肌电图讲义PPT演示课件
合集下载
《医学肌电图学》课件
个性化治疗
普及推广
基于肌电图的个体化特征,未来将有望开 展个性化治疗和康复方案,提高治疗效果 。
随着人们对肌肉疾病的认知不断提高,肌 电图技术将得到更广泛的普及和应用。
06
案例分析
神经源性疾病的肌电图表现
神经根病变
肌电图可显示神经传导速度减慢 ,波幅降低,肌肉无收缩反应等
异常表现。
脊髓病变
肌电图可显示神经传导速度减慢或 消失,肌肉无收缩反应等异常表现 。
肌肉源性疾病的诊断
01
肌无力综合征
肌电图检查可以检测肌肉的电生 理活动,有助于诊断肌无力综合 征。
肌萎缩症
02
03
先天性肌肉疾病
通过肌电图检查,可以观察肌肉 的电生理特征,有助于诊断各种 肌萎缩症。
肌电图可以检测先天性肌肉疾病 的肌肉电生理特征,如先天性肌 营养不良症等。
周围神经损伤的诊断与预后评估
初步发展
进入20世纪后,随着电子技术和计算机技术的进步,肌电图学得 到了初步的发展和应用。
现代应用
随着科技的不断进步和应用领域的拓展,肌电图学在医学、运动科 学、康复医学等领域得到了广泛的应用和发展。
02
肌电图的原理与技术
肌电图的原理
肌电图是通过记录肌肉活动的电信号 来反映神经肌肉功能的一种检测方法 。
采集到的肌电图信号需要进行预处理和后处理,以提取有用的信息并进行准确的解 读。
肌电图的解读与报告
解读肌电图时,需要分析肌电图的波 形、幅度、频率等特征,并与正常值 进行比较,以判断肌肉或神经的功能 状态。
报告肌电图结果时,需要详细描述检 测过程、结果解释、临床意义和建议 等信息,以便医生根据报告结果进行 诊断和治疗。
特点
肌电图精品医学课件
01
02
03
04
神经肌肉疾病的诊断:如肌肉 萎缩、肌无力、肌强直等。
周围神经损伤的诊断与预后评 估:如臂丛神经损伤、腕管综
合征等。
运动医学与康复:评估肌肉功 能和损伤程度,指导康复训练
和治疗方案。
职业病与工伤鉴定:评估职业 病和工伤对神经肌肉系统的影
响,进行劳动能力鉴定。
02
肌电图检查技术
电极放置
作用
诊断神经肌肉疾病,评估肌肉和 神经功能,辅助诊断和鉴别诊断 ,指导治疗和康复。
肌电图的基本原理
神经电生理学
神经肌肉系统的电活动是由神经元和 肌肉纤维的电生理特性所决定的。
电极放置
将电极放置在肌肉上,记录肌肉的电 活动,通过分析这些电活动的波形、 幅度、频率等参数来评估肌肉和神经 的功能状态。
肌电图的应用范围
脊髓病变
总结词
肌电图有助于诊断脊髓病变的神经传导异常。
详细描述
肌电图可以检测脊髓损伤或炎症引起的神经传导障碍,有助于诊断脊髓病变,如脊髓炎、脊髓压迫症 等。
周围神经病变
总结词
肌电图对周围神经病变的诊断具有重要意义。
详细描述
肌电图可以检测周围神经的传导速度和波幅异常,有助于诊 断各种周围神经病变,如腕管综合征、肘管综合征等。
肌电图精品医学课件
汇报人: 2023-12-28
目录
• 肌电图概述 • 肌电图检查技术 • 肌电图解读与报告 • 肌电图在神经科疾病中的应用 • 肌电图在康复医学中的应用 • 肌电图的未来发展与展望
01
肌电图概述
定义与作用
定义
肌电图是一种通过记录肌肉电活 动的检查方法,用于评估神经肌 肉系统的功能和状态。
肌电图讲义精品PPT课件
MUAP波幅
MUAP时限
MUAP相位和转折
正常MUP模式图
神经源性改变
典型的神经源性损害改变: MUP 时限增宽、波幅增高,长时限高 波幅的多相电位增多,募集减少
肌源性改变
典型的肌源性损害改变: MUP的 时限缩短、波幅降低,短时限低 波幅的多相电位增多,早募集
影响动作电位产生的肌纤维改变
• 纤颤电位和正尖波的出现 往往提示失神经支配的病 理过程,但在一些炎性肌 病或肌营养不良时也可出 现。
束颤电位:
• 临床上表现为肉眼可见的肌肉跳动,患者主诉有“ 肉跳”。在肌电图上可见束颤电位,其本质是正常 或异常的单个MU不规则且不自主的发放。
• 正常人也可有束颤电位,称为“良性肌束颤动”,
• 束颤电位在某些病理状态下较为常见,如前角细 胞疾病、脊髓型颈椎病、神经根病和脱髓鞘性周 围神经病。
纤颤电位和正尖波
大量存在
束颤电位
罕见
代表疾病
砷、铊、金中毒、酒精中毒、营养性周围神经 病、血管炎性周围神经病、巨轴索性周围神经 病、VitB12缺乏性周围神经病、 HMSN(II)
髓鞘型周围神经病
正常或轻度降低;传导阻滞明显 出现离散现象 正常或呈多相波 延长明显 减慢
正常、降低或消失 可出现离散现象 可出现多相位波 明显减慢 明显延长 明显延长
不是反射活动,而是少数运动神经 元的传出性发放,由轴突的逆向冲 动诱发。传入和传出均为α运动轴 索 刺激域值,通常用超强刺激引出理 想的反应
平均波幅小
在成人,仅在腓肠肌、比目鱼肌容 理论上在每一块肌肉都能记录到F 易引出,在部分正常人的桡侧腕屈 波 肌也可以。
如何进行电生理诊断
• 患者男性,34岁,主诉下肢乏力一年余,全身肉 跳。
肌电图ppt医学课件
三、F波 1 检测内容 2 结果判断和意义: 反映运动神经近端的传导功能,当刺激点
远端正常时,F波异常可以提示神经根、神经丛、近端运 动神经的病变。F波的研究对周围神经病的早期诊断、病 变部位的确定以及对功能恢复的动态观察特别是累及近端 的神经损害的观察,有着重要的临床价值F波出现率下降, 是脱髓鞘病变最早的表现。 3 临床应用 (1)AIDP(急性炎性脱髓鞘性神经病)和CIDP(慢性炎性 脱髓鞘多发性神经病)等神经根神经病的诊断
2 终板活动 针极插在终板区或肌肉神经纤维引起
3 电静息 肌肉完全放松时,不出现肌电位,示波屏
上成一条直线
轻收缩时的肌电图
➢ 运动单位电位:正常肌肉随意收缩时出现的动作电位 时限:指运动单位电位变化的总时间 波幅:运动单位电位的电压代表肌纤维兴奋时所产生 的动作电位幅度的总和,可通过对最高的正向和负向 间的距离来进行测定 波形:运动单位电位的波形由离开基线的偏转次数决 定。单相、双相、多相电位
