模拟量输入电路设计
《模拟量的输入输出》课件

电压输出型设备可以将电 信号转换为电压模拟信号 ,常用于电压源的输出。
电流输出型设备可以将电 信号转换为电流模拟信号 ,常用于需要恒流源的场 合。
电阻输出型设备可以将电 信号转换为电阻模拟信号 ,常用于需要调节阻值的 场合。
模拟量输出的电路设计
放大电路可以将微弱的电信 号放大到足够的幅度,以满
足输出要求。
模拟量输出的电路设计需要 考虑信号的放大、滤波、隔
离和保护等方面。
01
02
03
滤波电路可以去除信号中的 噪声和干扰,提高信号的纯
净度。
隔离电路可以避免不同电路 之间的相互干扰,保护电路
的安全运行。
04
05
保护电路可以防止电路过载 、过流和过压等异常情况对
电路的损害。
04
模拟量输入输出转换
模拟量输入输出转换的原理
将物理量转换为模拟量信号的装置。
模拟量与数字量的区别
01 数字量
离散的量,如开关状态、二进制数等。
02 转换方式
模拟量通过连续变化表示物理量,数字量通过离 散状态表示信息。
03 传输方式
模拟量信号通过电缆传输,易受干扰;数字量信 号通过数字通信传输,抗干扰能力强。
模拟量的应用领域
工业控制
如温度、压力、流量等参 数的监测和控制。
模拟量输入的电路设计
模拟量输入的电路设计需要考虑信号 源、信号调理电路和测量设备的特性 。
信号调理电路的设计需要考虑噪声抑 制、抗干扰能力和线性范围等因素, 以确保测量结果的准确性和可靠性。
电路设计需要确保信号源与测量设备 之间的阻抗匹配,以减小信号损失和 失真。
03
模拟量输出
模拟量输出的原理
模拟量输入通道的组成

AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5
CHSEL
8D CLK GND
+12V -6V
VDD VEE A B
0 1 2 3 4 5 6 7
10KΩ +5V
74HC138 A/D 转换器
+12V -6V
C INH OUT VSS VDD VEE A B C
采样/保持器的工作原理
当开关K闭合时,输入信号通过电阻向电容C充电,使输出 跟随输入变化此时为采样状态;要求充电时间越短越好,
以使电容电压迅速达到输入电压值。
当开关K断开时,由于电容具有一定的容量,仍能够使输 出保持不变,此时为保持状态;电容维持稳定电压的时间 越长越好,电容容量的大小将决定采样/保持器的精度。
控制字 40H 41H 42H 43H 44H 45H 46H 47H
1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 G1 74HC138
0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C
0
0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 B
24路的模拟开关。
74HC273
D0~D7
VCC 1D 2D 3D 4D 5D 6D 7D 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q CLR A B C G1 G2A G2B GND Y0 Y1 Y2 Y3
+5V
+12V -6V
CD4051
VDD VEE A B C INH OUT VSS 0 1 2 3 4 5 6 7
模拟量输入与输出

被测 控的 对象
传感器
采样保持
开关控制部件
A/D
单片 微机 应用 系统
模拟执行部件
D/A
图8-1 单片机应用系统
一 、A/D转换原理与接口
1 A/D转换器常用芯片简介 A/D转换器就是将模拟信号转换为数字信号得器件,种类繁
多,性能各异。与单片机得接口形式也不尽相同,但大致分为并 行接口和串行接口两种。
时钟频率高,A/D转换速度快。允许范围为10~1280KHz 。 通常由80C51 ALE端直接或分频后与0809 CLK端相连接。 ⑷ D0~D7:数字量输出端。 ⑸ OE:A/D转换结果输出允许控制端。 OE=1,允许将A/D转换结果从D0~D7端输出。通常由80C51得端与0809片选端(例如P2、0) 通过或非门与0809 OE端相连接。 ⑹ ALE:地址锁存允许信号输入端。
0809 ALE信号有效时将当前转换得通道地址锁存。 ⑺ START:启动A/D转换信号输入端。
当START端输入一个正脉冲时,立即启动0809进行A/D转换。START端与ALE端连在一 起,由80C51WR与0809片选端(例如P2、0)通过或非门相连。 ⑻ EOC:A/D转换结束信号输出端,高电平有效。 ⑼ UREF(+)、UREF(-):正负基准电压输入端。 ⑽ Vcc:正电源电压(+5V)。GND:接地端。
图8-6 ADC0832与单片机接口
[例2] 设图8-6接口电路用于一个模拟量输入得检测系统。Ui为待转换 得模拟输入电压,要求对Ui连续采样10次,每次采样值经串行A/D转换 电路(ADC0832)转换成数字量,并按顺序依次存于片内RAM得 30H~39H单元中。采样完10次后停止。
C语言数据采集串行A/D转换参考程序: #include<reg51、h> //包含单片机特殊功能寄存器得头文件 #define uchar unsigned char //定义uchar为无符号字符数据类型 static uchar data x[10]; //定义10个单元得数组,存放结果 sbit CS=P3^4; //将CS位定义为P3、4引脚 sbit CLK=P1^0; //将CLK位定义为P1、0引脚 sbit DIO=P1^1; //将DIO位定义为P1、1引脚 unsigned char A_D() //A_D转换函数。功能:将模拟信号转换成数字信 号
基于STM32的多功能模拟量输入输出系统设计

