外文翻译油气储运
油气储运专业英语reading部分翻译
Petroleum and Its Modern Uses[1] Petroleum, coal, and natural gas are the most widely used sources of energy in the m odern world. They are of primary importance in the industrialized countries, where vast am ounts of energy are consumed to operate the different kinds of machines used today. The se three energy sources are collectively referred to as fossil fuels.石油、煤炭和天然气是现代世界最广泛使用的能源。
它们在工业化国家中最为重要,在这些国家,人们消耗大量的能源来操作今天使用的各种机器。
这三种能源统称为化石燃料。
[2] At various depths beneath land and sea, there are accumulations of hydrocarbons form ed millions and even hundreds of millions of years ago by decomposition of animal and v egetable remains. They were covered by sand or mud, which in time was itself covered by the water of the seas. Hydrocarbons are compounds of hydrogen and carbon which, at n ormal temperatures and pressures, may be gaseous, liquid or solid according to their mole cular complexity. The natural deposits are correspondingly gaseous, liquid or solid, dependi ng on the relative proportion of the various hydrocarbons present in mixture. Petroleum is composed largely of the remains of these tiny marine animals and plants that lived so lo ng ago.在陆地和海洋的不同深处,有数百万年甚至数亿年前由于动物和植物残骸的分解而形成的碳氢化合物的积聚。
油气储运 我秀我专业(修改)
浙江海洋学院石化与能源工程学院
穿越在银河的火箭队
Oil & Gas Storage and Transportation
本校油气储运专业的优势:
1、石油方向 浙江海洋学 院石化与能源工程学院是 舟山市油品质量检测培训
考核中心。可以考出油品
计量证,这对于以后的工 作很有帮助。中石化、中 海粮油、中化集团在舟山 都有战略储备油库。
中国石油勘探开发研究院 宁波工程学院
浙江海洋学院
北京石油化工学院 徐州空军学院 中国人民解放军后勤指挥学院 沈阳化工学院
茂名学院
重庆科技学院 哈尔滨商业大学 青岛科技大学
浙江海洋学院石化与能源工程学院
穿越在银河的火箭队
Oil & Gas Storage and Transportation
浙江海洋学院石化与能源工程学院
穿越在银河的火箭队
Oil & Gas Storage and Transportation
本校的清洁能源必将会有更加广 阔的发展空间。浙江省天然气 管道基本铺设完全 ,各个地区 /市加气站也会蓬勃发展,这都 需要油气储运专业技能的定向 人才。我院与舟山安监局合办 的安全员证书考试对以后进入 天然气行业的同学很有帮助。
浙江海洋学院石化与能源工程学院
穿越在银河的火箭队
Oil & Gas Storage and Transportation
主要课程:
有机化学、工程图学、电工电子学、化工机械基 础、石油商品学、工程流体力学、油库设计与管 理、油气储运安全技术与管理、输油管道设计与 管理、储运工程施工技术与管理、油品计量、油 品质量检验、燃气输配、测量仪表与自动化等 。
油气储运专业英语
储运专业英语英译汉单词翻译CH1.Oil and Gas Fields 油气田1.1 An In roducti on to oil and gas product iong 油气生产介绍1.1.1 gas processgi ng 气体加工1.1.2 oil processing 原油加工1.1.3 water processing 水处理1.1.4 sand treatment 砂处理1.1.5 auxiliary equipment 辅助设备1.2 Brief description of crude oil surface treatment 原油地面处理简介1.2.1 separators 分离器1.2.2 oil treating原油处理1.2.3 heater-treaters加热处理器1.2.4 free water kno ckouts(FWKOs)游离水脱除器1.2.5vertical treaters 立式处理器1.2.6 stabilizati on and sweete ning of crude oil 原油的稳定和脱酸1.2.7 storage tanks 储罐1.3 Treating oil field emulsions 油田乳状液的处理1.3.1 theory of emulsions 乳状液理论1.3.2 the major reas ons for dehydrat ing crude oil 原油脱水的主要原因1.3.3 treating methods 处理方法1.3.4 some common terms 一些常用术语1.4 Overview of gas-handling facilities 气体处理设备概论1.5 Trays and packing 塔板和填料1.5.1trays 塔板1.5.1.1 sieve trays 筛板1.5.1.2 valve trays 阀板1.5.1.3 bubble cap trays 泡罩塔板1.5.1.4 high capacity/high efficiency trays 高处理量/高效塔板1.5.1.5 bubble cap trays vs. valve trays 泡罩塔板与阀板的比较1.5.1.6 tray efficie ncy and tower height 塔板效率和塔高1.5.2 packing 填料1.5.2.1 random packing 随机填料1.5.2.2 stripping service 规整填料1.6 Gas sweetening 气体脱酸1.6.1 gas sweete ning processes 气体脱硫工艺1.6.2amine processes 胺工艺1.6.3 physical solve nt processes 物理溶剂工艺1.6.4direct con version of H2S to sulfur H2S 直接转换为硫磺1.6.5 gas permeation 气体渗透1.7 Dehydration of natural gas 