变时感觉传导异常,与根性病变不同。
➢ 周围神经 (1)多发性周围神经病 (2)多发性单神经病 (3)单神经病
➢ 神经肌肉接头: 病变时近端肌肉受累明显 (1)突触后膜病变:RNS表现为低频刺激波幅递减。 (2)突触前膜病变:RNS表现为高频刺激波幅递增。 (3)神经肌肉接头处病变SFEMG表现为颤抖增宽伴有或不
➢ 正相电位:常为双相,起始呈宽大的正相,其后接 续一负向迤迨
病理意义:失神经支配;电解质改变;肌炎;肌纤维
的破坏等
束颤电位:自发的运动单位电位,与轻收缩时运动单位电位 的区别:(1)自发的,时限宽,电压高(2)频率慢,节 律性差,发放不规则 病理意义:常见于前角病变,必须与纤颤、正向电位同时 存在才有意义
肌电图检测PPT课件
肌电图-EMG
肌电图-EMG
基本方法步骤:needle 针电极插入肌肉 insert 观察插针时电活动 insertional activity 肌肉放松时电活动 activity in relaxed muscle 随意收缩时电活动 activity in contracting muscle 轻收缩 中度用力 重度用力
缩而产生的动作电位
特点:始为正相,宽度小于2ms,幅度 小于100uV,频率1-20Hz.多出现在肌肉 失神经支配时,肌纤维对乙酰胆碱或机 械刺激敏感。在肌肉疾病时也可出现。
异常肌电图
正尖波 positive sharp wave 一个正相电位,宽度大于10ms,幅度大 于100-200uV。 神经损伤初期纤颤电位增多,后期正尖波 增多。
异常肌电图
神经源性异常neuropathy : 静息时为纤颤或正相电位 轻用力时电位长而宽(多相,) 最大用力时,干扰不完全
肌源性异常myopathy : 静息时少量纤颤 轻用力时,波幅低 最大用力时,过分干扰型
神经电图诊断
神经传导速度测定 运动神经 MCV 感觉神经 SCV 周围神经病变的早期
异常肌电图
束颤电位fasciculation potential
自发的完整的运动单位电位,肌肉处于 受激状态。形态与正常相似为良性束颤, 形态参数异常即为恶性束颤,表示运动单
位兴奋性增高,是下运动神经元损伤受压的重 要特征。
异常肌电图
二、随意收缩时的肌电图 1.运动电位数量减少 受检者配合;前角细胞和轴索功能减退 2.电位波幅改变 普遍减低:周围神经疾病早期、神经再生
肌电图--EMG
基本图形:相、时限、波幅、极性、频率
phase duration
肌电图专题知识宣讲PPT优质课件
干扰相
单纯相 (神经源性损害)
病理干扰相 (肌源性损害)
几种常见疾病的肌电图表现
1.神经根性病变 2.前角细胞病变 3.格林巴利综合征 4.多灶性运动神经病 5.重症肌无力 6.肌炎等
神经根性病(与神经根支配范围有关例C8-T1)
神经传导检测:感觉神经传导正常;(尺神经)
神经失用:即传导阻滞,局灶性严重脱髓鞘,不伴轴索 损伤。去除病因后数天到数周可恢复。
脱髓鞘:传导速度减慢、远端潜伏期延长,动作电位波 形离散,继发波幅降低。
轴索损伤:全程动作电位波幅降低,传导速度轻度降低 或正常。
注意除外肌肉萎缩
神经断伤:近远端均不可引出动作电位。
F波和H反射
怀疑根性或近神经根损害。
2.如果波幅正常,末端潜伏期大于正常上限的110%, 如果波幅于低正常下限,末端潜伏期大于正常上限的 120%;
3.明.没有以上所述的脱髓鞘证据; 2.波幅低于正常下限的80%。
慢性炎性脱髓鞘型多发性神经根神经病(CIDP)
运动神经传导诊断标准为:
经可以引不出
运动神经传导测定
潜伏期:神经轴索中快传导纤维到达肌肉的时间 传导速度:计算方法? 波幅、波形、曲线下面积(参与混合神经肌肉动作电位的肌纤维数量) 时程(每个单个肌纤维是否在同一时间被兴奋)脱髓鞘病变时,每个神经干
传导速度不一样,导致每个肌纤维不能在同一时间兴奋,造成时程延长,波 形离散
1.传导速度慢于正常低限的75%(2条神经以上) 2.远端潜伏期长于正常高限的130%(2条神经以上) 3.肯定的一过性离散或近端-远端波幅比低于0.7
(1条神经以上) 4.F波潜伏期长于正常高限的130%(1条神经以上)
符合上述4条标准中的3条以上,可诊断有髓鞘脱失。
单纯相 (神经源性损害)
病理干扰相 (肌源性损害)
几种常见疾病的肌电图表现
1.神经根性病变 2.前角细胞病变 3.格林巴利综合征 4.多灶性运动神经病 5.重症肌无力 6.肌炎等
神经根性病(与神经根支配范围有关例C8-T1)
神经传导检测:感觉神经传导正常;(尺神经)
神经失用:即传导阻滞,局灶性严重脱髓鞘,不伴轴索 损伤。去除病因后数天到数周可恢复。
脱髓鞘:传导速度减慢、远端潜伏期延长,动作电位波 形离散,继发波幅降低。
轴索损伤:全程动作电位波幅降低,传导速度轻度降低 或正常。
注意除外肌肉萎缩
神经断伤:近远端均不可引出动作电位。
F波和H反射
怀疑根性或近神经根损害。
2.如果波幅正常,末端潜伏期大于正常上限的110%, 如果波幅于低正常下限,末端潜伏期大于正常上限的 120%;
3.明.没有以上所述的脱髓鞘证据; 2.波幅低于正常下限的80%。
慢性炎性脱髓鞘型多发性神经根神经病(CIDP)
运动神经传导诊断标准为:
经可以引不出
运动神经传导测定
潜伏期:神经轴索中快传导纤维到达肌肉的时间 传导速度:计算方法? 波幅、波形、曲线下面积(参与混合神经肌肉动作电位的肌纤维数量) 时程(每个单个肌纤维是否在同一时间被兴奋)脱髓鞘病变时,每个神经干
传导速度不一样,导致每个肌纤维不能在同一时间兴奋,造成时程延长,波 形离散
1.传导速度慢于正常低限的75%(2条神经以上) 2.远端潜伏期长于正常高限的130%(2条神经以上) 3.肯定的一过性离散或近端-远端波幅比低于0.7
(1条神经以上) 4.F波潜伏期长于正常高限的130%(1条神经以上)
符合上述4条标准中的3条以上,可诊断有髓鞘脱失。
