溶解热的测定

合集下载

溶解热的测定

溶解热的测定

溶解热的测定溶解热的测定[适用对象] 药学、药物制剂、中药学、制药工程、中药学(国际交流方向)、生物工程专业[实验学时] 3学时一、实验目的1、用量热法测定KNO3在水中的溶解热。

2、掌握测温量热的基本原理和测量方法。

3、了解量热法测定积分溶解热的基本原理。

二、实验原理物质溶解时常伴有热效应,此热效应称为该物质的溶解热。

物质的溶解热通常包括溶质晶格的破坏和溶质分子或离子的溶剂化。

其中,晶格的破坏常为吸热过程,溶剂化作用常为放热过程,溶解热即为这两个过程的热量的总和。

而最终是吸热或放热则由这两个热量的相对大小所决定。

温度、压力以及溶质和溶剂的性质、用量、是影响溶解热的显著因素,根据物质在溶解过程中溶液浓度的变化,溶解热分为变浓溶解热和定浓溶解热,变浓溶解热又称积分溶解热,为定温定压条件下一摩尔物质溶于一定量的溶剂形成某浓度的溶液时,吸入或放出的热量,定浓溶解热又称微分溶解热,为定温定压条件下一摩尔物质溶于大量某浓度的溶液时,产生的热量。

积分溶解热可用量热法直接测得,微分溶解热可从积分溶解热间接求得,方法是,先求出在定量溶剂中加入不同溶质时的积分溶解热,然后以热效应为纵坐标,以溶质摩尔数为横坐标绘成曲线,曲线上的任何一点的斜率即为该浓度时的微分溶解热。

量热法测定积分溶解热,通常在被认为是绝热的量热计中进行,首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系的温度变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。

1.量热系统热容量的标定用一已知积分溶解热的标准物质,在量热计中进行溶解,测出溶解前后量热系统的温度变化值ΔTS ,则量热系统的热容C可以根据下式计算:式中mS和MS分别为标准物质的质量和摩尔质量,ΔHS为标准物质在某溶液温度及浓度下的积分溶解热,此值可由手册上查得,C 为量热系统的热容。

2.积分溶解热的测定将上式用于待测物质即得:式中m和M分别为待测物质的质量和摩尔质量,ΔT为待测物质溶解前后量热系统的温度变化值;C为已标定的量热系统的热容。

溶解热的测定物理化学实验

溶解热的测定物理化学实验
混合。
遵守处理规范
严格按照废弃物处理规范进行处 理,确保废弃物得到安全、环保
的处理。
关注环保要求
在实验过程中,应关注环保要求, 尽量减少实验对环境的污染。
06 实验总结与展望
本次实验收获总结
掌握了溶解热的测定方法
通过本次实验,我们熟练掌握了使用量热计测定物质溶解热的方 法,了解了实验原理和操作技巧。
拓展应用范围
我们可以将溶解热的测定方法应用于其他物质,比较不同物质之间 的溶解热差异,为材料科学、化学工程等领域的研究提供参考。
开发新型量热计
随着科技的发展,我们可以尝试开发更加精确、快速、便捷的量热计, 提高溶解热测定的效率和准确性。
提高实验准确性和可靠性的建议
精确控制实验条件
在实验过程中,我们应严格控制实 验条件,如温度、压力、物质纯度
分析了实验数据
我们成功获得了实验数据,并通过对数据的分析,得出了有关物质 溶解热的结论。
培养了实验技能
在实验过程中,我们提高了自己的实验操作能力、数据处理能力和 分析问题的能力。
对未来研究方向的展望
深入研究溶解热理论
我们可以进一步研究溶解热的理论模型,探索影响溶解热的因素, 为相关领域的研究提供理论支持。
04 实验结果与讨论
溶解热测定结果展示
溶解热数据表格
列出了不同物质在不同温度下的溶解 热数值,直观地展示了溶解热与物质 种类、温度等因素的关系。
溶解热曲线图
通过绘制溶解热随温度变化的曲线图 ,可以更加清晰地看出溶解热随温度 的变化趋势,便于进行数据分析和比 较。
结果误差分析
实验操作误差
由于实验过程中操作不当或仪器精度限制等原因,可能导致实验结果存在一定 的误差。例如,温度测量不准确、样品质量称量误差等都会对实验结果产生影 响。

