算筹图我们可以表述为{2x +y =114x +3y =27. 考点:方程与不等式——二元一次方程组——二元一次方程(组)的应用.33、尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?答案:准备甲种帐篷1500顶,乙种帐篷500顶.解析:设准备甲种帐篷x 顶,乙种帐篷y 顶.依题意,得{x +y =20006x +4y =11000. 解得{x =1500 y =500. 答:准备甲种帐篷1500顶,乙种帐篷500顶.考点:方程与不等式——二元一次方程组——二元一次方程(组)的应用.。
解二元一次方程组50题配完整解析
解方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)
七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。
人教版初中数学二元一次方程组典型例题及答题技巧
人教版初中数学二元一次方程组典型例题及答题技巧单选题1、若x+y+z≠0且2y+zx =2x+yz=2z+xy=k,则k的值为()A.1B.2C.3D.4答案:C解析:利用已知得出2y+z=kx① ,2x+y=kz② ,2z+x=ky③,进而求出3(x+y+z)=k(x+y+z),再利用提取公因式法分解因式进而求出即可.:解:∵2y+zx =2x+yz=2z+xy=k,∴{2y+z=kx①2x+y=kz②2z+x=ky③,∴①+②+③得:3(x+y+z)=k(x+y+z),3(x+y+z)−k(x+y+z)=0,3(x+y+z)(3−k)=0,因为x+y+z不等于0,所以3−k=0,即k=3.故选:C.小提示:此题主要考查了三元一次方程组、比例的性质,正确将已知变形得出3(x+y+z)=k(x+y+z)是解题关键.2、以方程组{x +y =2x −y =1的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:先求出方程组的解,然后即可判断点的位置.解:解方程组{x +y =2x −y =1, 得{x =1.5y =0.5, ∴点(1.5,0.5)在第一象限.故选:A .小提示:本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,解题的关键是熟练掌握上述基础知识.3、某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天答案:B解析:解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组{y −x =7y −(9−x)=6, 解得{x =4y =11, 所以一共有11天,故选B .小提示:本题考查二元一次方程组的应用.4、已知{x =−1y =2 是二元一次方程组{3x +2y =m nx −y =1的解,则m ﹣n 的值是( ) A .1B .2C .3D .4答案:D解析:根据已知将{x =−1y =2 代入二元一次方程组{3x +2y =m nx −y =1得到m ,n 的值,即可求得m-n 的值. ∵{x =−1y =2 是二元一次方程组{3x +2y =m nx −y =1∴{−3+4=m −n −2=1∴m=1,n=-3m-n=4故选:D小提示:本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.5、二元一次方程x +3y =4有一组解互为相反数,则y 的值为( )A .2B .1C .0D .-1解析:由题意,则x +y =0,然后结合x +3y =4,即可求出y 的值.解:根据题意,∵二元一次方程x +3y =4有一组解互为相反数,∴x +y =0,∴x +3y =(x +y)+2y =4,∴2y =4,解得:y =2;故选:A .小提示:本题考查了二元一次方程组,二元一次方程的解,以及相反数的定义,解题的关键是掌握解二元一次方程组的方法,正确得到x +y =0是突破口.6、已知{x =1y =1是方程2x +my =3的一个解,那么m 的值是( ) A .1B .3C .﹣1D .﹣3答案:A解析:根据方程的解满足方程,将{x =1y =1代入方程,得到关于m 的一元一次方程,解方程求解即可. 把{x =1y =1代入方程得:2+m =3, 解得:m =1.故选:A .本题考查了二元一次方程组的解的定义,理解二元一次方程组的解的定义是解题的关键.7、如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是( )A .{x +y =90x =y −15B .{x +y =90x =2y −15C .{x +y =90x =15−2yD .{2x =90x =2y −15 答案:B解析:∵AB ⊥BC ,∴∠ABD+∠DBC=90°,又∵∠ABD 的度数比∠DBC 的度数的两倍少15度,∴当设∠ABD 和∠DBC 度数分别为x 、y 时,由题意可得:{x +y =90x =2y −15. 故选:B.8、小亮解方程组{2x +y =●2x −y =12 的解为{x =5y =Δ,由于不小心滴上了两滴墨水,刚好遮住了两个数●和△,则两个数●与△的值为( )A .{●=8Δ=2B .{●=−8Δ=−2C .{●=−8Δ=2D .{●=8Δ=−2答案:D根据题意可以分别求出●与△的值,本题得以解决.∵方程组{2x+y=●2x−y=12的解为{x=5y=Δ,∴将x=5代入2x﹣y=12,得:y=﹣2,∴△=﹣2.将x=5,y=﹣2代入2x+y得:2x+y=2×5+(﹣2)=8,∴●=8,∴●=8,△=﹣2.故选:D.小提示:本题考查了二元一次方程组的解,解答本题的关键是明确题意,求出所求数的值.填空题9、方程2x−3y=5,xy=3,x+3y=3,3x−y+2z=0,x2+y=6中是二元一次方程的有___个.答案:1解析:二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.解:符合二元一次方程的定义的方程只有2x−3y=5;xy=3,x2+y=6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x+3y=1不是整式方程,不符合二元一次方程的定义;3x−y+2z=0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.所以答案是:1.小提示:主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.10、古代《张丘建算经》中有一个问题,意思是:甲、乙两人各有钱若干,如果甲得到乙的10个钱,那么甲所有的钱就比乙所剩的多4倍;如果乙得到甲的10个钱,那么两人所有的钱相等,甲原有钱_______个,乙原有钱_________个.