天然气脱水1.7.1 hydrates 水合物1.7.2 dehydratoin of natural gas 天然气脱水1.7.2.1 dew-point depression 露点降1.7.2.2 liquid-desiccant dehydrators 液体干燥剂脱水器1.8 Hydrocarb on recovery and conden sate stabilizati on 烃回收和凝液稳定1.8.1hydrocarbon recovery processes 烃回收工艺1.8.2absorber and stripper units 吸收塔和气提装置1.8.3 con de nsate stabilizatio n 凝液稳定CH2 Pipeli nes 管道2.1 types of pipelines 管道类型2.1.1 oil pipelines 输油管道2.1.1.1 flowlines 出油管2.1.1.2 gathering lines 集油管道2.1.1.3crude trunk lines 原油干线管道2.1.2 gas pipelines 输气管道2.1.2.1gas gathering 集气管道2.1.2.2gas transmission 输气干线2.1.3 products pipelines 成品油管道2.2 other pipelines 其他管道2.2.1two-phase pipelines 两相流管道2.2.2LNG pipelines液化天然气管道2.2.3 CO2 pipeli nes CO2 管道2.2.4 coal slurry pipelines 煤浆管道2.3 rheology 流变学2.3.1 what is rheology? 什么是流变学?2.3.2 viscosity 黏度2.3.3 non-newtonian liquids 非牛顿流体2.3.4 high pour and high viscosity 高倾点和高粘度2.4 line pipes管道用管2.4.1 specifications 规范2.4.2 steel pipe 钢管2.4.3 other types of pipe其他类型的管子2.5 pumps and pump stations 泵和泵站2.5.1 investment distributions 投资分配2.5.2 pump stations 泵站2.5.2.1 the nu mber of pump stati ons 泵站数2.5.2.2 station equipment 泵站设备2.5.3 pumps 泵2.5.3.1 centrifugal pumps 容积泵2.5.4 types of station operation 泵站操作类型2.5.4.1 put and take operation 罐到罐操作2.5.4.2 float tank operation 旁接罐操作2.5.4.3 tight line operation 密闭操作2.6 compressors 压缩机2.6.1 reciprocating compressors 往复式压缩机2.6.2 centrifugal compressors 离心压缩机2.6.3 compression ratio 压缩比264 capacity and horsepower 流量和功率265 other con sideratio ns 其他考虑因素2.7 gas turbines 燃气透平2.7.1 types of gas turbines 燃气透平类型2.7.2 operation 操作2.8 pipeline pigging 管道清管2.8.1 pigging 清管2.8.2 example of pigging operatings 清管操作的例子2.8.3 launching and receiving 发送和接收2.9 pipe coati ng管子覆盖层2.9.1 exterior corrosion coating 夕卜防腐覆盖层2.9.2 con crete coati ng 混凝土加重层2.10 in spection and rehabilitati on 检查和修复2.10.1 inspecion 检查2.10.2 in-line tools 管内检查器2.10.3 rehabilitation 修复2.10.3.1 external corrosion 外腐蚀2.10.3.2 trans alaska pipeline repair横贯阿拉斯加管道的修理CH3 storage facilities 储存设施3.1 storage 储存3.1.1 crude storage 原油储存3.1.2 natural gas liquids 天然气凝析油3.1.3 natural gas天然气储存3.1.4LNG液化天然气3.2 tand classification 罐的分类3.2.1 tank classification 储罐分类3.2.1.1 atmospheric tanks 常压罐3.2.1.2 low-pressure tanks 低压罐3.2.1.3 pressure vessels (high-pressure tan ks )压力容器(高压罐)3.2.2 major tank components 储罐主要部件3.2.2.1 fixed-foof tanks 固定顶储罐3.2.2.2 floating-roof tanks 浮顶罐3.2.2.3 tank bottoms 罐底3.3 floating roofs 浮顶3.3.1 external floating roofs 外浮顶3.3.1.1 roof types 顶的类型3.3.1.2 support legs 支柱3.3.1.3 vents 通风3.3.1.4 drain age 排水3.3.1.5 wind girders 抗风圈3.3.2 internal floating roofs 内浮顶3.3.2.1 steel roofs 钢顶3.3.2.2 aluminum roofs 铝顶3.4 rim seals边缘密圭寸341 external floating-roof seals 外浮顶密圭寸341.1 mechanical shoe seals 机械滑板密圭寸341.2 resilint toroid seals 弹性环密圭寸3.4.1.3 flexible wiper seals 柔性刷密圭寸3.4.1.4 weather shield 风雨罩3.4.2 in ternal float in g-roof seals 内浮顶密圭寸3.5 tank emissions and venting 储罐发散物和通风3.5.1 mechanisms of evaporation losses 蒸发损耗机理3.5.1.1 fixed-roof tanks 固定顶储罐3.5.2 tank type and emissions 储罐类型和发散3.5.2.1 fixed-roof tanks 固定顶罐3.5.2.2 external float in g-roof tanks 外浮顶罐3.5.2.3 in ternal floati ng-roof tanks 内浮顶罐3.5.3PV valves压力真空阀3.5.3.1 general 概要3.5.3.2 how the PV valve works PV 阀的工作3.5.4 emergency venting 应急泄压3.6 tank foundations 储罐基础3.6.1 in troduction to