神经肌电图生理检查ppt课件
• 在生物成熟的上升(发展)阶段,是生理的自然的过 程,而老化尽管完全无病理改变的可能性不能除外, 但主要是由病理决定的。随年龄的增加,脑萎缩,脑 室扩大。神经元数目选择性改变在不同脑区改变不同 (额颞明显)
多棘慢复合波 由2个或2个以上的棘波和1个慢波组成。
多棘波 由2个或2个以上的棘波连续出现。
精神运动性变异型波 波幅50~70µV,4~7cps的带有切迹的
节律性电活动。此种带有切迹的慢波由二个负相波组成, 中间有1个正相偏转。呈短至长程出现,多见于中颞区。
14/sec及6/sec正性棘波 弓形,见于一侧或双侧后颞及临 近区域,出现在思睡期和轻睡期。
-周波/秒,C/S,CPS,Hertz (Hz)
常规走纸速度 3cm = 1秒
人类脑电活动的频率在0.5—30HZ之间。 • δ频带:0.5--3HZ • θ频带:4--7HZ • α频带: 8--13HZ • β频带: 18--30HZ • γ频带: >30HZ
脑波特征--波幅
代表一个波的高度 • 表示方法
视觉诱发电位的临床应用
• VEP最有价值之处是发现视神经的潜在病灶, 视神经病变常见于视乳头炎和球后视神经 炎,PRVEP异常率可达89%;VEP对多发性 硬化的诊断也很有意义。
运动诱发电位的临床应用
• 脑损伤后运动功能的评估及预后的判断; 协助诊断多发性硬化及运动神经元病;可 客观评价脊髓型颈椎病的运动功能和锥体 束损害程度。
-用µV 表示 -通过测定一个波的垂直距离与定标信号的高度比 较确定
如果定标信号高度是5㎜=50 µV ,那么1 ㎜ =10 µV 10 ㎜ =100 µV ㎶
• 按波幅大小分为
低波幅 <25 µV ㎶,中波幅25~75 µV ㎶,高波幅 >75 µV
多棘慢复合波 由2个或2个以上的棘波和1个慢波组成。
多棘波 由2个或2个以上的棘波连续出现。
精神运动性变异型波 波幅50~70µV,4~7cps的带有切迹的
节律性电活动。此种带有切迹的慢波由二个负相波组成, 中间有1个正相偏转。呈短至长程出现,多见于中颞区。
14/sec及6/sec正性棘波 弓形,见于一侧或双侧后颞及临 近区域,出现在思睡期和轻睡期。
-周波/秒,C/S,CPS,Hertz (Hz)
常规走纸速度 3cm = 1秒
人类脑电活动的频率在0.5—30HZ之间。 • δ频带:0.5--3HZ • θ频带:4--7HZ • α频带: 8--13HZ • β频带: 18--30HZ • γ频带: >30HZ
脑波特征--波幅
代表一个波的高度 • 表示方法
视觉诱发电位的临床应用
• VEP最有价值之处是发现视神经的潜在病灶, 视神经病变常见于视乳头炎和球后视神经 炎,PRVEP异常率可达89%;VEP对多发性 硬化的诊断也很有意义。
运动诱发电位的临床应用
• 脑损伤后运动功能的评估及预后的判断; 协助诊断多发性硬化及运动神经元病;可 客观评价脊髓型颈椎病的运动功能和锥体 束损害程度。
-用µV 表示 -通过测定一个波的垂直距离与定标信号的高度比 较确定
如果定标信号高度是5㎜=50 µV ,那么1 ㎜ =10 µV 10 ㎜ =100 µV ㎶
• 按波幅大小分为
低波幅 <25 µV ㎶,中波幅25~75 µV ㎶,高波幅 >75 µV
肌电图及其临床应用ppt课件精选全文
2024/8/28
运动神经传导速度
• 测定方法及MCV的计算: 超强刺激神经干远端和近端,在该神
经支配的肌肉上记录复合肌肉动作电位 (CMAP),测定其 不同的潜伏期,用远端和 近端之间的距离除以两点间潜伏差,即为 神经的传导速度。
2024/8/28
感觉神经传导速度
• 测定方法: 电极放置:刺激电极置于 或套在手指或脚趾末端,阴 极在阳极的近端;记录电极 置于神经干的远端(靠近刺 激端),参考电 极置于神经 干的近端(远离刺激部位); 地 线固定于刺激电极和记 录电极之间
肘部(-)在正中神经腕部电刺激 2)胫后神经记录: Cz ,T12,L4, 腘窝(-)
在胫后神经内踝部刺激
2024/8/28
丘脑皮层电位 臂丛电位
体感诱发电位
躯体感觉电位为评价脊髓和脑干后柱、中丘脑 系以及临近组织的功能提供了有效的工具.
马尾 -脊髓下段电位
通常用于下列检查: 外周感觉神经 较大直径的神经通路
PNS:外周神经系统 CN2S02:4中/8/枢28 神经系统
SEP的临床意义
SEP:感觉通路的判断,病变在哪个阶段 (神经丛、神经根、脊髓、中枢)
2024/8/28
SEP的临床意义
正中神经: N9/P9:臂丛 N11/P11:周围神经进入颈髓突触前电位 N13/P13:脊髓灰质后角?枕骨大孔之下? N14/P14:内侧丘系(下部脑干、丘脑) N20:以后是皮层近场电位,丘脑下结构 P25、N35、P45感觉皮层
2024/8/28
感觉神经传导速度
• 测定方法及计算: 顺行测定法是将刺激电极置于感觉神经
远端,记录电极置于神经干的近端,然后 测定其潜伏期和记录感觉神经动作电位 (SNAP);刺激电极与记录电极之间的距离 除以潜伏期为SCV。
运动神经传导速度
• 测定方法及MCV的计算: 超强刺激神经干远端和近端,在该神
经支配的肌肉上记录复合肌肉动作电位 (CMAP),测定其 不同的潜伏期,用远端和 近端之间的距离除以两点间潜伏差,即为 神经的传导速度。
2024/8/28
感觉神经传导速度
• 测定方法: 电极放置:刺激电极置于 或套在手指或脚趾末端,阴 极在阳极的近端;记录电极 置于神经干的远端(靠近刺 激端),参考电 极置于神经 干的近端(远离刺激部位); 地 线固定于刺激电极和记 录电极之间
肘部(-)在正中神经腕部电刺激 2)胫后神经记录: Cz ,T12,L4, 腘窝(-)
在胫后神经内踝部刺激
2024/8/28
丘脑皮层电位 臂丛电位
体感诱发电位
躯体感觉电位为评价脊髓和脑干后柱、中丘脑 系以及临近组织的功能提供了有效的工具.