基于STM32的多功能模拟量输入输出系统设计夏好广【摘要】为满足列车网络中信号采集及控制的需求,设计了一种基于STM32微控制器的多通道、多功能的模拟量输入输出系统,其中输入通道可采集电流或电压信号,并由STM32微控制器控制高精度采样芯片AD7606对模拟输入信号进行转换.另外,模拟输出信号通过STM32微控制器控制精密电压/电流输出驱动器AD5750输出.每个输出通道可通过编程实现-10 V至+10 V的电压连续输出或-20 mA至+20 mA的电流连续输出.该系统还集成了INTERBUS模块,可通过INTERBUS总线进行远程通信.实验结果表明,该系统具有精度高、体积小的优点,有广阔的应用前景.【期刊名称】《铁道机车车辆》【年(卷),期】2018(038)001【总页数】4页(P19-22)【关键词】STM32;输入输出;电压源;电流源【作者】夏好广【作者单位】中国铁道科学研究院机车车辆研究所,北京100081【正文语种】中文【中图分类】U266.2现代化高速动车组普遍采用列车网络控制管理系统对车辆进行检测、控制和诊断,其中,网络系统中经常会用到模拟量输入输出模块,如一些温度传感器需要模拟输入模块来采集电压信号或电流信号。
然而,对车辆侧的一些控制则需要模拟输出模块来实现,即通过将中央控制器或司机室指令转换为模拟信号来对一些传感器进行控制。
模拟信号可以是电压信号也可以是电流信号,其中,电压信号一般应用于短距离传输,电流信号用于远距离传输(常用4~20 mA的电流环[1-2])。
目前,大多数模块或系统只针对某一种信号类型进行了设计,而现场设备往往具有多种需求,特别需要通用性更强的模拟量模块。
针对模拟量模块多功能化的需求,设计了一种基于STM32的便携式、多功能模拟量模块。
该模块可提供两通道输入信号采集(电流电压模式可切换),四通道输出(电流电压模式可切换),电流范围-20~20 mA连续可调,电压范围-10~10 V可调。
模拟量输入输出通道dq

▲量化将使信号产生误差并影响系统的特性。但当 量化单位足够小时,在系统初步分析与设计时可 不予考虑。
36
★ 计算机控制系统的简化结构图
采样
计算机
ZOH
被控对象
检测
37
2.1.2 多路开关
在微型计算机测量及控制系统中,往往需对 多路或多种参数进行采集和控制。一台微型计 算机可供多回路使用,但是,微型计算机在某 一时刻只能接收一个通道的信号,因此必须通 过多路模拟开关进行切换,使各路参数分时进 入微型计算机。
1 计算机控制系统信号变换结构图
E
A
B 采样
C 量化
编码
D 计算机
F 解码 G
保持
H
检测
I 被控对象
2 系统中信号形式的分类
连续信号(或模拟信号) 时间及幅值上均连续
的信号,如图中的 A、I 处的信号
数字信号
时间上离散、幅值上采用二进制编
码的信号,如图中的D、F 处的信号 33
▲采样信号 时间上离散而幅值上连续的信号,如
(0000)
(1000)
-1
-1/8
+1/8
1001
1111
0111
-2
1110
0110
-3
-3/8
+3/8
1011
1101
0101
-4
-4/8
+4/8
1100
1100
0100
-5
-5/8
+5/8
1101
1011
0011
-6
PLC控制系统硬件设计