tank foun datio ns 储罐基础介绍3.6.1.1 preliminary studies 初步研究3.6.1.2 soil investigations 土壤研究3.6.2 imprta nt eleme nts to con sider in foun dati on desig n 基础设计中考虑的重要因素3.6.2.1 foundation elevation 基础标高3.6.2.2 drain age 排水3.6.2.3 oil sand under tank bottom 罐底下的油砂3.6.3 tank foundation types 储罐基础类型3.6.3.1 concrete ringwall foundations 混凝土圈座基础3.6.3.2 crushed-srone ringwall foundations 碎石圈座基础3.6.3.3compacted soil foundations 夯土基础3.6.3.4 slab foundations 平板基础3.6.3.5 pile-supported fou ndatio ns 桩柱支撑基础3.7 fire prevention and foam system 防火和泡沫系统3.7.1 foam fire fighting systems 泡沫灭火系统3.7.1.1 fluidity 流动性3.7.1.2 expansion 膨胀性3.7.1.3drainage rate 吸水率3.7.2 foam making devices 泡沫发生装置3.8 oil storage in rock caverns 在岩洞内储存石油3.8.1 storage at 1 atmosphere 在大气压下储存3.8.2 cavern design and constrution 岩洞设计及建造3.8.3 general operation and maintenance 操作和维护3.8.3.1 pumps 泵3.8.3.2 heating 加热3.8.3.3 sludge 沉积物3.8.3.4 level control and volume measurement 液位控制和体积测量3.8.4 advantages of rock cavern storage 岩洞储存的优点CH4 construcion 建设4.1 land pipeline construction 陆上管道建设4.1.1 construction classification 建设分类4.1.2 land pipeli ne con structio n 陆上管道建设4.2 pipeline installation and road/river crossing 管道安装和管道/河流穿越4.2.1 installaton 安装4.2.2 road/river crossings 道路/河流的穿越4.2.3 testing 试压4.2.4 drying and cleaning 干燥和清管4.2.5 stati on con struct ion 站的建设4.3 offshore pipeli ne con struct ion 海洋管道建设4.3.1 conventional lay barge 常规铺管船4.3.2 reel barge 卷筒船4.3.3 vertical pipelaying 垂直铺管4.4 pull methods and tie-in 牵引法和碰固定口连接4.4.1 pull methods 牵引法4.4.2 tie-in碰固定口连接4.5 welding techniques and equipment 焊接技术和设备4.5.1 welding processes 焊接工艺4.5.2 welding procedures and equipment 焊接程序及设备4.5.2.1 weld passes 焊道4.5.2.2 manual welding 手工焊接4.5.2.3 automatic weldi ng 自动焊4.5.2.4 preparation for welding 焊接准备4.5.2.5 inspection and testing 检查与试验4.5.2.6 weld defects 焊接缺陷4.5.3 other joining methods 其他连接方法CH5 corrosion 腐蚀5.1 cause of underground corrosion 地下腐蚀的原因5.1.1 electrolytic corrosion 电解腐蚀5.1.2 galvanic corrosion 电池腐蚀5.1.2.1 dissimilar metals 不同金属5.1.2.2 dissimilar environments 不同环境5.2 cathodic protection fun dame ntals 阴极保护的基本原理5.2.1 corrosion and corrosion control 腐蚀和服饰控制5.2.1.1 electrically in sulati ng anode area from cathodic area 阳极区和阴极区的电绝缘5.2.1.2 electrically in sulati ng anode or cathode from the elecrolyte 阳极或阴极与电解质的电绝缘5.2.1.3 treatme nt of electrolyte 电解质处理5.2.1.4 use of nonmetallic materials 非金属材料的应用5.2.2 cathodic protection 阴极保护5.221 galvanic cathodic protection systems 原电池阴极保护系统5.222 impressed current systems 夕卜加电流系统5.2.3 desig n and criteria for cathodic protectio n 阴极保护的设计和准则5.3 pipeline corrosion 管道腐蚀5.3.1 estimating the corrosion risk 腐蚀风险评估5.3.1.1 intrinsic corrosiveness of the soil 土壤固有的腐蚀性5.3.1.2 electrolytic effects 电解作用5.3.2 corrosi on protect ion 腐蚀防护5.3.2.1 in sulati ng coat in gs 绝缘涂层5.3.2.2 cathodic protection 阴极保护5.3.2.3 protection against electrolysis 电解的保护5.4 tank corrosion 储罐腐蚀5.4.1 descriptive n ature of tank corrosio n 储罐腐蚀性质描述541.1 atmospheric corrosion 大气腐蚀5.4.1.2 product side corrosion 油品接触面腐蚀5.4.1.3 bottom corrosion 罐底腐蚀5.4.1.4 vapor space corrosion 蒸气空间腐蚀5.4.1.5 in terface corrosi on 界面腐蚀5.4.1.6 bottom underside corrosion 罐底下侧腐蚀5.4.2 corrosi on con trol and preve ntio n 腐蚀控制及防护5.4.3 specific storage tank corrosion service problems 专用储罐的腐蚀问题(石油产品)5.4.3.1 