答案: 40 20解析:设甲有钱x 个,乙有钱y 个,根据题意列出方程组,解方程组即可.解:设甲有钱x 个,乙有钱y 个.根据题意得{x +10=(4+1)×(y −10)x −10=y +10, 解得{x =40y =20. 所以答案是:40;20小提示:本题考查了列方程组解实际问题,根据题意列出方程组是解题关键.11、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的587,则三种水果去年的种植总面积与今年的种植总面积之比为______.答案:5:7##57 解析:设去年甲、乙、丙三种水果的种植面积分别为:5x,3x,2x, 设去年甲、乙、丙三种水果的平均亩产量分别为:6a,3a,5a, 设今年的种植面积分别为:m,n,f, 再根据题中相等关系列方程:9a·m 3.6a·n =3①,3.6a·n 5a·f =65②,求解:m =1.2n,f =0.6n, 再利用丙品种水果增加的产量占今年水果总产量的587,列方程5a ·f −5a ·2x =587(9a ·m +3.6a ·n +5a ·f), 求解x =15n, 从而可得答案.解:∵ 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为:5x,3x,2x,∵去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为:6a,3a,5a,则今年甲品种水果的平均亩产量为:6a ×(1+50%)=9a,乙品种水果的平均亩产量为:3a(1+20%)=3.6a, 丙品种的平均亩产量为5a,设今年的种植面积分别为:m,n,f,∵ 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,∴9a·m 3.6a·n =3①,3.6a·n 5a·f =65②,解得:m =1.2n,f =0.6n,又丙品种水果增加的产量占今年水果总产量的587,∴5a ·f −5a ·2x =587(9a ·m +3.6a ·n +5a ·f),∴87×5a ·0.6n −87×5a ·2x =45a ×1.2n +18an +15an,解得:x =15n,所以三种水果去年的种植总面积与今年的种植总面积之比为:10x m+n+f =2n1.2n+n+0.6n=57.所以答案是:5:7.小提示:本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.12、已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于____°答案:75°.解析:根据题目中的等量关系列方程组求解即可.∵∠α和∠β互为补角,且∠β比∠α小30°,∴{∠α+∠β=180°∠β=∠α−30°,解得:∠α=105°,∠β=75°,故答案为75°.小提示:本题考查补角的定义以及二元一次方程组的应用,根据题意列出方程组是解题关键.13、《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”,译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为______.答案:{x +y =1003x +13y =100 解析:设大和尚有x 人,则小和尚有y 人,根据“有100个和尚”和大和尚一人分3只,小和尚3人分一只刚好分完100个馒头”列出方程组即可.设大和尚有x 人,则小和尚有y 人,根据题意得{x +y =1003x +13y =100, 故答案为:{x +y =1003x +13y =100 . 小提示:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组.解答题14、在解方程组{bx +ay =10①x −cy =14②时,甲正确地解{x =4y =−2,乙把c 写错得到{x =2y =4.若两人的运算过程均无错误,求a ,b ,c 的值.答案:a =1, b =3, c =5.解析:先将甲的解代入原式解出c,再将乙的解代入原式解出a 、b 即可.因为甲得到的解正确,所以把甲得到的{x =4y =−2代入原方程组,得 {4b −2a =10③4+2c =14④ , 由④,解得c =5.已知乙将c 写错得到{x =2y =4,因为a ,b 没有写错,所以将这个解代入方程①,得2b+4a=10.⑤解由③⑤组成的方程组,得a=1,b=3所以a=1,b=3,c=5.小提示:本题考查二元一次方程组与解的关系,关键在于代入原式求出参数.15、春节临近,坚果和炒货都进入销售旺季,某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了45a元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.答案:(1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)a=10.解析:(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组{x−y=50060x+50y=85000,解方程组即可;(2)根据开心果涨价后销售价格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.(1)解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克根据题意,得{x−y=50060x+50y=85000,解得{x =1000y =500, 答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)解:60(1+2%a )×(1000−100)+(50+45a)×500(1−10%)=85000+5900,整理得76500+1440a =90900,解得:a =10,经检验a =10是原方程的根,并符合题意.小提示:本题考查列二元一次方程组解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.。
初中二元一次方程例题及答案
一、例题一
已知方程组:
$$ \\begin{cases} 2x + 3y = 11, \\\\ x -解答:
通过方程组消元的方法,我们可以得到:
$$ \\begin{cases} 2x + 3y = 11, \\\\ x - 2y = 3. \\end{cases} \\xRightarrow{\\text{消元}} \\begin{cases} 2x + 3y = 11, \\\\ 5x - 10y = 15. \\end{cases} $$
解得:
$$ \\begin{cases} x = 1, \\\\ y = 0.\\end{cases} $$
因此,方程组的解为 , 。