马尾 -脊髓下段电位
通常用于下列检查: 外周感觉神经 较大直径的神经通路
PNS:外周神经系统 CN2S02:4中/8/枢28 神经系统
SEP的临床意义
SEP:感觉通路的判断,病变在哪个阶段 (神经丛、神经根、脊髓、中枢)
2024/8/28
SEP的临床意义
正中神经: N9/P9:臂丛 N11/P11:周围神经进入颈髓突触前电位 N13/P13:脊髓灰质后角?枕骨大孔之下? N14/P14:内侧丘系(下部脑干、丘脑) N20:以后是皮层近场电位,丘脑下结构 P25、N35、P45感觉皮层
2024/8/28
感觉神经传导速度
• 测定方法及计算: 顺行测定法是将刺激电极置于感觉神经
远端,记录电极置于神经干的近端,然后 测定其潜伏期和记录感觉神经动作电位 (SNAP);刺激电极与记录电极之间的距离 除以潜伏期为SCV。
肌电图讲课神经内科PPT课件
8
终板活动
Endplate Activity
• 是一种在正常肌肉中也可以记录到的自发电位。 • 在肌肉的终板区记录到,包括终板噪音和终板
电位。 • 终板电位波幅可达250 V, 时限为1-5ms,应注
意与纤颤电位鉴别。 • 终板电位无特殊诊断价值。
9
纤颤电位及正锐波
Fibrillation and Positive sharp waves
2
基本概念
• 肌电图检查能够帮助区分神经源性损害和肌源性 损害,在神经源性损害中,又能帮助鉴别病变的 部位如前角运动神经元、神经根和周围神经。
• 神经重复电刺激和单纤维肌电图(SFEMG)对神 经肌肉接头病变的诊断很有帮助。
• EMG毕竟是一种辅助检查,在其测定过程中,很 难用一种电位对一种疾病作特异性诊断,而是需 要结合临床、生化检验和病理结果来作综合诊断。
肌电图
( Electromyography, EMG) 北京医院神经内科 刘银红
1
基本概念
• 狭义的肌电图(EMG)是以一针电极插入肌肉中, 收集针极附近一组肌纤维的动作电位,观察在插 入过程中、静息期以及肌肉在不同程度收缩时的 电活动。
• 广义的肌电图是除针极肌电图外还包括神经传导 速度(NCV)、神经重复电刺激(RNS)以及有关周围 神经、神经肌接头和肌肉疾病的电诊断学。
• 一个MUP,代表电极记录范围内的所有单根肌 纤维同步放电的总和。
• 为准确起见,应在一块肌肉不同部位测定20个 不同的MUP,取其平均值。
• 一块肌肉MUP的观察指标主要包括平均波幅、 平均时限及多相波的百分比等。
• 时限是反映运动单位最可靠和最有用的数据。
21
22
MUP的波幅
终板活动
Endplate Activity
• 是一种在正常肌肉中也可以记录到的自发电位。 • 在肌肉的终板区记录到,包括终板噪音和终板
电位。 • 终板电位波幅可达250 V, 时限为1-5ms,应注
意与纤颤电位鉴别。 • 终板电位无特殊诊断价值。
9
纤颤电位及正锐波
Fibrillation and Positive sharp waves
2
基本概念
• 肌电图检查能够帮助区分神经源性损害和肌源性 损害,在神经源性损害中,又能帮助鉴别病变的 部位如前角运动神经元、神经根和周围神经。
• 神经重复电刺激和单纤维肌电图(SFEMG)对神 经肌肉接头病变的诊断很有帮助。
• EMG毕竟是一种辅助检查,在其测定过程中,很 难用一种电位对一种疾病作特异性诊断,而是需 要结合临床、生化检验和病理结果来作综合诊断。
肌电图
( Electromyography, EMG) 北京医院神经内科 刘银红
1
基本概念
• 狭义的肌电图(EMG)是以一针电极插入肌肉中, 收集针极附近一组肌纤维的动作电位,观察在插 入过程中、静息期以及肌肉在不同程度收缩时的 电活动。
• 广义的肌电图是除针极肌电图外还包括神经传导 速度(NCV)、神经重复电刺激(RNS)以及有关周围 神经、神经肌接头和肌肉疾病的电诊断学。
• 一个MUP,代表电极记录范围内的所有单根肌 纤维同步放电的总和。
• 为准确起见,应在一块肌肉不同部位测定20个 不同的MUP,取其平均值。
• 一块肌肉MUP的观察指标主要包括平均波幅、 平均时限及多相波的百分比等。
• 时限是反映运动单位最可靠和最有用的数据。
21
22
MUP的波幅
肌电图基础ppt课件
*
LEMS患者重复电刺激。A显示低频衰减;B-D分别为30个、100个和200个连续30Hz高频刺激,可见随着刺激时间的延长CMAP波幅递增更趋明显。
*
小结
肌电图——鉴别肌源性/神经源性 神经传导速度——远端神经 晚反应——近端神经 重复神经电刺激——神经肌肉接头
*
*
肌电图基础和临床应用
*
概述
肌电图检查就是利用电子仪器对神经肌肉电活动进行记录和分析并以此作为临床定位诊断的依据。
*
肌电图的适应征
肌萎缩(需除外脂肪萎缩和废用性肌萎缩) 无力(需除外上运动神经元损害引起的无力) 感觉障碍(尤其是感觉减退)
*
无力
伴感觉障碍
Dist.235 mm
CV 62 m/s
*
下肢传导检查
Recorder
Stimulation 2
Stimulation 1
运动传导检查
感觉传导检查
Recorder
Stimulation
*
特殊神经传导检查
晚反应(F波和H反射)和瞬目反射——用于检查近端神经传导功能。 重复神经电刺激——神经肌肉接头功能的电生理检查
肌肉
多发性神经病-糖尿病
重症肌无力
肌无力综合征
不伴肌肉压痛
伴有肌肉压痛
肌强直
肌营养不良
代谢性肌病
炎性肌病
动脉炎
*
肌电图检查的作用:有无损害?病变部位?
运动神经元损害 神经根性损害 周围神经病 神经肌肉接头病 肌肉疾病
*
肌电图检查的手段
针极肌电图检查 神经传导检查 诱发电位(运动和体感)
*
不伴感觉 障碍
↑腱反射—上运动神经元
LEMS患者重复电刺激。A显示低频衰减;B-D分别为30个、100个和200个连续30Hz高频刺激,可见随着刺激时间的延长CMAP波幅递增更趋明显。
*
小结
肌电图——鉴别肌源性/神经源性 神经传导速度——远端神经 晚反应——近端神经 重复神经电刺激——神经肌肉接头
*
*
肌电图基础和临床应用
*
概述
肌电图检查就是利用电子仪器对神经肌肉电活动进行记录和分析并以此作为临床定位诊断的依据。
*
肌电图的适应征
肌萎缩(需除外脂肪萎缩和废用性肌萎缩) 无力(需除外上运动神经元损害引起的无力) 感觉障碍(尤其是感觉减退)
*
无力
伴感觉障碍
Dist.235 mm
CV 62 m/s
*
下肢传导检查
Recorder
Stimulation 2
Stimulation 1
运动传导检查
感觉传导检查
Recorder
Stimulation
*
特殊神经传导检查
晚反应(F波和H反射)和瞬目反射——用于检查近端神经传导功能。 重复神经电刺激——神经肌肉接头功能的电生理检查
肌肉
多发性神经病-糖尿病
重症肌无力
肌无力综合征
不伴肌肉压痛
伴有肌肉压痛
肌强直
肌营养不良
代谢性肌病
炎性肌病
动脉炎
*
肌电图检查的作用:有无损害?病变部位?