crude oil tanks 原油储罐5.4.3.2 refined hydrocarbon storage tanks 成品油储罐5.4.4 corrosi on preve nti on with linings 用涂层防腐5.4.4.1 basic types of lining 涂层的基本类型5.4.4.2 surface preparation 表面预处理5.4.4.3 precleaning 预清洗5.4.4.4 abrasive blasting 喷磨处理5.4.4.5 other surface preparation methods 其他表面预处理方法5.4.5 corrosi on preve nti on with cathodic protect ion 用阴极保护防止腐蚀5.4.5.1 cathodic protection 阴极保护5.4.5.2 polarization 极化5.4.5.3 electrical potential measurement 电位测量5.4.5.4 current requirements 电流需求5.4.5.5 internal versus exter nal cathodic protect ion 内部与外部阴极保护CH6 metering installations 计量装置6.1 metering gases 气体计量6.1.1differential pressure meters 差压流量计6.1.2 positive-displacement meters(PD)容积式流量计(PD)6.1.3 turbine-type meters 涡轮流量计6.1.4 mass-flow meters 质量流量计6.2metering of liquids 液体计量6.2.1 types of meters in use 在用流量计类型6.2.2 positive-displacement meters 容积式流量计6.2.3 turbine meters 涡轮流量计6.2.4 meter calibration 流量计标定6.3 BTU measurement 热值测量。
油气储运外文翻译(腐蚀类)【范本模板】
重庆科技学院学生毕业设计(论文)外文译文学院石油与天然气工程学院专业班级油气储运10级3班学生姓名汪万茹学号2010440140NACE论文富气管道的腐蚀管理Faisal Reza,Svein Bjarte Joramo—Hustvedt,Helene Sirnes Statoil ASA摘要运输网的运行为挪威大陆架(NCF)总长度接近1700千米的富气管道的运行和整体完整性提供了技术帮助。
根据标准以一种安全,有效,可靠的方式来操作和维护管道是很重要的。
天然气在进入市场之前要通过富气管道输送至处理厂.在对这些富气进行产品质量测量和输送到输气管道之前要在平台上进行预处理和脱水处理。
监测产物是这些管线腐蚀管理的一个重要部分。
如果材料的表面没有游离水管道就不会被腐蚀。
因此,在富气管道的运行过程中监测水露点(WDP)或水分含量具有较高的优先性,并且了解含有二氧化碳(CO2)和硫化氢(H2S)的水在管道中析出过程中的腐蚀机制对全面控制管道腐蚀很重要.本文将详细介绍生产监测的项目,例如讨论生产流量,压力,温度,气体组成和水露点。
一个全面的内部评估应该包括对富气管道中三甘醇(TEG)和水作用机理的详细阐述.关键词:富气管道,产品监控,内部腐蚀,腐蚀产物,二氧化碳(CO2),硫化氢(H2S),三甘醇(TEG),水露点(WDP),液体滞留。
引言从海上生产设施输送富气所使用的碳钢管线需要可靠的控制装置将水控制在气相中,以避免在管道内表面上凝结水和产生游离水。
全面腐蚀不仅仅是和腐蚀产物本身有关,沉淀产物有可能会促使一个更高的腐蚀速率[1].液体滞留在管道中可以引起腐蚀,然而为了保证管道内部完整性仅仅评估腐蚀速度是不够的。
在管道中腐蚀产物可能会导致进一步的问题;增加表面粗糙度和减少直径可以导致压力降的增加,同时也会引起接收终端设备的一些问题,比如腐蚀和堵塞[3]。
管道系统可能由主运输干线连接一些输送支线组成,这样一个复杂的海底管道系统的完整性管理不是很简单的。
油气储运工程英文作文
油气储运工程英文作文英文:As a professional in oil and gas transportation engineering, I have been involved in various projects related to the storage and transportation of these resources. One of the key challenges in this field is ensuring the safety and efficiency of the operations.To achieve this, we use advanced technologies and equipment, such as pipeline monitoring systems, leak detection systems, and remote control systems. These tools help us to detect and prevent potential hazards, as well as to optimize the flow of resources.In addition to technology, communication and teamwork are also crucial in oil and gas transportation engineering. For example, when working on a pipeline project, we need to coordinate with various stakeholders, including landowners, government agencies, and local communities. Effectivecommunication and collaboration can help us to address concerns and ensure that the project is completed successfully.Another important aspect of oil and gas transportation engineering is sustainability. We need to consider the environmental impact of our operations and take measures to minimize it. For example, we may use renewable energy sources to power our equipment or implement measures to reduce greenhouse gas emissions.Overall, oil and gas transportation engineering is a challenging and rewarding field that requires a combination of technical expertise, communication skills, and a commitment to sustainability.中文:作为一名油气储运工程专业人士,我参与了许多与这些资源储存和运输有关的项目。