溶解热的测定

溶解热的测定

实验溶解热的测定一、实验目的1.掌握采用电热补偿法测定热效应的基本原理。

2.用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分溶解热、积分稀释热和微分稀释热。

3.掌握溶解热测定仪器的使用。

二、实验原理物质溶解过程所产生的热效应称为溶解热,可分为积分溶解热和微分溶解热两种。

积分溶解热是指定温定压下把ImOl物质溶解在n0mol溶剂中时所产生的热效应。

由于在溶解过程中溶液浓度不断改变,因此又称为变浓溶解热,以As。

IH 表示。

微分溶解热是指在定温定压下把Imol物质溶解在无限量某一定浓度溶液中所产生的热效应,以表示.在溶解过程中浓度可视为不变,因此又称为定浓度( )τ, P,八。

溶解热,以加表示,即定温、定压、定溶剂状态下,由微小的溶质增量所引起的热量变化。

稀释热是指溶剂添加到溶液中,使溶液稀释过程中的热效应,又称为冲淡热。

它也有积分(变浓)稀释热和微分(定浓)稀释热两种。

积分稀释热是指在定温定压下把原为含Imol溶质和n0ιmol溶剂的溶液冲淡到含n02mol溶剂时的热效应,它为两浓度的积分溶解热之差。

微分冲淡热是指将ImOl溶剂加到某一浓度的无限量溶液中所产生的热效应,以∂ AsolH(-)7, p,n加。

表示,即定温、定压、定溶质状态下,由微小的溶剂增量所引起的热量变化。

积分溶解热的大小与浓度有关,但不具有线性关系。

通过实验测定,可绘制出一条积分溶解热AsolH与相对于Imol溶质的溶剂量nθ之间的关系曲线,如图所示,其他三种热效应由4solH~nO曲线求得。

设纯溶剂、纯溶质的摩尔焰分别为HmI和Hni2,溶液中溶剂和溶质的偏摩尔熔分别为HI和H2,对于由nιmol溶剂和n2m0l溶质组成的体系,在溶质和溶剂未混合前,体系总熔为:H=∏ι Hmι+∏2 Hm2(1) 将溶剂和溶质混合后,体系的总熔为:H'= m Hι+n2 H2(2) 因此,溶解过程的热效应为:∆H=∏ι (H1 -Hm1)+n2(H2-Hm2)=n1 ∆H1+n2∆H2(3)在无限量溶液中加入ImOI溶质,(3)式中第一项可以认为不变,在此条件下所产生的热效应为(3)式中第二项中的AH2,即微分溶解热。

溶解热的测定

溶解热的测定

溶解热的测定溶解热是指在恒定压力下,单位质量固体物质在溶液中完全溶解时所放出或吸收的热量。

它是化学热力学中的一项重要物理量,与溶解过程的热力学性质和反应机理密切相关。

溶解热的测定方法有很多种,我们这里介绍两种典型的实验方法:计算比热容法和测定热效应法。

一、计算比热容法比热容法是根据热平衡原理,在温度为T1的热源中将样品加热至温度为T2,测定样品的质量m、热容Cp、初始温度T1和终末温度T2,从而计算出溶解热ΔH。

其计算公式为:ΔH = (Q2 - Q1) / m = Cp × (T2 - T1)其中,Q1和Q2分别表示样品在T1和T2温度下吸收的热量,Cp是样品的比热容,m是样品质量,ΔH为溶解热。