通过这两道例题,我们可以初步掌握解二元一次方程组的方法,希望同学们能够熟练掌握这一知识点。
进一步化简可得:
$$ \\begin{cases} 3x + 4y = 9, \\\\ 2x - y = 2. \\end{cases} \\xRightarrow{\\text{消元}} \\begin{cases} 3x + 4y = 9, \\\\ -6x + 3y = 6, \\end{cases} \\xRightarrow{\\text{消元}} \\begin{cases} 3x + 4y = 9, \\\\ 7y = 0, \\end{cases} $$
通过方程组消元的方法,我们可以得到:
$$ \\begin{cases} 3x + 4y = 9, \\\\ 2x - y = 2. \\end{cases} \\xRightarrow{\\text{消元}} \\begin{cases} 3x + 4y = 9, \\\\ -6x + 3y = 6. \\end{cases} $$
初一数学二元一次方程组典型例题详解
初一数学二元一次方程组典型例题详解一、和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题:甲、乙两人分别以不变的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字。
问甲、乙两人每分钟各打多少个?解:设甲每分钟打x个字,乙每分钟打y个字。
根据题意可列方程组为2(x+y)=240①x-y=10②由①得x+y=120 ③,②+③得2x=130,解得x=65,将x=65代入②得:y=55。
答:甲每分钟打65个字,乙每分钟打55个字。
思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
二、产品配套问题典型例题:某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个,螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品正好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设分配x名工人生产螺钉,y名工人生产螺母。
由题意可列方程组为x+y=22①2x1200x=2000y②由②得6x=5y③,由①得x=22-y,代入③得6(22-y)=5y,整理得11y=132,解得y=12,则x=22-12=10。
答:应该分配10名工人生产螺钉,12名工人生产螺母。
思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
三、工作量问题知识梳理:我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。
典型例题:现要整理一批文件,由1个人完成需要40个小时,计划由一部分人先做4小时,再增加2人和他们一起再做8小时,完成这项任务,假设这些人的工作效率都相同,则应先安排多少人工作?解:设总工作量为1,应先安排x人工作。
初三数学二元一次方程组试题答案及解析
初三数学二元一次方程组试题答案及解析1.解方程组。
【答案】【解析】先用加减消元法,再用代入消元法即可求出方程组的解。
试题解析:,①+②得,4x=14,解得x=,把x=代入①得,+2y=9,解得y=。
故原方程组的解为:【考点】解二元一次方程组。
2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)S=100.【解析】(1)理解题意,观察图形,即可求得结论;(2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b即可求得S.试题解析:(1)根据图形可得:S=3,N=1,L=6;(2)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a,∴S=N+L﹣1,将N=82,L=38代入可得S=82+×38﹣1=100.【考点】1.图形的变化规律2.三元一次方程组的应用.4.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?【答案】(1)0.5万元、1.5万元;(2)15.【解析】(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.试题解析:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30-z)≤30,解得:z≥15,答:至少购买A种设备15台.【考点】1.一元一次不等式的应用;2.二元一次方程组的应用.5.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?【答案】这个队胜9场,负7场.【解析】设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,联立方程组求解即可.试题解析:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.【考点】二元一次方程的应用.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为A.B.C.D.【答案】C.【解析】设∠1=x°,∠2=y°,由题意得:.故选C.【考点】由实际问题抽象出二元一次方程组.7.方程组的解是.【答案】【解析】由两式相加得2x="2" ∴ x="1" ;将x=1代入x+y=3得y=2 ∴【考点】二元一次方程组的解法.8.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【答案】B【解析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.设其中有x张成人票,y张儿童票,根据题意得.【考点】由实际问题抽象出二元一次方程组.9.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【解析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选D10.以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】①+②得,2y=1,解得,y=.把y=代入①得,=-x+2,解得x=.∵>0,>0,根据各象限内点的坐标特点可知,点(x,y)在平面直角坐标系中的第一象限.故选A.考点: 1.解二元一次方程组;2.点的坐标.11.若是方程2x+y=0的一个解,则6a+3b+2=________.【答案】2【解析】把代入方程,得2a+b=03(2a+b)=06a+3b=0∴6a+3b+2=0+2=2.12.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是13.关于的方程组,______.【答案】9.【解析】两个方程直接相加,整理即可得解.试题解析:①+②得,x+m+y-3=6+m,所以,x+y=9.考点: 解二元一次方程组.14.解方程组.【答案】解:,①-2×②得,-7y=7,解得y=-1;把y=-1代入②得,x+2×(-1)=-2,解得x=0。