(完整版)油气储运专业英语(英汉互译)
Chapter 1 Oil and Gas Fields第1章油气田1.1 An Introduction to Oil and Gas Production1.1石油和天然气生产的介绍The complex nature of wellstreams is responsible for the complex processing of the produced fluids (gas, oil,water, and solids). The hydrocarbon portion must be separated into products that can be stored and/or transported. The nonhydrocarbon contaminants must be removed as much as feasible to meet storage, transport, reinjection, and disposal specifications. Ultimate disposal of the various waste streams depends on factors such as the location of the field and the applicable environmental regulations. The overriding criterion for product selection, construction, and operation decisions is economics.油气井井流的复杂性质,决定了所产流体(气、油、水和固体)的加工十分复杂。
必须分出井流中的烃类,使之成为能储存和/或能输送的各种产品;必须尽可能地脱除井流中的非烃杂质,以满足储存、输送、回注和排放的规范。
各类废弃物的最终处置取决于各种因素,如油气田所处地域和所采用的环保规定等。
高含硫气田工程专业术语中英文对照
如何自我调节负面情绪负面情绪是指那些让人感到不愉快、焦虑、沮丧或恼怒的情绪。
人们无法避免遭遇一些挫折和困难,也无法避免遭受负面情绪的打击。
但是,我们可以尝试自我调节负面情绪,以便更好地应对挫折和困难。
下面是一些方法,可以帮助我们自我调节负面情绪:1. 观察和认识自己的情绪要自我调节负面情绪,首先需要认识和观察自己的情绪。
我们需要预留一些时间来关注和感受自己的情绪,了解情绪的来源和影响,并寻找有效的方法来应对负面情绪。
2. 倾听自己的内心声音在感觉情绪低落或鸟遇不如意时,我们需要倾听内心的声音,并寻找更积极的解决问题的方法。
寻找自己的内心声音有时可能需要更多的时间,但是,经过一段时间的冷静思考,我们会找到更好的解决办法。
3. 找到适当的发泄方式我们经常会因为负面情绪而担心自己的情绪和情感,但是,找到适当的发泄方式可以帮助我们释放负面情绪。
人们经常会选择运动或进行音乐疗法来缓解情绪。
重要的是,不要让负面情绪积压,而是要选择一种适合自己的方式适时释放。
4. 寻找积极的情感支持积极的情感支持可以帮助我们调整负面情绪。
可以寻找朋友、家人或者社区中支持的团体,与他们沟通,分享自己的问题、感受以及从他们的建议中获得帮助。
5. 认识到自己的情绪源于内在,而非外在我们需要认识到,我们的情绪是自己的感受,而不是来自外界的刺激。
情绪可能是由于我们对自己和周围的事物有一定的看法和价值观念。
因此,我们可以关注和调整自己的思考方式和看待问题的角度,以更积极的方式来处理负面情绪。
6. 学习如何舒缓身体和放松心灵身体和心理互相影响,我们可以学习一些放松技巧来帮助放松身体和心灵。
例如,深呼吸、冥想或者瑜伽等可以帮助我们放松身体和调整思维方式,从而让负面情绪得到缓解。
总之,自我调节负面情绪是一个长期的过程,需要我们不断地学习和探索,以找到更好的方法来应对负面情绪以及避免负面情绪的出现。
通过以上方法和思考,我们可以更好地控制和应对自己的情绪,以获得更加平衡和健康的生活。
油气储运专业英语
储运专业英语一、英译汉单词翻译CH1.Oil and Gas Fields 油气田1.1An Inroduction to oil and gas productiong油气生产介绍1.1.1gas processging气体加工1.1.2oil processing原油加工1.1.3water processing水处理1.1.4sand treatment砂处理1.1.5auxiliary equipment辅助设备1.2Brief description of crude oil surface treatment原油地面处理简介1.2.1 separators分离器1.2.2 oil treating原油处理1.2.3 heater-treaters加热处理器1.2.4 free water knockouts(FWKOs)游离水脱除器1.2.5vertical treaters立式处理器1.2.6 stabilization and sweetening of crude oil原油的稳定和脱酸1.2.7 storage tanks储罐1.3Treating oil field emulsions油田乳状液的处理1.3.1 theory of emulsions乳状液理论1.3.2 the major reasons for dehydrating crude oil原油脱水的主要原因1.3.3 treating methods处理方法1.3.4 some common terms一些常用术语1.4Overview of gas-handling facilities气体处理设备概论1.5Trays and packing塔板和填料1.5.1trays塔板1.5.1.1 sieve trays筛板1.5.1.2 valve trays 阀板1.5.1.3 bubble cap trays泡罩塔板1.5.1.4 high capacity/high efficiency trays高处理量/高效塔板1.5.1.5 bubble cap trays vs. valve trays泡罩塔板与阀板的比较1.5.1.6 tray efficiency and tower height塔板效率和塔高1.5.2 packing填料1.5.2.1 random packing随机填料1.5.2.2 stripping service规整填料1.6Gas sweetening气体脱酸1.6.1 gas sweetening processes气体脱硫工艺1.6.2amine processes胺工艺1.6.3 physical solvent processes物理溶剂工艺1.6.4direct conversion of H2S to sulfur H2S直接转换为硫磺1.6.5 gas permeation气体渗透1.7Dehydration of natural gas天然气脱水1.7.1 hydrates水合物1.7.2 dehydratoin of natural gas天然气脱水1.7.2.1 dew-point depression露点降1.7.2.2 liquid-desiccant dehydrators液体干燥剂脱水器1.8Hydrocarbon recovery and condensate stabilization烃回收和凝液稳定1.8.1hydrocarbon recovery processes烃回收工艺1.8.2absorber and stripper units吸收塔和气提装置1.8.3 condensate stabilization凝液稳定CH2 Pipelines管道2.1 types of pipelines管道类型2.1.1 oil pipelines输油管道2.1.1.1 flowlines出油管2.1.1.2 gathering lines集油管道2.1.1.3crude trunk lines原油干线管道2.1.2 gas pipelines输气管道2.1.2.1gas gathering集气管道2.1.2.2gas transmission输气干线2.1.3 products pipelines成品油管道2.2 other pipelines其他管道2.2.1two-phase pipelines两相流管道2.2.2LNG pipelines液化天然气管道2.2.3 CO2 pipelines CO2管道2.2.4 coal slurry pipelines煤浆管道2.3 rheology流变学2.3.1 what is rheology? 