此外,由于固体在溶液中溶解时通常伴随着熔化,因此在计算时应将熔化热考虑在内,即:其中,ΔHm为熔化热,通常可以参考文献或手册给出的数据进行修正。

比热容法的优点是测量精度高,操作简单,但需要较精确的温度测量和热量测量,且需要考虑熔化热的影响。

二、测定热效应法测定热效应法是通过测量溶解过程中反应热量的变化来计算溶解热。

通常是在恒定压力下将固体样品加入到溶液中,测定反应热量和样品的质量,从而计算出溶解热ΔH。

其计算公式为:ΔH = Q / m其中,Q为反应过程中放出或吸收的热量,m为样品质量,ΔH为溶解热。

测定热效应法有多种实验方法,比如热量计法、差热分析法、反应热法等,不同的方法适用于不同类型的样品和反应体系。

其中,热量计法是一种较为常用的测定方法,其基本原理是通过测量加热物体的能量变化量来计算反应热量。

它的优点是可应用于各种类型的样品和反应体系,能够直接测定反应过程的热量变化,但需要一定的操作技能和仪器支持。

总之,溶解热的测定是化学热力学中的一项重要实验。

通过计算比热容法和测定热效应法等方法,可以获得溶解过程的热力学性质和反应机理,为化学工艺控制和工业生产提供重要的参考数据。

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。

2.通过实验测定KCl和KNO3在水中溶解的热效应。

3.比较相同浓度下KCl和KNO3的溶解热效应差异。

二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。

当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。

溶解热的测定有助于了解物质溶解过程中的热力学性质。

溶解热的测定通常采用量热计进行。

量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。

根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。

三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。

2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。

3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。

分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。

根据温度差和水的质量,计算溶解热。

4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。

5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。

四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。

2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。

随着浓度的增加,两种物质的溶解热效应都逐渐增大。

这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。

此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。

溶解热的测定

溶解热的测定

实验3 溶解热的测定一、实验目的1.用量热计简单测定硝酸钾在水中的溶解热。

2.掌握贝克曼温度计的调节和使用。

二、实验原理盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。

溶解热是这两种热效应的总和。

最终是吸热还是放热,则由这两种热效应的相对大小来决定。

本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。

T C C W C W W M H m sol ∆⋅++-=∆][322111)( (3.1)式中: m Sol H ∆为盐在溶液温度和浓度下的积分溶解热,单位:kJ·mo1–1;1W 为溶质的质量,单位:kg ;T ∆为溶解过程的真实温差,单位:K ;2W 为水的质量,单位:kg ;M 为溶质的摩尔质量,单位:kg·mo1–1; 21C C 、分别为溶质和水的比热,单位:11--⋅K kg kJ ;3C 为量热计的热容(指除溶液外,使体系温度升高1℃所需要的热量) ,单位:kJ 。

实验测得W 1、W 2、ΔT 及量热计的热容后,即可按(3.1)式算出熔解热m Sol H ∆。

三、仪器与药品溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.)四、实验步骤1.量热计热容的测定:本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。

为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至图3.1溶解热测定装配图1.磁力搅拌器;2.搅拌磁子;3.杜瓦瓶;4.漏斗;5.传感器;6.SWC —IIC 数字贝克曼温度仪.温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。

物化实验报告溶解热的测定

物化实验报告溶解热的测定

物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。

二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。

通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。

溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。

本实验采用综合量热法测定溶解热。

综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。

在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。

三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。

2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。

3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。

4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。

5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。

6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。

7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。

四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。

从数据中可以看出,不同溶质具有不同的溶解热。

这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。

溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。

本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。

溶解热的测定

溶解热的测定
• 3.请说说简单量热计与氧弹式量热计的共同 点与异同点.
• 4.实验中应注意那些问题?
• 本实验采用标准物质法进行量热计能当量的 标定。利用1molKCl溶于200mol水中的积分 溶解热数据进行量热计的标定。当上述溶解 过程在恒压绝热式量热计中进行时,可设计 以下途径完成
请思考:下列途径中△H1、△H2 表示的焓变过程有什么不同?
n1KCl(S)+ n2 H2O(l) 量热计,T1
质量,
CP :物质的恒压比热容,既单位质量的物质 的等压热容,
CP(KNO3,S)=0.9522KJ.Kg-1.K-1,
△T =(T2- T1 ):溶解前后系统温度的差值 (需经过雷诺校正)
n1:所加入的KNO3摩尔数
通过公式,既可求得1mol的KNO3溶于200mol的H2O 的溶解过程的积分溶解热。
标的截距,为该浓度下的微分溶解焓。图中n02点的摩尔溶解焓
与n01摩尔溶解焓之差为该过程的摩尔稀释焓。

△Hdil = △solHm(n02)-△solHm(n01)
图 △solHm- n0
提问与思考
• 1.简易量热计除了用于测定溶解热,还可以测 定那些过程的热效应?
• 2.能否用简易量热计测定物质的比热容?请说 出具体的方法与步骤。
变化率基本稳定后(既单位时间温度的变化值基本相同)后,每隔一分钟记录一 次温度,连续记录六次,作为溶解的前期温度。 (5)打开量热计盖子,将称好的KCl迅速倒入量热计并盖好盖子,保持与溶解 前相同的搅拌 速率,继续每分钟记录一次温度,直到温度不再变化时,再连 续记录六个温度变化率稳定的点,此六个点作为溶解的后期温度 (6)读取1/10℃温度计的读数,根据此温度从附表中查出相应的KCL的积分溶 解热。 (7)称量已倒出KCl的空称量瓶质量,准确计算已溶解的KCL的质量。