5.1 控制系统的设计步骤和PLC选型
一、控制系统的设计步骤 7)联机调试
联机调试是将通过模拟调试的程序进一步进行在线统调。联机 调试过程应循序渐进,从PLC只连接输入设备、再连接输出设备 、再接上实际负载等逐步进行调试。如不符合要求,则对硬件和 程序作调整。通常只需修改部份程序即可。
全部调试完毕后,交付试运行。经过一段时间运行,如果工作 正常、程序不需要修改,应将程序固化到EPROM中,以防程序 丢失。 8)整理和编写技术文件
减少输入点数方法
合并输入
将某些功能相同的开关量输入设备合并输入。如果是几个常闭触点,则 串联输入;如果是几个常开触点,则并联输入。
某些输入设备可不进PLC
有些输入信号功能简单、 涉及面很窄,有时就没有必要 作为PLC的输入,将它们放在 外部电路中同样可以满足要求。
29
5.3 PLC输入/输出电路设计
2
5.1 控制系统的设计步骤和PLC选型
一、控制系统的设计步骤
1)分析被控对象并提出控制要求 详细分析被控对象的工艺过程及工作特点,了解被控
对象机、电、液之间的配合,提出被控对象对PLC控制系 统的控制要求,确定控制方案,拟定设计任务书。 2)确定输入/输出设备
根据系统的控制要求,确定系统所需的全部输入设备 (如:按纽、位置开关、转换开关及各种传感器等)和 输出设备(如:接触器、电磁阀、信号指示灯及其它执 行器等),从而确定与PLC有关的输入/输出设备,以确 定PLC的I/O点数。
小范围较宽、导通压降小,承受瞬时过电压和过电流的能力较强,但 动作速度较慢(驱动感性负载时,触点动作频率不超过1HZ)、寿命 较短、可靠性较差,只能适用于不频繁通断的场合。
对于频繁通断的负载,应该选用晶闸管输出或晶体管输出,它们 属于无触点元件。但晶闸管输出只能用于交流负载,而晶体管输出只 能用于直流负载。
模拟量采集模块4通道 0-10v的电路原理

模拟量采集模块4通道 0-10v的电路原理一、概述1. 介绍模拟量采集模块的作用和应用场景模拟量采集模块是指通过电路和传感器将实际的模拟信号转换成数字信号,以便计算机或控制器进行采集和处理。
在工业自动化控制系统中,模拟量采集模块广泛应用于温度、压力、流量等参数的实时监测和反馈控制。
2. 模拟量采集模块的基本结构和特点模拟量采集模块通常由传感器、信号调理电路、A/D转换器和数据接口等部分组成。
其特点是能够实时高精度地采集和转换模拟信号,并通过数字接口将数据传输给上位机或控制器。
3. 本文要讨论的主题和目的本文将重点介绍模拟量采集模块4通道0-10v的电路原理,包括信号调理电路的设计原理和A/D转换原理,以帮助读者更好地理解和应用模拟量采集模块。
二、模拟量采集模块4通道0-10v的电路原理4. 信号调理电路的设计原理模拟量采集模块的信号调理电路是将传感器输出的模拟信号进行放大、滤波和隔离处理,以适应A/D转换器的输入范围,并提高信噪比和抗干扰能力。
对于4通道0-10v的模拟信号,信号调理电路需要对每个通道的信号进行单独处理,以保证采集的准确性和稳定性。
5. A/D转换原理A/D转换器是模拟量采集模块的核心部件,其作用是将模拟信号转换成相应的数字信号,并输出给上位机或控制器进行处理。
在4通道0-10v的电路中,A/D转换器需要具备较高的分辨率和采样率,以保证准确地采集和转换模拟信号。
6. 0-10v的电路原理设计在设计4通道0-10v的电路原理时,需要考虑信号调理电路和A/D转换器的匹配性和稳定性,以及整体电路的抗干扰能力和可靠性。
还需要注意功耗和成本的控制,以满足实际应用的需求。
7. 结论模拟量采集模块4通道0-10v的电路原理设计涉及到信号调理电路和A/D转换器的匹配和稳定性,需要综合考虑多种因素,以保证采集的准确性和稳定性。
还需要根据实际应用的需求进行功耗和成本的控制,以提高整体电路的性能和实用性。
模拟量输入通道