运动神经元损害 神经根性损害 周围神经病 神经肌肉接头病 肌肉疾病
*
肌电图检查的手段
针极肌电图检查 神经传导检查 诱发电位(运动和体感)
*
不伴感觉 障碍
↑腱反射—上运动神经元
肌电图小讲座课件
第二部分 神经传导速度(NCV)
一. NCV测定 1. MCV:波幅称为
复合肌肉动作电 位(CMAPs)
CMAP波幅
2. SCV:波幅称为 感觉神经动作电 位(SNAPs)
3. 异常NCV的特点
NCV:髓鞘损害 波幅:轴索损害
4. 临床意义
诊断周围神经病 鉴别髓鞘或轴索损害 了解病变的程度
一.低频RNS正常值计算及临床意义
刺激频率: 5c/s 计算:第4,5波比第1波下降
的百分比 正常值:↓<58%或10%
以内意义 异常:波幅递减>10%~15% 意义:诊断后膜病变—MG
1. 神经源性损害 自发电位(进行性失神经或病变早期) MAUP 时 限 增 宽 、 波 幅 升 高 和 多 相 波 百
分比增高 大力收缩单纯相(运动单位丢失)
2. 肌源性损害 自发电位(肌炎活动的标志) MAUP 时 限 短 、 波 幅 降 低 和 多 相 波 百 分
比增高 大力收缩病理干扰相
第一部分 肌电图(EMG) 第二部分 神经传导速度(NCV) 第三部分 重复神经电刺激(RNS)
第一部分 肌电图(EMG)
一、基本概念 记录肌肉安静和随意收缩状态下及周围神 经受刺激时各种电生理特性的一门技术。 狭义EMG:仅指针极肌电图,即用特殊的针
插入肌肉,收集肌肉的电活动。
广义EMG:神经传导速度、重复神经电 刺激、运动电位计数、单纤维肌电图等
1. 肌肉安静状态下:自发电位(终板电位 和终板噪音)
2. 肌肉轻度自主收缩:MUAP 3. 肌肉大力收缩:募集电位
五. 异常EMG所见
1. 异常自发电位 纤颤电位:神经源性和肌源性损害 正锐波:同纤颤电位 束颤:神经源性损害 复合重复放电(CRD) 复合重复放电:见于
肌电图小讲课 ppt课件
Amp 1: 10-10kHz
New Nerve Other Side MNC F F--W Wa av ve es s SNC ANS Rep Stim H
瞬目反射
◆ 刺激每一侧眶上神经,均可由眼轮匝肌诱发出两 个性质不同的反射成分,刺激侧的早反射和晚反射 及对侧引出的晚反射。
◆ 对三叉神经、面神经和脑干病变的早期诊断具有 重要的临床价值。
MU募集的结果→产生强而有效力的肌肉收缩
运动单位电位(MUP) ◆ 用来区分肌源性与神经源性损害。
神经源性损害:MUP的时限和波幅均增大。 肌源性损害: MUP的时限和波幅均减少。 ◆ 与遗传性肌病不同,肌炎或代谢性肌病的 电生理改变是可以恢复的。 ◆多相波增多在肌源性和神经源性损害均可见。它反 映一个MU的肌纤维放电的不同步性的指标。
对募集到的、 单个MUP的评估
对MUP激活 形式的评估
随机的 呈模式的 亚MUP MUP
random
patterned
sub-MUP
大小 形态 稳定性 募集 干扰型
size shape
stability recruitment
IP
Paul E Barkhaus, 2008, eMedicine
肌电信号的检查
❖ 次强刺激胫后神经 ❖ 诱发小腿三头肌的反射性反应 ❖ 其潜伏期与跟腱反射差不多
5
神经传导检测 • F波 • H反射 • 重复 神经电刺激 • 瞬目反射 • 定量感觉 测定 • 皮肤交感反射 • 体感诱发电 位 • 听觉诱发电位 • 视觉诱发电位
• 磁刺激运动诱发电位 • 诱发电位 术中监测(IOM)
01
广义的肌电图
02
狭义的肌电图
针电极插入肌肉中,收集针附近 一组肌纤维的动作电位;在插入 过程中、 肌肉处于静息状态下以
肌电图演示ppt课件
鉴别神经源性与肌源性损害
肌电图能够检测肌肉的神经冲动传导和肌肉的收缩反应,有助于鉴别神经源性与 肌源性损害,为治疗方案的选择提供依据。
肌电图在肌肉疾病诊断中的应用
诊断肌肉疾病
肌电图可以检测肌肉的神经冲动传导 和肌肉的收缩反应,有助于诊断肌肉 疾病如肌炎、肌无力综合征等。
评估治疗效果
通过肌电图检测肌肉的功能状态,可 以评估治疗效果,指导治疗方案调整 。
高频肌电图技术
总结词
高频肌电图技术能够提供更精细的肌肉活动信息,有助于更准确地评估和诊断肌肉疾病和神经病变。
详细描述
随着科技的进步,高频肌电图技术不断发展,其采样频率更高,能够捕捉到更多的肌肉电活动细节。 这使得医生能够更准确地评估肌肉疾病的严重程度,以及神经病变对肌肉的影响。
神经肌肉电生理技术在康复医学中的应用
肌电图与事件相关电位的区别
事件相关电位主要检测大脑的认知电活动,而肌 电图主要检测肌肉的电活动。
3
适用范围
事件相关电位常用于评估认知障碍和痴呆等神经 系统疾病。
05
肌电图的临床意义与局限 性
肌电图在神经系统疾病诊断中的应用
诊断神经根病变
肌电图可以检测神经根受压或损伤时所引起的神经传导速度减慢或阻滞,有助于 诊断神经根病变。
肌电图的局限性
假阳性与假阴性
肌电图检测结果可能受到多种因素的影响,如患者的配合程度、电 极放置位置等,可能导致假阳性或假阴性的结果。
对患者有一定的创伤
肌电图检测需要将电极插入肌肉中,对于患者有一定的创伤和不适 感。
费用较高
肌电图检测费用较高,可能限制其在临床的广泛应用。
06
未来肌电图技术的发展趋 势与展望
神经传导异常
肌电图能够检测肌肉的神经冲动传导和肌肉的收缩反应,有助于鉴别神经源性与 肌源性损害,为治疗方案的选择提供依据。
肌电图在肌肉疾病诊断中的应用
诊断肌肉疾病
肌电图可以检测肌肉的神经冲动传导 和肌肉的收缩反应,有助于诊断肌肉 疾病如肌炎、肌无力综合征等。
评估治疗效果
通过肌电图检测肌肉的功能状态,可 以评估治疗效果,指导治疗方案调整 。
高频肌电图技术
总结词
高频肌电图技术能够提供更精细的肌肉活动信息,有助于更准确地评估和诊断肌肉疾病和神经病变。
详细描述
随着科技的进步,高频肌电图技术不断发展,其采样频率更高,能够捕捉到更多的肌肉电活动细节。 这使得医生能够更准确地评估肌肉疾病的严重程度,以及神经病变对肌肉的影响。
神经肌肉电生理技术在康复医学中的应用
肌电图与事件相关电位的区别
事件相关电位主要检测大脑的认知电活动,而肌 电图主要检测肌肉的电活动。
3
适用范围
事件相关电位常用于评估认知障碍和痴呆等神经 系统疾病。
05
肌电图的临床意义与局限 性
肌电图在神经系统疾病诊断中的应用
诊断神经根病变
肌电图可以检测神经根受压或损伤时所引起的神经传导速度减慢或阻滞,有助于 诊断神经根病变。
肌电图的局限性
假阳性与假阴性
肌电图检测结果可能受到多种因素的影响,如患者的配合程度、电 极放置位置等,可能导致假阳性或假阴性的结果。
对患者有一定的创伤
肌电图检测需要将电极插入肌肉中,对于患者有一定的创伤和不适 感。
费用较高
肌电图检测费用较高,可能限制其在临床的广泛应用。
06