物理化学实验溶解热的测定实验报告

物理化学实验溶解热的测定实验报告

物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。

2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。

3.掌握电热补偿法的仪器使用要点。

二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。

它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。

前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。

后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。

即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。

它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。

前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。

表示,显然。

后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。

2.药品:硝酸钾(分析纯)。

四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。

物理化学实验报告 溶解热的测定

物理化学实验报告 溶解热的测定

积分溶解热 J/mol 30653 31868 32392 32654
微分溶解热 J/mol 28909 31044 31655 32150
微分稀释热 J/mol 17.105 7.737 3.690 1.669
根据积分溶解热求出各个范围的积分稀释热
范围
积分稀释热 J/mol
99.94202.86
(3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝 酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下 所称量的数据。 (4)使用0.1g精度的天平称量216.2g的去离子水,放入杜瓦瓶中,将杜 瓦瓶放在磁力搅拌器上。 (5)将温度传感器擦干并置于空气中一段时间,打开数据采集接口装 置电源,预热3min。 (6)启动微机上的溶解热的测量软件。并根据软件提示进行下一步实 验。 (7)将稳流电源上的调节旋钮逆时针调到底,打开电源开关。并打开 磁力搅拌器,调节到合适的搅拌速度。 (8)根据软件的提示,温度传感器放入杜瓦瓶中,调节加热功率使其 在2.0-2.4W之间。此后不再调节稳流电源。 (9)当采样到水温比室温高出0.5摄氏度时,按程序提示加入第一份样 品,之后操作相同,根据软件提示及时加入药品。 (10)当8份药品都已经加入后,软件提示溶解操作完成。将软件退出 到主界面。 (11)将8个称量瓶重新称重,从而计算出加入药品的量。之后将算出 的加入的药品的质量带入到软件中。 (12)整理实验仪器,并将原始数据拷贝。 5.实验数据及处理 本次实验采用的是A处理方法。
1215
202.86-
524
298.92
298.92-
262
401.84
6.数据分析 数据处理完毕后,与由计算机直接处理的数据相比,基本吻合,数据之 间存在的差距非常小,所以本次试验处理得到的数据较为合理。 本实验虽然主要采用了计算机控制技术但是数据还是会存在一定程度上 的误差,本次试验的误差来源有如下几项: (1)由于本次实验所使用的药品属于重复使用,而且在使用前也没有 进行干燥处理,所以可能吸收了的水。 (2)在向杜瓦瓶中加入时由于加入的速度过快,导致体系温度下降过 快。 (3)实验时的温度与室温的是有一定差距的,从而使体系与环境的热 交换较为剧烈,影响了热量的测定。 (4)虽然实验中采用了精密稳流电源,但是从原始数据中还是发现加 热功率出现了一定的浮动,功率的变化可能会使最后电能的计算结果出 现一定误差。 7.思考题 (1)实验设计为什么在体系温度高于室温0.5摄氏度时加入第一份? 由于溶解过程是一个吸热过程,所以这就会导致杜瓦瓶中的温度降低。 如果瓶内的温度与室温相差太大会使体系与环境热交换变得更加剧烈,

溶解热的测定(KNO3溶解热的测定)

溶解热的测定(KNO3溶解热的测定)

KNO 3溶解热的测定一、实验目的1.用电热补偿法测定KNO 3在不同浓度水溶液中的积分溶解热。

2.用作图法求KNO 3在水中的微分冲淡热、积分冲淡热和微分溶解热。

二、预习要求1.复习溶解过程热效应的几个基本概念。

2.掌握电热补偿法测定热效应的基本原理。

3.了解如何从实验所得数据求KNO 3的积分溶解热及其它三种热效应。

4.了解影响本实验结果的因素有那些。

三、实验原理1.在热化学中,关于溶解过程的热效应,引进下列几个基本概念。

溶解热: 在恒温恒压下,n 2摩尔溶质溶于n 1摩尔溶剂(或溶于某浓度的溶液)中产生的热效应,用Q 表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。

积分溶解热:在恒温恒压下,一摩尔溶质溶于n 0摩尔溶剂中产生的热效应,用s Q 表示。

微分溶解热:在恒温恒压下,一摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1,,2n p t n Q ⎪⎪⎭⎫⎝⎛∂∂表示,简写为12n n Q ⎪⎪⎭⎫⎝⎛∂∂。

冲淡热:在恒温恒压下,一摩尔溶剂加到某浓度的溶液中使之冲淡所产生的热效应。

冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。

积分冲淡热:在恒温恒压下,把原含一摩尔溶质及n 01摩尔溶剂的溶液冲淡到含溶剂为n 02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以d Q 表示。

微分冲淡热:在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的溶液中产生的热效应,以2,,1n p t n Q ⎪⎪⎭⎫ ⎝⎛∂∂表示,简写为21n n Q ⎪⎪⎭⎫ ⎝⎛∂∂。

2.积分溶解热(s Q )可由实验直接测定,其它三种热效应则通过s Q —n 0曲线求得。

设纯溶剂和纯溶质的摩尔焓分别为)1(m H 和)2(m H ,当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为m H ,1和m H ,2,对于由1n 摩尔溶剂和2n 摩尔溶质组成的体系,在溶解前体系总焓为H 。