3.5 A/D转换器
主要知识点
工作原理与性能指标 ADC0809芯片及其接口电路 AD574A芯片及其接口电路
3.5.1 工作原理与性能指标
逐位逼近式A/D转换原理 双积分式A/D转换原理 电压/频率式A/D转换原理 A/D转换器的性能指标
1.逐位逼近式A/D转换原理
图 逐位逼近式A/D转换原理图
链接动画
单击此处可添加副标题
例题3-2:一个8位A/D转换器,设VR+ = 5.02 V, V R = 0 V,计算当VIN分别为0 V、2.5 V、5 V时所对应的转换数字量。 解:把已知数代入公式(3-4): V、2.5 V、5 V时所对应的转换数字量分别为00H、80H、FFH。 此种A/D转换器的常用品种有普通型8位单路ADC0801~ADC0805、8位8路ADC0808/0809、8位16路ADC0816/0817等,混合集成高速型12位单路AD574A、ADC803等。
定时方式读A/D转换数
链接动画
这两种方法的共同点: 硬软件接口简单,但在转换期间独占了CPU时间,好在这种逐位逼近式A/D转换的时间只在微秒数量级。 当选用双积分式A/D转换器时,因其转换时间在毫秒级,因此采用中断法读A/D转换数的方式更为适宜。 因此,在设计数据采集系统时,究竟采用何种接口方式要根据A/D转换器芯片而定。
1.无源I/V变换
构成--无源器件电阻+RC滤波+二极管限幅等实现, 取值: 输入0- 10 mA,输出为0 -5 V ,R1=100Ω,R2=500Ω; 输入4 -20 mA,输出为1 - 5 V,R1=100Ω,R2=250Ω; 电路图:
构成-- 运算放大器+电阻电容组成; 电路放大倍数--同相放大电路 取值- R1=200Ω,R3=100kΩ,R4=150kΩ 输入0 ~ 10 mA输出0 ~ 5 V R1=200Ω,R3=100kΩ,R4=25kΩ 输入4 ~ 20 mA输出1 ~ 5 V 电路图:
S7-200模拟量输入输出实例

对输入、输出模拟量的PLC编程的探讨及编程实例解析3134人阅读| 4条评论发布于:2011-12-29 9:03:42 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。
不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。
比如有3个温度传感变送器:(1)、测温范围为0~200 ,变送器输出信号为4~20ma(2)、测温范围为0~200 ,变送器输出信号为0~5V(3)、测温范围为-100 ~500 ,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。
一、转换公式的推导下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。
编程者依据正确的转换公式进行编程,就会获得满意的效果。
二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有+、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。
第二章模拟量输入输出通道的接口技术

tk r tk 是周期性的重复,即tk r tk 常量,r 1
随机采样:
根据需要选择采样时刻
采样前后波形的变化图
通常,连续函数的频带宽度是有限的,为一孤立的连
续频谱,设其包括的最高频率为fmax ,采样频率为fs。
香农定理:若fs≥2fmax,则可以由采样信号完全恢复出原始 信号。 在实际应用中, fs至少取4fmax 。
IN:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15) OUT:(1、17) 反多路转换开关(一到多的转换): IN: (1、17) OUT:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15)
VREF I out1 I 3 I 2 I1 I 0 2 2 2 2 4 2R
3 2
1
0
由于S3~S0的状态是受b3~b0控制的,并不一定 全是“1”。若它们中有些位为“0”,S3~S0中相应 开关会因和“0”端相连而无电流流过,所以Iout1还 与b3~b0的状态有关。 则 I out1 b3 I3 b2 I 2 b1 I1 b0 I 0
返回
2.1.2 多路转换开关
多 路 转 换 开 关 反 多 路 转 换 开 关
A/D
微机
D/A
完成多到一的转换
完成一到多的转换
2.1.2 多路转换开关
多路开关的分类:
从用途上分 双向:既能实现多到一的转换,也能实现一到多的 转换 单向:只能实现多到一的转换 从输入信号的连接方式上分 单端输入 双端输入(或差动输入)
单片机中的模拟输入输出接口设计与应用

单片机中的模拟输入输出接口设计与应用概述单片机是一种集成了处理器、存储器和各种外设功能的集成电路,广泛应用于嵌入式系统中。
在实际应用中,模拟输入输出(Analog Input/Output,简称为AI/AO)是单片机常用的功能之一。
模拟输入输出接口用于将模拟信号转换为数字信号或将数字信号转换为模拟信号,从而实现单片机与外部模拟设备的互联。
本文将介绍单片机中的模拟输入输出接口的设计与应用。
一、模拟输入输出的作用与特点1. 作用:模拟输入输出接口可将模拟量与单片机进行连接,实现模拟量信号的输入和输出,为系统提供更精确的数据。
2. 特点:- 模拟输入输出接口可以实现模拟信号与数字信号之间的转换。
- 模拟输入输出接口通常采用模数转换器(ADC)和数模转换器(DAC)实现模拟信号的采样和重构。
- 模拟输入输出接口的精度和分辨率直接影响系统的测量和控制精度。
二、模拟输入与数字输出接口的设计与应用1. 模拟输入接口设计与应用模拟输入接口常使用模数转换器(ADC)实现。
ADC将外部模拟信号转换为相应的数字信号,单片机可以通过读取数字信号来获取模拟输入量的值。
以下是模拟输入接口的设计与应用步骤:(1)选择合适的ADC型号:根据系统需求,选择合适的ADC型号。
选型时要考虑采样率、分辨率、电平范围和功耗等因素。
(2)接线:将模拟信号与ADC输入引脚相连。
通常,需要使用模拟信号调理电路(如信号调理电路和滤波器)来满足输入要求。
(3)配置寄存器:根据单片机的技术手册,配置ADC寄存器,设置采样频率、参考电压、输入通道等参数。
(4)采样和转换:通过编程,触发ADC进行采样和转换。
读取ADC结果寄存器,获取模拟输入量的数值。
(5)数据处理与应用:根据需要,对获取的模拟输入量进行进一步处理,如信号滤波、数据补偿等。
可以将模拟输入量用于系统的测量、控制、报警等功能。
2. 数字输入与模拟输出接口的设计与应用数字输入与模拟输出接口通常使用数模转换器(DAC)来实现。
ad003模拟量输入模块手册