新编【人教版】初一数学下册《期末复习(四) 二元一次方程组》(解析版)
人教版初一数学下册期末复习(四) 二元一次方程组(典型例题+复习试卷配解析)考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解, 则2m-n 的算术平方根为( )A.4B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩ 方法二:1,28.x y x y =++=⎧⎨⎩①② 对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩ 【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩ 2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( ) A.由①得y=3x-2,再代入② B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( ) A.1,2 B.1,-2 C.-1,2 D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元. (1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩ 答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二元一次方程组典型例题详解
一、实际问题与二元一次方程组的思路
1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:
① 方程两边表示的是同类量;
② 同类量的单位要统一;
③ 方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:
用两个字母表示问题中的两个未知数;
列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;
答:写出答案。
3.要点诠释
(1)“设”、“答”两步,都要写清单位名称;
(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
二、八大典型例题详解
1.和差倍数问题
知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题:
【思路点拨】由甲乙两人2分钟共打了240个字可以得到第一个等量关系式
2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展:
【思路点拨】由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
2.产品配套问题
知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。
典型例题:
【思路点拨】本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展:
【思路点拨】根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
3.工作量问题
知识梳理我们在解决工程问题时通常把工作总量看成1;
工作量=工作效率×工作时间;
总工作量=每个个体工作量之和;
工作效率=工作量÷工作时间(即单位时间的工作量);
工作效率=1÷完成工作的总时间。
典型例题:
【思路点拨】
变式拓展:
【思路点拨】
4.利润问题
知识梳理商品利润=商品售价-商品进价;利润率=利润÷进价×100%。
典型例题:
【思路点拨】本题有两个未知数,即商品本钱和预售总价,也有两个明显的等量关系,即两种打折出售的获利情况,根据售价-成本-存货费用=利润,可以列出方程组求解即可。
变式拓展:
【思路点拨】本题易知第一个等量关系为甲乙两种商品共50件,则有x+y=50。
根据甲乙商品的进价和利润率可知甲商品每件利润为35×0.2=7元,乙商品每件利润为20×0.15=3元,再由所获总利润得到第二个等量关系,组成方程组求解即可。
5.行程问题
知识梳理路程=速度×时间;
相遇问题:快行距+慢行距=原距追及问题:
快行距-慢行距=原距航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度
典型例题:
【思路点拨】这两个问题均可以利用路程、速度和时间之间的关系列方程(组)求解,要明确快车与慢车的路程与A、B两地的距离之间的关系,相向而行两车相遇时:快车路程+慢车路程=A、B两地距离;同向而行两车相遇时:快车路程-慢车路程=A、B两地距离。
变式拓展:
【思路点拨】根据水流速度与船在静水中的速度的关系可以得到船的顺水速度和逆水速度,再根据路程=时间×速度列出方程组求解。
6.存贷款问题
知识梳理利息=本金×利率×期数;本息和(本利和)=本金+利息。
典型例题:
【思路点拨】本题的等量关系:甲种贷款+乙种贷款=13万元;甲种贷款的年利息+乙种贷款的年利息=6075元。
变式拓展:
【思路点拨】本题两种储蓄的年利率之和为3.24%,由此可得到第一个等量关系x+y=3.24%,再由两种储蓄的利息之和可得第二个等量关系,列方程组求解即可。
7.数字问题
知识梳理已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a。
典型例题:
【思路点拨】本题中的等量关系:
①个位上的数-十位上的数=5;
②原数+新数=143。
变式拓展:
【思路点拨】本题中的等量关系:
①个位上的数+十位上的数=8;
②原数-新数=18。
8.方案问题
知识梳理在解决实际问题时,需合理安排,从几种方案中,选择最佳方案。
要点诠释:方案选择的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。
典型例题:
【思路点拨】(1)本小问两个等量关系均可利用货物的总吨数等于两种车型所运货物吨数之和,每种车型所运货物的吨数等于该种车的数量乘以每辆车装满货物时可运输的货物吨数,列出方程即可。
(2)根据货物的总吨数等于两种车型所运货物吨数之和列出方程,求解即可。
(3)总费用等于A型车的总费用加上B型车的总费用,比较三种方案的费用得出最省钱的租车方案。
变式拓展:。