什么是流变学?2.3.2 viscosity黏度2.3.3 non-newtonian liquids非牛顿流体2.3.4 high pour and high viscosity高倾点和高粘度2.4 line pipes管道用管2.4.1 specifications规范2.4.2 steel pipe钢管2.4.3 other types of pipe其他类型的管子2.5 pumps and pump stations泵和泵站2.5.1 investment distributions投资分配2.5.2 pump stations泵站2.5.2.1 the number of pump stations泵站数2.5.2.2 station equipment泵站设备2.5.3 pumps泵2.5.3.1 centrifugal pumps容积泵2.5.4 types of station operation泵站操作类型2.5.4.1 put and take operation罐到罐操作2.5.4.2 float tank operation旁接罐操作2.5.4.3 tight line operation密闭操作2.6 compressors压缩机2.6.1 reciprocating compressors往复式压缩机2.6.2 centrifugal compressors离心压缩机2.6.3 compression ratio压缩比2.6.4 capacity and horsepower流量和功率2.6.5 other considerations其他考虑因素2.7 gas turbines燃气透平2.7.1 types of gas turbines燃气透平类型2.7.2 operation操作2.8 pipeline pigging管道清管2.8.1 pigging 清管2.8.2 example of pigging operatings清管操作的例子2.8.3 launching and receiving发送和接收2.9 pipe coating管子覆盖层2.9.1 exterior corrosion coating外防腐覆盖层2.9.2 concrete coating混凝土加重层2.10 inspection and rehabilitation检查和修复2.10.1 inspecion检查2.10.2 in-line tools管内检查器2.10.3 rehabilitation修复2.10.3.1 external corrosion外腐蚀2.10.3.2 trans alaska pipeline repair横贯阿拉斯加管道的修理CH3 storage facilities储存设施3.1 storage储存3.1.1 crude storage原油储存3.1.2 natural gas liquids天然气凝析油3.1.3 natural gas天然气储存3.1.4LNG 液化天然气3.2 tand classification罐的分类3.2.1 tank classification储罐分类3.2.1.1 atmospheric tanks常压罐3.2.1.2 low-pressure tanks低压罐3.2.1.3 pressure vessels (high-pressure tanks)压力容器(高压罐)3.2.2 major tank components储罐主要部件3.2.2.1 fixed-foof tanks固定顶储罐3.2.2.2 floating-roof tanks浮顶罐3.2.2.3 tank bottoms罐底3.3 floating roofs浮顶3.3.1 external floating roofs外浮顶3.3.1.1 roof types顶的类型3.3.1.2 support legs支柱3.3.1.3 vents通风3.3.1.4 drainage排水3.3.1.5 wind girders抗风圈3.3.2 internal floating roofs内浮顶3.3.2.1 steel roofs钢顶3.3.2.2 aluminum roofs铝顶3.4 rim seals边缘密封3.4.1 external floating-roof seals外浮顶密封3.4.1.1 mechanical shoe seals机械滑板密封3.4.1.2 resilint toroid seals弹性环密封3.4.1.3 flexible wiper seals柔性刷密封3.4.1.4 weather shield风雨罩3.4.2 internal floating-roof seals内浮顶密封3.5 tank emissions and venting储罐发散物和通风3.5.1 mechanisms of evaporation losses蒸发损耗机理3.5.1.1 fixed-roof tanks固定顶储罐3.5.2 tank type and emissions储罐类型和发散3.5.2.1 fixed-roof tanks固定顶罐3.5.2.2 external floating-roof tanks外浮顶罐3.5.2.3 internal floating-roof tanks内浮顶罐3.5.3PV valves压力真空阀3.5.3.1 general概要3.5.3.2 how the PV valve works PV阀的工作3.5.4 emergency venting 应急泄压3.6 tank foundations储罐基础3.6.1 introduction to tank foundations储罐基础介绍3.6.1.1 preliminary studies初步研究3.6.1.2 soil investigations土壤研究3.6.2 imprtant elements to consider in foundation design基础设计中考虑的重要因素3.6.2.1 foundation elevation基础标高3.6.2.2 drainage排水3.6.2.3 oil sand under tank bottom罐底下的油砂3.6.3 tank foundation types储罐基础类型3.6.3.1 concrete ringwall foundations混凝土圈座基础3.6.3.2 crushed-srone ringwall