模拟量输入模块手册一、产品概述1.1 产品概述模拟量输入模块是一种用于将模拟信号转换为数字信号的设备,常用于工业自动化控制系统中。
该模块可以接收来自各种传感器或仪器的模拟信号,如温度、压力、流量等,通过内部的模数转换器将这些模拟信号转换为数字信号,然后传输给PLC或DCS系统进行处理和控制。
模拟量输入模块在工业生产中具有重要的应用价值,能够提高生产过程的自动化程度和控制精度,减少人为干预,降低生产成本。
1.2 产品特点模拟量输入模块具有以下特点:(1)高精度:内置高精度的模数转换器,能够准确地将模拟信号转换为数字信号。
(2)强抗干扰能力:模块采用专业的防干扰设计,能够有效抵御工业场所的电磁干扰和噪声干扰。
(3)多通道输入:支持多路模拟信号输入,能够同时处理多个传感器采集的模拟信号。
(4)标准接口:与PLC或DCS系统通过标准接口连接,方便安装和使用。
(5)可编程:部分模拟量输入模块支持信号类型和量程的编程,在不同应用场景下具有较大的灵活性。
(6)高稳定性:采用优质的元器件和稳定的电路设计,具有较高的稳定性和可靠性。
1.3 产品应用模拟量输入模块广泛应用于各种工业自动化控制系统中,常见的应用领域包括但不限于:(1)化工工艺控制(2)电力系统监测(3)环境监测(4)制造过程控制(5)能源管理二、产品规格2.1 输入信号范围:0-10V、4-20mA等2.2 输入通道数:8路/16路/24路等2.3 量程调节:支持程序可调2.4 数据精度:高于12位2.5 通信接口:RS485/Modbus等2.6 工作温度:-20℃~70℃2.7 供电电压:DC 24V2.8 外部尺寸:标准35mm导轨安装三、产品安装和调试3.1 安装方式:模块采用35mm导轨安装方式,安装简便快捷。
3.2 接线要求:在接线时需注意信号线和供电线的分离,以避免干扰。
3.3 面板设置:模块面板提供相应的量程设置和通道选择开关,可根据实际需求进行设置。
单片机的模拟量输入输出

温度控制
根据设定的温度值和当前温度值, 单片机通过模拟量输出调节加热 元件的功率,实现温度的控制。
温度报警
当温度超过设定的安全范围时, 单片机通过模拟量输出驱动报警 器,发出报警信号。
案例三:智能家居系统
01
灯光亮度调节
通过模拟量输入,单片机可以接收来自用户控制面板的亮度设定值,通
过模拟量输出调节灯光驱动器的输入电压或电流,实现灯光亮度的调节。
流量控制
通过模拟量输入输出,单片机可以检测流量传感器的流量信号,并根据设定的流量值调节泵或阀门的开度,实现流量 的控制。
液位控制
通过模拟量输入输出,单片机可以检测液位传感器的液位信号,并根据设定的液位值调节进出水阀门的 开度,实现液位的控制。
THANKS FOR WATCHING
感谢您的观看
掌握模拟量输入输出原理 了解模拟量输入输出的基本原理, 包括AD转换、DA转换等,是实 现模拟量输入输出编程的基础。
合理使用中断 单片机的中断功能可以实现实时 处理和多任务并发执行,合理使 用中断可以提高程序的效率和响 应速度。
编程实例解析
模拟量输入实例
以ADC(模数转换器)为例,可以通过编写程序将模拟信号转换为数字信号,实现模拟量的输入。具体实现方法 包括选择合适的ADC通道、配置相关寄存器、编写AD转换函数等。
模拟量输入输出在单片机中的应用
传感器数据采集
单片机通过模拟量输入接口采集各种传感器的输出信号,如温度 传感器、压力传感器等。
控制系统
单片机通过模拟量输出接口控制外部设备的运行,如电机、灯光等。
信号调理
单片机在模拟量输入输出过程中,可能需要进行信号的放大、滤波、 线性化等调理操作,以确保信号的准确性和稳定性。
单片机实训模拟量输入输出设计与实现