未来肌电图技术的发展趋 势与展望
神经传导异常
《肌电图基础》课件
探索肌电图的图像处理技术,以提取有价值的 信息和模式。
统计分析
学习如何使用统计方法对肌电图数据进行分析, 揭示潜在的关系和趋势。
肌电图在临床和科研中的应用案例
康复训练
了解肌电图在康复训练中的应用,如肌肉功能评估 和运动控制训练。
人机界面
探索肌电图在人机界面中的应用,如手势识别和智 能控制系统。
运动优化
了解肌电图对运动优化的应用,包括姿势调整和动 作改进。
生物力学分析
学习如何利用肌电图进行生物力学分析,揭示运动 过程中的力学特性。
肌电图技术的发展趋势和前景
1 无线传输
探索无线肌电图传输技术的发展,提高测试的便利性和数据的准确性。
2 智能算法
了解智能算法在肌电图数据处理中的应用,提高数据分析的效率和精度。
3 个性化监测
探索个性化肌电图监测技术的前景,满足不同人群的需求和特定应用场景。
结语和总结
资料分享
分享一些肌电图学习资料和参 考文献,帮助你进一步深入学 习和研究。
未来展望
展望肌电图技术的未来发展方 向学员的问题,并提供进一 步的指导和帮助。
《肌电图基础》PPT课件
本课程将带你深入了解肌电图基础的定义与概述,肌电图的原理和应用,以 及肌电图测量的步骤与准备工作。
肌电图的数据解读与分析方法
波形分析
学习如何解读和分析肌电图波形,包括幅值、 频率和时态等特征。
信号滤波
了解肌电图信号滤波的原理和方法,以消除噪 音干扰,提高数据准确性。
图像处理
统计分析
学习如何使用统计方法对肌电图数据进行分析, 揭示潜在的关系和趋势。
肌电图在临床和科研中的应用案例
康复训练
了解肌电图在康复训练中的应用,如肌肉功能评估 和运动控制训练。
人机界面
探索肌电图在人机界面中的应用,如手势识别和智 能控制系统。
运动优化
了解肌电图对运动优化的应用,包括姿势调整和动 作改进。
生物力学分析
学习如何利用肌电图进行生物力学分析,揭示运动 过程中的力学特性。
肌电图技术的发展趋势和前景
1 无线传输
探索无线肌电图传输技术的发展,提高测试的便利性和数据的准确性。
2 智能算法
了解智能算法在肌电图数据处理中的应用,提高数据分析的效率和精度。
3 个性化监测
探索个性化肌电图监测技术的前景,满足不同人群的需求和特定应用场景。
结语和总结
资料分享
分享一些肌电图学习资料和参 考文献,帮助你进一步深入学 习和研究。
未来展望
展望肌电图技术的未来发展方 向学员的问题,并提供进一 步的指导和帮助。
《肌电图基础》PPT课件
本课程将带你深入了解肌电图基础的定义与概述,肌电图的原理和应用,以 及肌电图测量的步骤与准备工作。
肌电图的数据解读与分析方法
波形分析
学习如何解读和分析肌电图波形,包括幅值、 频率和时态等特征。
信号滤波
了解肌电图信号滤波的原理和方法,以消除噪 音干扰,提高数据准确性。
图像处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总之,肌源性损害较为特异性的改变包 括MUAP时限缩短,面积减小(尤其是面 积波幅比)。MUAP的复杂性增加并没有 特异性,但是对于早期的较轻度的肌源性 损害比较敏感。虽然波幅在肌源性损害中 可以降低,但也可以正常或增加。
29
神经源性损害的肌电改变 神经源性损害过程可分为两类:
1. 急性起病的单向失神经和再支配过程(如 外伤引起的神经断伤)
66
• A波: 也叫轴突反射,
是一种中间潜伏期 反应,通常出现于M 波和F波之间,但也 可出现于F波之后。
其产生机制有 三种:侧枝芽生; 假突触发放和异位 发放。
67
H-反射
68
• 腓肠肌和比目鱼肌的H反 射实际上与临床检查中的 踝反射相同。传入成份为 Ia类大纤维,传出为α运动 纤维,两者形成单突触反 射弧。
48
CIDP:右侧正中神经运动传导,刺激点分别为腕和肘部。可见肘部 刺激时CMAP波形出现明显的时间离散(temporal dispersion)
49
如何进行电生理诊断
• 患者男性,34岁,主诉下肢乏力一年余,全身肉 跳。
• 申请单:舌肌无萎缩,抬头肌力5,四肢肌力5, 未见明显肌萎缩,针刺觉正常。外院EMG:神经 源性损害
2. 以不同速度进展的失神经和再支配同时进 行的过程(如ALS)
30
急性起病的单向失神经和再支配
• 在最初几天仅表现为募集的减少而不伴有失神经 改变和MUAP的形态改变。
• 数天后插入电位增加,2周左右出现纤颤、正锐波。 • 几周后MUAP的变化反映再支配的过程(复杂性
增加,不稳定),随后出现波幅面积和时限增加 • 起病后数月至一年,再支配基本完成,在肌电图
• 三叉神经损害 • Bell’s 面瘫 • 面肌联带运动 • 面肌痉挛 • 听神经瘤 • 多发性周围神经病(GBS/CIDP/CMTI;
DPN/MFS/CMTII) • 脑干损害 • 多发性硬化 • 延髓外侧综合征
62
63
64
F波和A波
65
• F波:
在运动传导检查时,用 超强刺激可引出F波。 刺激任何一根神经的 远端都可在其支配的 肌肉上记录到F波。其 传入和传出成份都为α 运动纤维。F波可用于 测量近端神经传导速 度,也可作为运动单 位数目分析的一种方 法。
• 传导速度的减慢提示大直径纤维的缺失或 节段性脱髓鞘。当轴索受累为主时,传导 速度仅有轻度减慢。
• 神经传导检查可分为三个部分: ①运动神经 ②感觉神经 ③混合神经。
36
37
运动神经传导检查各 参数及意义 • 潜伏期 • 时限 • 波幅 • 传导时间和速度
38
感觉传导检查各参数及 意义 • 潜伏期 • 时限 • 波幅 • 传导时间和速度
• 双上肢反射++,双下肢反射+++,病理征-。下肢 踇趾背屈肌力4级,左上肢手内肌肌力4级。
50
双侧尺神经感觉传导。
双侧尺神经运动传导,白色为右 侧,彩色为左侧)
51
双侧胫神经运动传导(背景的白色线条为左侧,彩色线条为 右侧。刺激部位在踝部和腘窝)
52
附一 电生理检查中的晚反应: 瞬目反射、H反射和F波
导异常; C. 沿面神经付出通路的传导
异常; D. 三叉感觉主核、或脑桥内
中间神经元与同侧面核中 继的异常; E. 三叉脊束及其核、或延髓 内中间神经元至双侧面核 通路的异常; F. 延髓内未交叉的中间神经 元至同侧面核通路的异常。 G. 延髓内已交叉的中间神经 元至对侧面核通路的异常
61
出现瞬目反射异常的神经系统疾病
• 正常人也可有束颤电位,称为“良性肌束颤动”, • 束颤电位在某些病理状态下较为常见,如前角细
胞疾病、脊髓型颈椎病、神经根病和脱髓鞘性周 围神经病。
13
肌颤搐电位(myokymic potentials)
• 以一组MUP节律性的发 放为特征,通常由2-10个 MUP组成,发放不受自 主收缩、移动针电极和睡 眠的影响。
53
瞬目反射的机制和临床应用
54