foundations碎石圈座基础3.6.3.3compacted soil foundations夯土基础3.6.3.4 slab foundations平板基础3.6.3.5 pile-supported foundations桩柱支撑基础3.7 fire prevention and foam system防火和泡沫系统3.7.1 foam fire fighting systems泡沫灭火系统3.7.1.1 fluidity流动性3.7.1.2 expansion膨胀性3.7.1.3drainage rate吸水率3.7.2 foam making devices泡沫发生装置3.8 oil storage in rock caverns在岩洞内储存石油3.8.1 storage at 1 atmosphere在大气压下储存3.8.2 cavern design and constrution岩洞设计及建造3.8.3 general operation and maintenance操作和维护3.8.3.1 pumps泵3.8.3.2 heating加热3.8.3.3 sludge 沉积物3.8.3.4 level control and volume measurement液位控制和体积测量3.8.4 advantages of rock cavern storage岩洞储存的优点CH4 construcion建设4.1 land pipeline construction陆上管道建设4.1.1 construction classification建设分类4.1.2 land pipeline construction陆上管道建设4.2 pipeline installation and road/river crossing管道安装和管道/河流穿越4.2.1 installaton安装4.2.2 road/river crossings道路/河流的穿越4.2.3 testing试压4.2.4 drying and cleaning干燥和清管4.2.5 station construction站的建设4.3 offshore pipeline construction海洋管道建设4.3.1 conventional lay barge常规铺管船4.3.2 reel barge卷筒船4.3.3 vertical pipelaying垂直铺管4.4 pull methods and tie-in牵引法和碰固定口连接4.4.1 pull methods牵引法4.4.2 tie-in碰固定口连接4.5 welding techniques and equipment焊接技术和设备4.5.1 welding processes焊接工艺4.5.2 welding procedures and equipment焊接程序及设备4.5.2.1 weld passes焊道4.5.2.2 manual welding手工焊接4.5.2.3 automatic welding自动焊4.5.2.4 preparation for welding焊接准备4.5.2.5 inspection and testing检查与试验4.5.2.6 weld defects焊接缺陷4.5.3 other joining methods其他连接方法CH5 corrosion腐蚀5.1 cause of underground corrosion地下腐蚀的原因5.1.1 electrolytic corrosion电解腐蚀5.1.2 galvanic corrosion电池腐蚀5.1.2.1 dissimilar metals不同金属5.1.2.2 dissimilar environments不同环境5.2 cathodic protection fundamentals阴极保护的基本原理5.2.1 corrosion and corrosion control腐蚀和服饰控制5.2.1.1 electrically insulating anode area from cathodic area阳极区和阴极区的电绝缘5.2.1.2 electrically insulating anode or cathode from the elecrolyte阳极或阴极与电解质的电绝缘5.2.1.3 treatment of electrolyte电解质处理5.2.1.4 use of nonmetallic materials非金属材料的应用5.2.2 cathodic protection阴极保护5.2.2.1 galvanic cathodic protection systems原电池阴极保护系统5.2.2.2 impressed current systems外加电流系统5.2.3 design and criteria for cathodic protection阴极保护的设计和准则5.3 pipeline corrosion管道腐蚀5.3.1 estimating the corrosion risk腐蚀风险评估5.3.1.1 intrinsic corrosiveness of the soil土壤固有的腐蚀性5.3.1.2 electrolytic effects电解作用5.3.2 corrosion protection腐蚀防护5.3.2.1 insulating coatings绝缘涂层5.3.2.2 cathodic protection阴极保护5.3.2.3 protection against electrolysis电解的保护5.4 tank corrosion储罐腐蚀5.4.1 descriptive nature of tank corrosion储罐腐蚀性质描述5.4.1.1 atmospheric corrosion大气腐蚀5.4.1.2 product side corrosion油品接触面腐蚀5.4.1.3 bottom corrosion罐底腐蚀5.4.1.4 vapor space corrosion蒸气空间腐蚀5.4.1.5 interface corrosion界面腐蚀5.4.1.6 bottom underside corrosion罐底下侧腐蚀5.4.2 corrosion control and prevention腐蚀控制及防护5.4.3 specific storage tank corrosion service problems专用储罐的腐蚀问题(石油产品)5.4.3.1 crude oil tanks原油储罐5.4.3.2 refined hydrocarbon storage tanks成品油储罐5.4.4 corrosion prevention with linings用涂层防腐5.4.4.1 basic types of lining涂层的基本类型5.4.4.2 surface preparation表面预处理5.4.4.3 precleaning预清洗5.4.4.4 abrasive blasting喷磨处理5.4.4.5 other surface preparation methods其他表面预处理方法5.4.5 corrosion prevention with cathodic protection用阴极保护防止腐蚀5.4.5.1 cathodic protection阴极保护5.4.5.2 polarization极化5.4.5.3 electrical potential measurement电位测量5.4.5.4 current requirements电流需求5.4.5.5 internal versus external cathodic protection内部与外部阴极保护CH6 metering installations计量装置6.1 metering gases气体计量6.1.1differential pressure meters差压流量计6.1.2 positive-displacement meters(PD)容积式流量计(PD)6.1.3 turbine-type meters涡轮流量计6.1.4 mass-flow meters质量流量计6.2metering of liquids液体计量6.2.1 types of meters in use在用流量计类型6.2.2 positive-displacement meters容积式流量计6.2.3 turbine meters涡轮流量计6.2.4 meter calibration流量计标定6.3 BTU measurement热值测量。