单片机可以通过编程实现各种数字和模拟信号 的处理和控制,具有灵活性和可编程性。
单片机的应用领域
智能仪表
01
单片机可以用于实现各种仪表的智能化,如温度计、压力计、
流量计等。
工业自动化
02
单片机可以用于控制各种工业设备的运行,如电机、阀门、灯
光等。
智能家居
03
单片机可以用于实现家居智能化,如智能照明、智能安防、智
能家电等。
单片机的发展历程
单片机的起源
单片机的发展可以追溯到20世纪70年代,当时出现了一 些简单的集成电路芯片,集成了少量的逻辑门电路,可以 用于简单的控制和计算。
8位单片机的普及
8位单片机是目前应用最广泛的单片机类型,它们具有丰 富的外设接口和强大的计算能力,可以满足各种应用需求 。
02 03
单片机
对数字信号进行处理和控制。
显示模块
将液位值实时显示出来,并设定液位 上下限,当液位超过或低于设定值时, 触发报警。
05
04
执行机构
根据单片机输出的控制信号,驱动电 动阀或水泵等执行机构,调节液位高 度。
06 总结与展望
单片机在模拟量输入输出方面的优势与局限性
低成本
单片机价格相对较低,适合于需要大量使用模拟量输入输出 功能的项目。
根据单片机型号和需求,设计合适的输出驱动电 路,包括功率放大、信号调制等部分。
数字模拟转换
利用DAC(数模转换器)将数字信号转换为模拟 信号,满足输出信号的精度和稳定性要求。
输出控制与调节
将转换后的模拟信号进行控制和调节,实现与外 部设备的通信和控制。
第九章模拟量输入模块