物理化学实验报告 溶解热的测定

物理化学实验报告 溶解热的测定

物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。

本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。

实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。

实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。

实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。

结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。

溶解热的测定

溶解热的测定

溶解热的测定溶解热是指在一定压力和温度下,单位质量的物质从固态转变为溶解态所释放或吸收的热量。

溶解热是反映固体与溶液相互作用强度、稳定性的重要指标,对于理解化学反应、确定物质的结构等方面都具有重要的意义。

那么,如何测定溶解热呢?一、原理:通常我们使用定温法,即先将药品(固态)放在一定量的溶液中,使其达到热平衡,记录下溶解时药品和溶液的初温度和终温度,然后再测定空盛的控制试验,最后计算溶解热。

这个原理是根据热力学的一级定律,即能量守恒的原理。

药品溶解时所吸收的热量等于溶液放出的热量。

溶液放出的热量可以用溶液的比热容×质量×热效值(即水的热效值为4.18J/g℃)进行计算。

二、步骤:1.准备试样:将约1克左右的样品(需要精确称量)粉碎,过筛,放在干燥的试管中备用。

2.准备溶液:按照需求设置好溶液的浓度和体积,倒入烧杯中,通过恒温器加热到预设温度。

建议使用热水浴或恒温水槽来控制恒温器。

3.称量固态药品:将准备好的粉末样品逐个分配到干燥的试管中。

为确保精度,建议不要将样品直接放入溶液中。

4.测定初始温度:用铂电极在溶液中测定初始温度。

该步骤应与测定结束的温度差不大。

为提高测量精度,建议取平均值。

5.将药品加入溶液中:取准备好的样品试管,打开塞子,将药品逐渐加入溶液中,并立即关上塞子,摇晃试管,使药品完全溶解。

为确保精度,建议在药品完全溶解前不要移动试管或打开试管盖。

6.测量结束温度:用铂电极在溶液中测定药品和溶液的终温度。

该步骤应与测定初温度时间尽可能接近。

7.计算:计算公式为(热效值×溶液的质量×溶液的比热容)÷样品质量。

三、注意事项:1.样品需精确称量。

对于粉末样品,建议使用量筒来测量体积。

2.试管须干燥。

使用化学用品器皿干燥后,倒出任何剩余的物质。

试管晾干后再使用。

3.初始温度和结束温度的时间应该相同。

当测量结束温度时,需要多次测量,对测量数据进行求平均值。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。

它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。

本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。

实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。

在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。

通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。

2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。

试剂:硫酸铜、氯化钠、氯化铵。

3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。

(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。

(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。

(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。

(5)记录下溶液的初始温度。

(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。

(7)记录下溶液的最高温度。

(8)根据实验数据计算出溶解热的值。

结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。

这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。

2. 氯化钠的溶解过程是放热反应,即溶解热为正值。

这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。

3. 氯化铵的溶解过程是放热反应,即溶解热为正值。

这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。

实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。

在实验中,我们尽量选择精确度较高的仪器,以减小误差。

2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。

溶解热的测定

溶解热的测定

溶解热的测定Determination of Heat of Solution一.实验目的1.用量热法测定KNO3的积分熔解热2.掌握量热法的基本测量方法3.了解测定溶解热的基本原理二.实验原理物质溶解时常伴随有热效应发生,此热效应称为该物质的溶解热。

积分溶解热又称定浓溶解热,为等温等压下一摩尔物质溶于一定量的溶剂中形成某浓度的溶液时,吸收或放出的热量。

积分溶解热可用量热法直接测定,通常看作是在绝热量热计中进行。

首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系温度的变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。

ΔH标×W标/M标=C×ΔT标求出CΔH待测物=CMΔT待测物/W待测物三. 实验准备1. 仪器:500mL杜瓦瓶(或广口热水瓶),贝克曼温度计,0-50 ºС1/10刻度,秒表,磁力搅拌器,放大镜(放大6-9倍),短颈小玻璃漏斗(外径约2cm),电子天平,干燥器,蜡光纸,500mL 量筒。