• 临床上常用的是通过电刺激一侧三叉神经 眶上支,诱发眼轮匝肌收缩产生瞬目动作, 用肌电图仪描记眼轮匝肌的电位变化,在 电刺激同侧眼轮匝肌引出潜伏期短、波形 简单的R1波,在双侧引出潜伏期长、波形 复杂的R2(同侧)和R2’(对侧)波。
55
56
• R1(早成份)的反射途径:三叉神经传至 三叉神经感觉核,再由面神经核传至面神 经的多突触反射,其中枢位于桥脑。由于 整个过程仅涉及1~3个中间神经元,故其潜 伏期变动小,不易引起“适应性”。
58
刺激方法和记录方法
59
正常值
• R1潜伏期绝对值小于13.0ms,R1侧差小于 1.2ms。
• R2潜伏期在刺激侧小于40ms,在刺激对册 小于41ms。一侧刺激时,双侧记录到的R2 成分侧差小于5ms,一侧记录到的双侧刺激 的R2成分相差小于7ms。
60
A. 正常反应; B. 沿三叉神经传入通路的传
• 肌颤搐电位常见于放射性 臂丛神经病、脱髓鞘性周 围神经病(如GBS)和 肌萎缩侧索硬化(ALS)。
• 局部面肌颤搐在多发性硬 化和桥脑胶质瘤中较常见。
• 电图检查中,肌强直电位是最具特征性的一种电位。 • 肌强直电位是由肌纤维持续、自发的去极化引起的,常见
39
• 在脊髓前角细胞损害、神经根性损害或神 经肌肉接头以及肌肉本身病变时,神经传 导检查主要起排除诊断作用。
• 在周围神经病中,神经传导检查有助于定 位和定性诊断。
40
异常神经传导的电生理表现
运动传导 1. CMAP波幅下降而神经传导速度正常或轻
度减慢: 2.传导速度减慢、远端潜伏期延长 : 3. 波形离散和传导阻滞: 感觉传导
肌源性和神经源性损害时肌纤维及其空间 分布的变化
24
25
26
27
肌源性损害的肌电改变
• A 正常MUAP
• B 记录电极周围MF坏死, MUAP波幅降低
• C 记录电极周围有一个肥 大的MF,MUAP波幅增加。
• D 两个MF大小不等导致同 步性差
• E 记录电极附近纤维密度 增加
28
肌源性损害的肌电改变
33
神经源性损害的肌电改变
总之,神经源性损害较为特异性的改变 是MUAP时限增宽同时伴有波幅和面积增 大。MUAP的复杂性增加和单纯波幅增大 并没有特异性,但是对于早期的较轻度的 损害比较敏感。 MUAP不稳定提示正在进 行的再支配。
34
第二部分 神经传导检查
35
• 用临床电生理方法测的神经传导主要是有 髓的大直径纤维的速度。
上表现为增大但是稳定的MUAP,少有纤颤波。
31
新生电位:短时限低波幅的复杂MUAP;与肌源性损 害的区别主要在于不稳定性以及伴有大量自发电位。
32
进展的神经源性损害
• 由于MU或其轴索的损害与代偿性再支配同时发生, 因此临床上很难判断起病时间。
• 通常在进行肌电图检查时MUAP已经有了再支配 的证据;插入电位增加并可见自发电位。
6
针电极的类型
电极类型 同心圆针电极 单极针电极
电极的记录面积 0.07mm2 0.24mm2
巨肌电图电极
27mm2
单纤维针电极
0.0003mm2
7
8
波幅
0.5mm(2-3MF)
主波成分
1mm(5-10MF)
面积
2mm
时限
2.5mm
9
肌电信号的检查
非自主电活动
1. 插入电位 2. 自发电位
单个或几个肌纤维(纤颤、正锐波、CRD、肌强直) MUAP(束颤、震颤、肌颤搐)
• H反射的潜伏期较其时限 和波幅更有意义。在周围 神经病或S1神经根损害时, H反射可消失或潜伏期延 长,而体检时常见踝反射 消失。
69
70
H反射
F波
单突触反射,传入纤维是IA类,传 出为α运动轴索
比引出M波所需的刺激域值更低, 超强刺激可阻断H反射,波幅有随 刺激强度变化的趋势 平均波幅较大,最大可达M波的 50%-100%
---技术和应用
1
目录
针极肌电图检查
神经传导检查
附一:电生理检查中的晚反应 附二:运动终板功能的电生理检查
诱发电位(视、听、体感、运动)
2
第一部分 针极肌电图检查
3
运动单位和运动单位电位
一个运动单位是 由一个α 运动 神经元、其轴 索和它支配的 所有肌纤维构 成的。
4
5
募集遵循的原则 -大小原则(size principle)
自主收缩
1. 单个MUAP形态(如大小,形状和稳定性) 2. MUAP发放模式
10
复合重复放电(complex repetitive discharge,CRD):
• 复合重复放电指复合电位 的重复发放,具有突然开 始和结束的特点。
• CRD通常是肌膜兴奋性增 加的表现,但并不总是病 理性的。CRD可见于脊肌 萎缩症、Charcot-MarieTooth病、肌萎缩侧索硬化 (ALS)、包涵体肌炎、 酸性麦芽糖酶缺乏症和多 肌炎中。
于先天性肌强直、强直性肌营养不良、多肌炎、包涵体肌 炎和酸性麦芽糖酶缺乏症。
15
16
MUAP的变异性
A:稳定的MUAP
B-D:神经源性损害时MUAP不稳定
E-F:MG时的MUAP不稳定性
17
MUAP波幅
MUAP时限
MUAP相位和转折 18
19
正常MUP模式图
20
神经源性改变
典型的神经源性损害改变: MUP 时限增宽、波幅增高,长时限高 波幅的多相电位增多,募集减少
41
轴索型周围神经病
神经传导
29
神经源性损害的肌电改变 神经源性损害过程可分为两类:
1. 急性起病的单向失神经和再支配过程(如 外伤引起的神经断伤)
66
• A波: 也叫轴突反射,
是一种中间潜伏期 反应,通常出现于M 波和F波之间,但也 可出现于F波之后。
其产生机制有 三种:侧枝芽生; 假突触发放和异位 发放。
67
H-反射
68
• 腓肠肌和比目鱼肌的H反 射实际上与临床检查中的 踝反射相同。传入成份为 Ia类大纤维,传出为α运动 纤维,两者形成单突触反 射弧。
48
CIDP:右侧正中神经运动传导,刺激点分别为腕和肘部。可见肘部 刺激时CMAP波形出现明显的时间离散(temporal dispersion)
49
如何进行电生理诊断
• 患者男性,34岁,主诉下肢乏力一年余,全身肉 跳。
• 申请单:舌肌无萎缩,抬头肌力5,四肢肌力5, 未见明显肌萎缩,针刺觉正常。外院EMG:神经 源性损害
2. 以不同速度进展的失神经和再支配同时进 行的过程(如ALS)
30
急性起病的单向失神经和再支配
• 在最初几天仅表现为募集的减少而不伴有失神经 改变和MUAP的形态改变。
• 数天后插入电位增加,2周左右出现纤颤、正锐波。 • 几周后MUAP的变化反映再支配的过程(复杂性
增加,不稳定),随后出现波幅面积和时限增加 • 起病后数月至一年,再支配基本完成,在肌电图
• 三叉神经损害 • Bell’s 面瘫 • 面肌联带运动 • 面肌痉挛 • 听神经瘤 • 多发性周围神经病(GBS/CIDP/CMTI;
DPN/MFS/CMTII) • 脑干损害 • 多发性硬化 • 延髓外侧综合征
62
63
64
F波和A波
65
• F波:
在运动传导检查时,用 超强刺激可引出F波。 刺激任何一根神经的 远端都可在其支配的 肌肉上记录到F波。其 传入和传出成份都为α 运动纤维。F波可用于 测量近端神经传导速 度,也可作为运动单 位数目分析的一种方 法。