第9章模拟量输入模块本章描述PACSystems RX3i控制器模拟量输入模块。
模拟量输入模块订童号模拟虽输入模块4通道电压型IC694ALG220模拟凤输入模块桃迢电流型IC694ALG221模拟倉输入检比他8迪道电压型IC694ALG222棋拟晟输入模块,16通道电流型IC694ALG223模拟量输入操作模拟量输入模板将输入电流或电压转变成内在的数字数据,向字数据。
I ____________________差分输入一些模拟量模块输入是单端的( single-ended)或差分的(differentia )。
对于差分模拟输入,转换的数据是在电压IN+和IN-之间的差值。
差分输入对干扰和接地电流不太敏感。
一对差分输入的双方都参照一个公共的电压( com )。
.相对于COM的两个I N 端的平均电压称为共模电压。
不同的信号源有不同的模块电压,正如右图V (CM1) 和V (CM2)所示。
这种共模电压电压可能由电路接地位置的电位差或输入信号本身的性质引起。
为了参考浮空的信号源和限制共模电压,COM端必须在连接到输入信号源的任一边源侧。
如没有特别的设计考虑,总的共模电压,参照COM端的线路上的差分输入电压和干扰应限制在±11伏,否则会导致模块损坏。
PLC CPU提供所得的数单揣转换辭柜蛆輪入并转换器「----------------A/D模拟量输入模板,4通道,差分电压:IC694ALG2204通道电压型模拟量输入模块,IC694ALG220,提供四个模拟量输入通道。
该模块接受 的输入范围为-10〜+10V 电压。
通过在输入跳线,单独的通道可以用于 4〜20mA 的电流输入。
四个输入通道的每个通道转换速度是 1毫秒。
这提供了任意通道的更新速度是 4毫秒。
这种模块可以安装到RX3i 系统中的任意I/O 插槽。
IN+Ch11隔离的+24 VDC 电源如果这种模块装在RX3i 通用背板上,模块需要一个隔离的+24VDC 的外部电源供电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(b)可变增益放大器
图3-6 前臵放大器
链接动画
把图3-6(a)中的外接电阻RG换成一组精密的电阻 网络,每个电阻支路上有一个开关,通过支路开关依次通 断就可改变放大器的增益,根据开关支路上的电阻值与增 益公式,就可算得支路开关自上而下闭合时的放大器增益 分别为2、4、8、16、32、64、128、256倍。显然,这一 组开关如果用多路模拟开关(类似CD4051)就可方便地进行 增益可变的计算机数字程序控制。此类集成电路芯片有 AD612/614等。
频率fmax的2倍,即f 2fmax。 采样定理给出了y*(t)唯一地复现y(t)所必需的最低采样 频率。实际应用中,常取f (5~10)fmax。
3.4.2采样保持器
1、 零阶采样保持器--零阶采样保持器是在两次采样
的间隔时间内,一直保持采样值不变直到下一个采样时刻。 它的组成原理电路与工作波性如图3-8(a)、(b)所示。
采样保持器由输入输出缓冲放大器A1、A2和采样开关S、
保持电容CH等组成。采样期间,开关S闭合,输入电压VIN通 过A1对CH快速充电,输出电压VOUT跟随VIN变化;保持期间, 开关S断开,由于A2的输入阻抗很高,理想情况下电容CH将保 持电压VC不变,因而输出电压VOUT=VC也保持恒定。
VIN S VIN A1 CH
R2 VI R1
VO Us ~
R1 R2
VI
VO Us ~
(a)同相放大 图 2-5 放大电路
(b)反相放大
图3-5 放大电路
链接动画
3.3.1 测量放大器
在实际工程中,来自生产现场的传感器信号往往带有较大的
共模干扰, 而单个运放电路的差动输入端难以起到很好的抑制
作用。 因此,A/D通道中的前臵放大器常采用由一组运放构成 的测量放大器,也称仪表放大器,如图3-6(a)所示。 经典的测量放大器是由三个运放组成的对称结构,测量放 大器的差动输入端VIN和VIN分别是两个运放A1、A2的同相输 入端,输入阻抗很高,而且完全对称地直接与被测信号相连, 因而有着极强的抑制共模干扰能力。
反相器变成低电平,选中下面的多路开关,此时当D2、D1、D0 从000变为111,则依次选通S8~S15通道。如此,组成一个16路的 模拟开关。
Sm
S0 S1 S2 S3 S4 S5 S6 S7
译 码 驱 动
电 平 转 换
A B C INH
Sm
S8 S9 S10 S11 S12 S13 S14 S15
译 码 驱 动
电 平 转 换
A B C INH
D 3 D2 D1 D 0
图3-4 多路模拟开关的扩展电路
图2-4 多路模拟开关的扩展电路
链接动画
3.3 前置放大器
主要知识点
引言 3.3.1 测量放大器 3.3.2 可变增益放大器
引言
前臵放大器的任务是将模拟输入小信号放大到A/D 转换的量程范围之内,如0-5VDC; 对单纯的微弱信号,可用一个运算放大器进行单端 同相放大或单端反相放大。如图3-5所示,信号源的一 端若接放大器的正端为同相放大,同相放大电路的放大 倍数G =1+R2/R1; 若信号源的一端接放大器的负端为反相放大,反相 放大电路的放大倍数G =-R2/R1。当然,这两种电路都 是单端放大,所以信号源的另一端是与放大器的另一个 输入端共地。
3.2.1结构原理
现以常用的CD4051为例,8路模拟开关的结构
原理如图3-3所示。CD4051由电平转换、译码驱动
及开关电路三部分组成。当禁止端为“1”时,前后 级通道断开,即S0~S7端与Sm端不可能接通;当为 “0”时,则通道可以被接通,通过改变控制输入端 C、B、A的数值,就可选通8个通道S0~S7中的一 路。比如:当C、B、A=000时,通道S0选通;当C、 B、A=001时,通道S通;……当C、B、A = 111时, 通道S7选通。其真值表如表3-1所示。