2. 药品:AR干燥KCl和KNO3粉末(事先用称量瓶存放并置于干燥器中)。

四. 仪器使用【插入录像】1-溶解热测定装置的安装方法2-磁力搅拌器的使用方法3-电子天平的使用方法五.操作要点(各实验步骤中的操作关键点)1、装置仪器。

2、调节贝克曼温度计,使水银柱面处于刻度的上半部。

3、准确称取预先于105 ºС烘干并磨细的标准物KCl 7.5±0.01克和待测物KNO3 5.06克于蜡光纸上,包裹好置于干燥器中备用。

4、测定量热系统的热容。

5、测定KNO3的积分溶解热。

6、实验结束,洗净,晾干量热装置。

六.数据处理1、根据加样前后量热计温度的变化,绘制温度-时间图,利用雷诺校正图,求出ΔT KCl与ΔT KNO3。

2、由ΔT标和ΔH标(KJmol-1)求量热系统的热容3、由量热计的热容、W KNO3和ΔT KNO3计算硝酸钾的积分溶解热。

物理化学实验溶解热的测定

物理化学实验溶解热的测定

下一内容
回主目录
返回
物理化学实验—溶解热的测定
二、三人同时操作。1人采零,按锁定;1人点“开始计时” ,同时记下“标准北京时间”;1人加料。
上一内容
下一内容
回主目录
返回
物理化学实验—溶解热的测定
注意
软件操作中 串口设置为:COM1
在温差=-0.001时,加入下一个样品
上一内容
下一内容
(Ⅱ-2-16)
本实验采用电热补偿法,测定KNO3在水溶液中的积分溶 解热,并通过图解法求出其它三种热效应。
上一内容 下一内容 回主目录
返回
物理化学实验—溶解热的测定
四、仪器药品
微型计算机
SWC-RJ溶解热测定装置 WLS-2型可调式恒流电源(1A,0V~ 15V) 速度可调磁力搅拌器 1.仪器
含溶剂为n02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以
Qd
表示。
微分冲淡热:在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的 Q 溶液中产生的热效应,以 Q
n 1 T , P ,n2 表示,简写为
n 1 n2

上一内容
2.每次样品的加入。
3.搅拌速度宜快。
注意
上一内容
下一内容
回主目录
返回
物理化学实验—溶解热的测定
六、注意事项
1.实验过程中要求I、V值恒定,故应随时注意调节。 2.搅拌速度宜快。
3.固体KNO3易吸水,故称量和加样动作应迅速。固体KNO3在实验前务
必研磨成粉状,并在110℃烘干。 4.量热器绝热性能与盖上各孔隙密封程度有关,实验过程中要注意盖好 ,减少热损失。 5.记下每次加入样品的时间(时,分,秒)

溶解热的测定

溶解热的测定
4.在0.1g精度天平称取216.2g去离子水,放入杜瓦瓶内。启动溶解热测量软件,按照软件提示操作。
5.在0.0001g精度的电子天平上,称量空的称量瓶的质量,计算每份样品中溶解的KNO3的质量。
5.实验数据处理分析
1.常数测定
开始溶解时间:14:39:58
室温/℃:19.2
开始溶解时水温/℃:19.7
积分溶解热Qs可由实验直接测定,其它三种热效应则通过Qs—n0曲线求得。在Qs—n0图上,不同n0点的切线斜率为对应于该浓度溶液的微分冲淡热,即 =AD/CD。该切线在纵坐标上的截距为OC,即为相应与该溶液浓度的微分溶解热 。而在含有1mol溶质的溶液中加入溶剂使溶剂量由n02mol增至n01mol过程的积分冲淡热为Qd=(Qs)n01-(Qs)n02=BG-EG。
1.93
n0范围
积分冲淡热QdJ/mol
75~100
898.27
100~200
1432.19
200~300
501.74
300~400
255.7
6.结果讨论及误差分析
硝酸钾溶于水的溶解过程总体上看是一个吸热过程,通过测定累计加入硝酸钾的质量和引起的热效应,做出摩尔积分溶解热与n0的关系曲线,进而求出溶解过程中的其他热效应。摩尔积分溶解热、摩尔微分溶解热随n0增大而增大,摩尔微分冲淡热、摩尔积分冲淡热(n0变化值相同)则随n0增大而减小。
998.55
998.55
40.485
2
1.4942
0.0147
0.0394
304.2278
581.41
1579.96
40.055
3
2.5395
0.0251
0.0645
185.8655

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告一、实验目的1、掌握量热法测定物质溶解热的原理和方法。

2、了解温度和浓度对溶解热的影响。

3、学会使用数字贝克曼温度计和恒温槽等仪器。

二、实验原理溶解热是指在一定温度和压力下,溶质溶解于溶剂中产生的热效应。

溶解热分为积分溶解热和微分溶解热。

积分溶解热是指在定温定压下,把 1 摩尔溶质溶解在一定量的溶剂中所产生的热效应。

微分溶解热是指在定温定压下,在大量溶液中加入 1 摩尔溶质所产生的热效应。

在本实验中,采用绝热式量热法测定硝酸钾在水中的溶解热。

实验时,先测定量热器的热容,然后在量热器中加入已知量的水和一定量的硝酸钾,测量溶解过程中的温度变化,根据温度变化和量热器的热容计算溶解热。

量热器的热容可以通过已知溶解热的物质(如氯化钾)来测定。

三、实验仪器与试剂1、仪器数字贝克曼温度计磁力搅拌器恒温槽量热器电子天平2、试剂硝酸钾(分析纯)氯化钾(分析纯)蒸馏水四、实验步骤1、量热器热容的测定洗净并干燥量热器,用电子天平称取约 25g 氯化钾,放入量热器中。