• 传导速度的减慢提示大直径纤维的缺失或 节段性脱髓鞘。当轴索受累为主时,传导 速度仅有轻度减慢。
• 神经传导检查可分为三个部分: ①运动神经 ②感觉神经 ③混合神经。
36
37
运动神经传导检查各 参数及意义 • 潜伏期 • 时限 • 波幅 • 传导时间和速度
38
感觉传导检查各参数及 意义 • 潜伏期 • 时限 • 波幅 • 传导时间和速度
• 双上肢反射++,双下肢反射+++,病理征-。下肢 踇趾背屈肌力4级,左上肢手内肌肌力4级。
50
双侧尺神经感觉传导。
双侧尺神经运动传导,白色为右 侧,彩色为左侧)
51
双侧胫神经运动传导(背景的白色线条为左侧,彩色线条为 右侧。刺激部位在踝部和腘窝)
52
附一 电生理检查中的晚反应: 瞬目反射、H反射和F波
导异常; C. 沿面神经付出通路的传导
异常; D. 三叉感觉主核、或脑桥内
中间神经元与同侧面核中 继的异常; E. 三叉脊束及其核、或延髓 内中间神经元至双侧面核 通路的异常; F. 延髓内未交叉的中间神经 元至同侧面核通路的异常。 G. 延髓内已交叉的中间神经 元至对侧面核通路的异常
61
出现瞬目反射异常的神经系统疾病
• 正常人也可有束颤电位,称为“良性肌束颤动”, • 束颤电位在某些病理状态下较为常见,如前角细
胞疾病、脊髓型颈椎病、神经根病和脱髓鞘性周 围神经病。
13
肌颤搐电位(myokymic potentials)
• 以一组MUP节律性的发 放为特征,通常由2-10个 MUP组成,发放不受自 主收缩、移动针电极和睡 眠的影响。
53
瞬目反射的机制和临床应用
54
• 临床上常用的是通过电刺激一侧三叉神经 眶上支,诱发眼轮匝肌收缩产生瞬目动作, 用肌电图仪描记眼轮匝肌的电位变化,在 电刺激同侧眼轮匝肌引出潜伏期短、波形 简单的R1波,在双侧引出潜伏期长、波形 复杂的R2(同侧)和R2’(对侧)波。
55
56
• R1(早成份)的反射途径:三叉神经传至 三叉神经感觉核,再由面神经核传至面神 经的多突触反射,其中枢位于桥脑。由于 整个过程仅涉及1~3个中间神经元,故其潜 伏期变动小,不易引起“适应性”。
58
刺激方法和记录方法
59
正常值
• R1潜伏期绝对值小于13.0ms,R1侧差小于 1.2ms。
• R2潜伏期在刺激侧小于40ms,在刺激对册 小于41ms。一侧刺激时,双侧记录到的R2 成分侧差小于5ms,一侧记录到的双侧刺激 的R2成分相差小于7ms。
60
A. 正常反应; B. 沿三叉神经传入通路的传
• 肌颤搐电位常见于放射性 臂丛神经病、脱髓鞘性周 围神经病(如GBS)和 肌萎缩侧索硬化(ALS)。
• 局部面肌颤搐在多发性硬 化和桥脑胶质瘤中较常见。
• 电图检查中,肌强直电位是最具特征性的一种电位。 • 肌强直电位是由肌纤维持续、自发的去极化引起的,常见
39
• 在脊髓前角细胞损害、神经根性损害或神 经肌肉接头以及肌肉本身病变时,神经传 导检查主要起排除诊断作用。
• 在周围神经病中,神经传导检查有助于定 位和定性诊断。
40
异常神经传导的电生理表现
运动传导 1. CMAP波幅下降而神经传导速度正常或轻
度减慢: 2.传导速度减慢、远端潜伏期延长 : 3. 波形离散和传导阻滞: 感觉传导
肌源性和神经源性损害时肌纤维及其空间 分布的变化
24
25
26
27
肌源性损害的肌电改变
• A 正常MUAP
• B 记录电极周围MF坏死, MUAP波幅降低
• C 记录电极周围有一个肥 大的MF,MUAP波幅增加。
• D 两个MF大小不等导致同 步性差
• E 记录电极附近纤维密度 增加
28
肌源性损害的肌电改变
33
神经源性损害的肌电改变
总之,神经源性损害较为特异性的改变 是MUAP时限增宽同时伴有波幅和面积增 大。MUAP的复杂性增加和单纯波幅增大 并没有特异性,但是对于早期的较轻度的 损害比较敏感。 MUAP不稳定提示正在进 行的再支配。
34
第二部分 神经传导检查
35
• 用临床电生理方法测的神经传导主要是有 髓的大直径纤维的速度。
上表现为增大但是稳定的MUAP,少有纤颤波。
31
新生电位:短时限低波幅的复杂MUAP;与肌源性损 害的区别主要在于不稳定性以及伴有大量自发电位。
32
进展的神经源性损害
• 由于MU或其轴索的损害与代偿性再支配同时发生, 因此临床上很难判断起病时间。
• 通常在进行肌电图检查时MUAP已经有了再支配 的证据;插入电位增加并可见自发电位。
6
针电极的类型
电极类型 同心圆针电极 单极针电极
电极的记录面积 0.07mm2 0.24mm2
巨肌电图电极
27mm2
单纤维针电极
0.0003mm2
7
8
波幅
0.5mm(2-3MF)
主波成分
1mm(5-10MF)
面积
2mm
时限
2.5mm
9
肌电信号的检查
非自主电活动
1. 插入电位 2. 自发电位
单个或几个肌纤维(纤颤、正锐波、CRD、肌强直) MUAP(束颤、震颤、肌颤搐)
• H反射的潜伏期较其时限 和波幅更有意义。在周围 神经病或S1神经根损害时, H反射可消失或潜伏期延 长,而体检时常见踝反射 消失。
69
70
H反射
F波
单突触反射,传入纤维是IA类,传 出为α运动轴索
比引出M波所需的刺激域值更低, 超强刺激可阻断H反射,波幅有随 刺激强度变化的趋势 平均波幅较大,最大可达M波的 50%-100%
---技术和应用
1
目录
针极肌电图检查
神经传导检查
附一:电生理检查中的晚反应 附二:运动终板功能的电生理检查
诱发电位(视、听、体感、运动)
2
第一部分 针极肌电图检查
3
运动单位和运动单位电位
一个运动单位是 由一个α 运动 神经元、其轴 索和它支配的 所有肌纤维构 成的。
4
5
募集遵循的原则 -大小原则(size principle)
自主收缩
1. 单个MUAP形态(如大小,形状和稳定性) 2. MUAP发放模式
10
复合重复放电(complex repetitive discharge,CRD):
• 复合重复放电指复合电位 的重复发放,具有突然开 始和结束的特点。
• CRD通常是肌膜兴奋性增 加的表现,但并不总是病 理性的。CRD可见于脊肌 萎缩症、Charcot-MarieTooth病、肌萎缩侧索硬化 (ALS)、包涵体肌炎、 酸性麦芽糖酶缺乏症和多 肌炎中。
于先天性肌强直、强直性肌营养不良、多肌炎、包涵体肌 炎和酸性麦芽糖酶缺乏症。
15
16
MUAP的变异性
A:稳定的MUAP
B-D:神经源性损害时MUAP不稳定
E-F:MG时的MUAP不稳定性
17
MUAP波幅
MUAP时限
MUAP相位和转折 18
19
正常MUP模式图
20
神经源性改变
典型的神经源性损害改变: MUP 时限增宽、波幅增高,长时限高 波幅的多相电位增多,募集减少
41
轴索型周围神经病
神经传导