这种性能的放大器称为可变增益放大器或可编程放大器, 如图3-6(b)所示。
I N -
+ 2 4 A
1
16K
16K
80K 26.67K 11.43K 5.33K 2.58K
(外接) 8 16 A
3
V
O UT
32 64 128 256
负载
1.27K
630Ω 314Ω
16K A V
I N + 2
16K
外接地
引言 信号调理电路 多路模拟开关 前臵放大器 采样保持器 A/D转换器 A/D转换模板 本章小结 思考题
引言
模拟量输入通道的任务是把被控对象的过程参数如温 度、压力、流量、液位、重量等模拟量信号转换成计算机 可以接收的数字量信号。
结构组成如图3-1所示,来自于工业现场传感器或变送
器的多个模拟量信号首先需要进行信号调理,然后经多路 模拟开关,分时切换到后级进行前臵放大、采样保持和模/ 数转换,通过接口电路以数字量信号进入主机系统,从而 完成对过程参数的巡回检测任务。-为保持期间电容的总泄漏电流,它包括放大器的输入 电流、开关截止时的漏电流与电容内部的漏电流等。 电容CH值--增大电容CH值可以减小电压变化率,但同时又 会增加充电即采样时间,因此保持电容的容量大小与采 样精度成正比而与采样频率成反比。一般情况下,保持 电容CH是外接的,所以要选用聚四氟乙烯、聚苯乙烯 等高质量的电容器,容量为510~1000pF。
若取R1=200Ω,R3=100kΩ,R4=150kΩ, 则输入电流 I 的0 ~ 10 mA就对应电压输出V的0 ~ 5 V;若取R1=200Ω,R3=100kΩ,R4=25kΩ, 则4 ~ 20 mA的输入电流对应于1 ~ 5 V的电压输 出。
3.2 多路模拟开关
主要知识点
引言 3.2.1 结构原理 3.2.2 扩展电路
第3章 模拟量输入通道
本章要点
1.模拟量输入通道的结构组成。 2.多路开关,前臵放大、采样保持等各环节 的功能作用。 3.8位A/D转换器ADC0809芯片及其接口电路 4.12位A/D转换器AD574A芯片及其接口电路
本章主要内容
3.1 3.2 3.3 3.4 3.5 3.6
Sm
S0 S1 S2 S3 S4 S5 S6 S7
A 译 码 驱 动 电 平 转 换 B C INH
图3-3 CD4051结构原理图 图2 -3 CD4051结构原理图 链接动画
3.2.2 扩展电路
当采样通道多至16路时,可直接选用16路模拟开关的芯片,
也可以将2个8路4051并联起来,组成1个单端的16路开关。
在控制系统中,对被控量的检测往往采用各种 类型的测量变送器,当它们的输出信号为0 - 10 mA或4 -20 mA的电流信号时,一般是采用电阻分压 法把现场传送来的电流信号转换为电压信号,以下 是两种变换电路。
1. 无源I/V变换
2. 有源I/V变换
1.无源I/V变换
无源I/V变换电路是利用无源器件—电阻 来实现,加上RC滤波和二极管限幅等保护,如 图3-2(a)所示,其中R2为精密电阻。对于0-
例题3-1 试用两个CD4051扩展成一个1×16路的模拟开关。 例题分析:图3-4给出了两个CD4051扩展为1×16路模拟开关的 电路。数据总线D3~D0作为通道选择信号,D3用来控制两个多
路开关的禁止端。当D3=0时,选中上面的多路开关,此时当D2、
D1、D0从000变为111,则依次选通S0~S7通道;当D3=1时,经
过 程 参 数
传 感 变 送 器
信 号 调 理
多 路 模 拟 开 关
前 置 放 大 器
采 样 保 持 器
A/D 转 换 器
接 口 逻 辑 电 路
PC 总 线
图 3-1 模拟量输入通道的结构组成
显然,该通道的核心是模/数转换器即A/D转换器,通常 把模拟量输入通道称为A/D通道或AI通道。
3.1 信号调理电路
2、零阶集成采样保持器--常用的零阶集成采样保持器有
V
IN -
+ A1 -
R
2
R
S
(外接) R
G
R R
(外接)
1
A3
V O UT
1
负载
R A2 V
I N+
2
R
S
外接地 (a) 经典的前置放大器
图3-6 前臵放大器 链接动画
图中RG是外接电阻,专用来调整放大器增 益的。因此,放大器的增益G与这个外接电阻RG 有着密切的关系。增益公式为
VOUT RS 2 R1 G (1 ) VIN VIN R2 RG
(3-2)
目前这种测量放大器的集成电路芯片有多 种,如AD521/522、INA102等。
3.3.2 可变增益放大器
在A/D转换通道中,多路被测信号常常共用一个测 量放大器,而各路的输入信号大小往往不同,但都要放 大到A/D转换器的同一量程范围。因此,对应于各路不
同大小的输入信号,测量放大器的增益也应不同。具有
R2 + R3 A R4 (b) 有源I/V变换电路 R5 V
(a) 无源I/V变换电路
图 图 3-2 电流/电压变换电路 2-2 电流/电压变换电路
2. 有源I/V变换
有源I/V变换是利用有源器件——运算放大器 和电阻电容组成,如图3-2(b)所示。利用同 相放大电路,把电阻R1上的输入电压变成标准 输出电压。该同相放大电路的放大倍数为 R4 V G 1 IR1 R3 (3-1)
引言
由于计算机的工作速度远远快于被测参数的变化,因此
一台计算机系统可供几十个检测回路使用,但计算机在某一 时刻只能接收一个回路的信号。所以,必须通过多路模拟开 关实现多选1的操作,将多路输入信号依次地切换到后级。 目前,计算机控制系统使用的多路开关种类很多,并具 有不同的功能和用途。如集成电路芯片CD4051(双向、单端、 8路)、CD4052(单向、双端、4路)、AD7506(单向、单端、16 路)等。所谓双向,就是该芯片既可以实现多到一的切换, 也可以完成一到多的切换;而单向则只能完成多到一的切换。 双端是指芯片内的一对开关同时动作,从而完成差动输入信 号的切换,以满足抑制共模干扰的需要。