用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。

将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。

观察温度计示数,待温度稳定后,记录初始温度 T1。

迅速加入氯化钾,同时启动秒表,继续搅拌,观察温度变化。

当温度升至最高点并稳定后,记录终止温度 T2。

根据氯化钾的溶解热(已知)和温度变化,计算量热器的热容 C。

2、硝酸钾溶解热的测定洗净量热器,用电子天平称取约 5g 硝酸钾。

用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。

将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。

观察温度计示数,待温度稳定后,记录初始温度 T3。

迅速加入硝酸钾,同时启动秒表,继续搅拌,观察温度变化。

当温度降至最低点并稳定后,记录终止温度 T4。

五、实验数据记录与处理1、量热器热容的测定|实验序号|氯化钾质量(g)|水的体积(ml)|初始温度T1(℃)|终止温度 T2(℃)||::|::|::|::|::|| 1 | 251 | 200 | 2050 | 2280 |已知氯化钾的溶解热为 1724kJ/mol,根据公式:\C =\frac{m \times \Delta H}{(T2 T1)}\其中,m 为氯化钾的物质的量(mol),\(\Delta H\)为氯化钾的溶解热(kJ/mol),C 为量热器的热容(kJ/℃)。

实验一溶解热的测定

实验一溶解热的测定

实验一 溶解热的测定一、目的1、了解电热补偿法测定热效应的基本原理及仪器使用。

2、测定硝酸钾在水中的积分溶解热,并用作图法求得其微分稀释热、积分稀释热和微分溶解热。

3、初步了解计算机采集处理实验数据、控制化学实验的方法和途径。

二、基本原理1、物质溶解于溶剂过程的热效应称为溶解热。

它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。

前者是1 mol 溶质溶解在n 0 mol 溶剂中时所产生的热效应,以Q s 表示。

后者是1 mol 溶质溶解在无限量某一定浓度溶液中时所产生的热效应,即0,,s T p n Q n ∂⎛⎫⎪∂⎝⎭。

溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。

它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。

前者是把原含1 mol 溶质和n 01 mol 溶剂的溶液稀释到含溶剂n 02 mol 时所产生的热效应,以Q d 表示,显然,Q d = Q s ,n02 – Q s ,n01。

后者是1 mol 溶剂加到无限量某一定浓度溶液中时所产生的热效应,即0,,s T p nQ n ⎛⎫∂⎪∂⎝⎭。

2、积分溶解热由实验直接测定,其它三种热效应则需通过作图来求:设纯溶剂、纯溶质的摩尔焓分别为H *m ,A 和H *m ,B ,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为H m ,A 和H m ,B ,若由n A mol 溶剂和n B mol 溶质混合形成溶液,则混合前的总焓为 H = n A H *m ,A + n B H *m ,B 混合后的总焓为 H ΄ = n A H m ,A + n B H m ,B此混合(即溶解)过程的焓变为 ΔH = H ΄ – H = n A (H m ,A – H *m ,A )+ n B (H m ,B – H *m ,B ) = n A ΔH m ,A + n B ΔH m ,B根据定义,ΔH m ,A 即为该浓度溶液的微分稀释热,ΔH m ,B 即为该浓度溶液的微分溶解热,积分溶解热则为: ,,0,,As m A m Bm AmBB Bn H Q H H n HHn n ∆==∆+∆=∆+∆ 故在Q s ~ n 0图上,某点切线的斜率即为该浓度溶液的微分稀释热,截距即为该浓度溶液的微分溶解热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名: 肖池池序号: 31 周次: 第十周指导老师: 张老师
溶解热的测定
一、实验目的
1 .了解电热补偿法测定热效应的基本原理及仪器使用。

2.测定硝酸钾在水中的积分溶解热,并用作图法求得其微分稀释热、积分稀释热和微分溶解热。

二、基本原理
1.物质溶解于溶剂过程的热效应称为溶解热。

它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。

前者是1mol溶质溶解在n0mol溶剂中时所产生的热效应,以Q s表示。

后者是
1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应,即。

溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。

它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。

前者是把原含1mol溶质和n01mol溶剂的溶液稀释到含溶剂n02mol
时所产生的热效应,以Q d表示,显然。

后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应,即。

2.积分溶解热由实验直接测定,其它三种热效应则需通过作图来求:
设纯溶剂、纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为H m,A和H m,B,若由n A mol溶剂和n B mol溶质混合形成溶液,则
混合前的总焓为H = n A H*m,A + n B H*m,B(1)
混合后的总焓为H΄ = n A H m,A + n B H m,B(2)
此混合(即溶解)过程的焓变为
ΔH = H΄–H
= n A(H m,A–H*m,A)+ n B(H m,B–H*m,B)
= n AΔH m,A + n BΔH m,B(3)
根据定义,ΔH m,A即为该浓度溶液的微分稀释热,ΔH m,B即为该浓度溶液的微分溶解热,积分溶解热则为:
故在Q s~ n0图上,某点切线的斜率即为该浓度溶液的微分稀释热,截距即为该浓度溶液的微分溶解热。

如图所示:
3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:Q = IVt = I2Rt 。

三、实验仪器与用品
量热计(包括杜瓦瓶、电加热器、磁力搅拌器)1套,精密稳流电源1台,电子天平1台,硝酸钾(A.R.)约25.5g,蒸馏水216.2g。

四、操作步骤
1.在电子天平上依次称取八份质量分别约为
2.5、1.5、2.5、
3.0、3.5、
4.0、4.0、4.5 g 的硝酸钾(应预先研磨并烘干),记下准确数据并编号。

2.在用量筒量取217mL蒸馏水于杜瓦瓶内。

3.将搅拌小磁棒放入杜瓦瓶内,调节搅拌旋钮使小磁棒在杜瓦瓶内均匀搅拌。

然后盖上杜瓦瓶的盖子。

4.几分钟后,当数字显示上的温度稳定,按置零按钮将温度置零。

接通电源,调节电流旋钮使电流为0.5A,加热杜瓦瓶内的水。

5.当温度上升到0.5K时,开始计时,并加入第一份硝酸钾样品,当温度再次升到0.5K时,记下时间并加入第二份酸钾样品。

重复上述操作,直到加完八份样品。

五、数据记录与处理
m水=216.2g n水=12.0mol 电流I=0.5A 电阻R=12.4Ω
m(KNO3)/g t/min n(KNO3)/mol n0Q/J Q s/J
2.506 4.23 0.025 484.18 787 31745
4.009 6.51 0.04 302.6 1211 30533
6.514 10.38 0.064 186.25 1931 29966
9.528 14.83 0.094 127.33 2758 29268
13.034 19.9 0.129 93.08 3701 28711
17.049 25.48 0.169 71.16 4739 28103
21.052 30.83 0.208 57.63 5734 27539
25.553 35.88 0.253 47.48 6674 26404 以Q s对n0作图得
Q s ×10
4
n 0
进行拟合得Y=1337.41*ln(X-36.85)+23323.03
由于微分稀释热为斜率,积分溶解热为Y 值,可算得
n 0 80 100 200 300 400 微分稀释热/J 30.994 21.178 8.197 5.082 3.683 积分溶解热/J 28358 28867 30136 30776 31206 微分溶解热/J
25878
26749
28497
29251 29733
n0 80→100 100→200 200→300 300→400 积分稀释热
509
1269
639
431
六、 实验注意事项
1.仪器要先预热,以保证系统的稳定性。

在实验过程中要求I 、V 也即加热功率保持稳定。

2.加样要及时并注意不要碰到杜瓦瓶,加入样品时速度要加以注意,防止样品进入杜瓦瓶过速,致使磁子陷住不能正常搅拌,也要防止样品加得太慢,可用小勺帮助样品从漏斗加入。

搅拌速度要适宜,不要太快,以免磁子碰损电加热器、温度探头或杜瓦瓶,但也不能太慢,以免因水的传热性差而导致Q s 值偏低,甚至使Q s ~ n 0图变形。

样品要先研细,以确保其充分溶解,实验结束后,杜瓦瓶中不应有未溶解的硝酸钾固体。

3.电加热丝不可从其玻璃套管中往外拉,以免功率不稳甚至短路。

4.配套软件还不够完善,不能在实验过程中随意点击按钮(如不能点击“最小化”)。

5.先称好蒸馏水和前两份KNO 3样品,后几份KNO 3样品可边做边称。

七、思考题
1.本实验装置是否适用于放热反应的热效应的测定?
答:不适合,因为本实验使用补偿法,硝酸钾在水中溶解吸热,通过电加热法使系统恢复起始的温度,根据所消耗的电能来求其溶解热。

所以不能应用于放热反应中。

2.本实验产生温差的主要原因有哪几方面?如何修正?
答:本实验产生温差的原因:(1)电流电压不稳定;(2)加入样品速度太快堵住搅拌棒或加样速度太慢;(3)样品颗粒太大,溶解速度太慢;(4)装置绝热密闭性差,与外界有热交换。

修正:(1)仪器先预热,使实验室电流电压比较稳定;(2)加样速度适中;(3)将颗粒尽量研磨细。

相关文档
最新文档