油气储运专业英语词表
油气储运专业英语词表(2005.12)(加注* 者为专业英语学位考试中词汇英译汉和汉译英的考试范围。
)* absorption n. 吸收* accumulate vt. 积累,聚集access manway 人孔* activated alumina 活性铝,铝钒土* active site 活性中心adjacent a. 近邻的* adsorbent n. &a. 吸附剂,吸附的* adsorber n. 吸附塔* adsorption n. 吸附* adsorption tower 吸附塔* aerial cooler 空气冷却器affinity n. 亲和力afloat a. 漂浮的* agitation n. 搅动allow for 给…创造条件,允许* aluminum sulfate 硫酸铝* amine n. 胺* ammonia n. 氨* annular space 环形空间* aromatics n. 芳烃articulate v. 绞接,用活节连接asbestos n. 石棉* ascend v. 上升,往上走* asphalt n. 沥青asphyxiation n. 窒息* associated crude-oil stream (气井井流的)伴生原油* atmospheric heat exchanger 空气换热器* atmospheric distillation 常压蒸馏* atmospheric pressure 常压* auxiliary process 辅助工艺atop 在…的顶上,在顶上* back pressure 回压,背压* baffle n. 挡板,折流板* barrel n. 桶* batching n. 批量* batch treating 批量处理bauxite n. 铝钒土* bead n. 小珠;焊珠;焊道* blockage n. 阻塞,堵塞be designed for 打算用作,为…而设计* be referred to as 叫做,称为* boiling point 沸点bolted tank 螺栓罐boost n. & v. 提高,增加booster pump 增压泵* bottoms塔底产品* bottleneck n. 瓶颈;薄弱环节* bring about 引起,产生* Brownian movement 布朗运动* bubble tray 泡罩塔盘buckle v. 弯曲变形,变成起伏不平bulge v. 隆起,凸起butterfly valve 蝶阀* butylene n. 丁烯bund v &n. 作堤;堤岸* burner n. 燃烧器burnout n. 烧毁,烧坏* butane n. 丁烷by virtue of 由于* by-pass valve 旁通阀* capillary n. &a. 毛细管(的)* capital n.& a. 资本(的)* carbon-carbon bond scission 碳碳键断裂cargo n. 船只* carrier n. 载体* catalyst/oil ratio催化剂/油比率* catalytic cracking 催化裂化categorize vt. 分类,把…归类* calcium carbonate 碳酸钙* carbon dioxide 二氧化碳* catalyst n. 催化剂* cavitation n. 气蚀central dispatch office 中心调度室* chamber n. 反应室chem-electric treater 电化学处理器* chemical injection pump 化学药剂注入泵* chloride n. 氯化物* choke n. 节流件,油(气)嘴,堵塞city utility 城市公用事业cling v. 粘住,紧贴coastal a. 海岸的* coalescence n. 聚结,凝聚,合并* coalescing baffle 聚结板* coke n. 焦炭* coke deposition积碳* collision n. 碰撞* cooling coil 冷却盘管* compressor station 压气站* continuous phase 连续相* control valve 控制阀* conversion n. 转化率* convert v. 转化* crack v. 裂化cross-country pipeline 跨州管道* crude oil 原油* cut oil 含水油* decomposition temperature 分解温度* definition n. 定义Deflector n. 导向,折流;导流片deflector baffle 导流挡板* dehydration n. 脱水,干燥* dehydrator n. 脱水器* delayed coking 延迟焦化* desalt vt. 脱盐* deasphalter n. 脱沥青* desiccant n. &a.干燥剂;干燥的desiccant bed 干燥剂床层* DEG, diethylene glycol 二甘醇* desulfurization n. 脱硫* deteriorate v. 变坏,降低品质* dew point 露点* dew point depression 露点降diaphragm n. 膜片,隔膜* diesel fuel 柴油* dilute v.& a. 稀释(的)* dilute solution 稀溶液* diolefine n. 双烯化合物* direct heater 加热炉* discharge vt. 排出,释放* discharge pressure 排出压力* discontinuous phase 非连续相* distillate n. 蒸馏* distillation temperature 蒸馏温度displacement-type 置换式,容积式* dispersed phase 分散相* dispersible a. 可分散的* disposal n. 处理,排放disrupt v. 分裂,中断disruption n. 中断* dissolve v. 溶解,溶液化dissipate v. 消耗(散) dissipation n. 消散,消除* distillation n. 蒸馏distortion n. 变形,扭曲* distributor pipe 分配管,布液管disturb vt. 干扰* downcomer n.降液管* downflow direction向下流动的方向* downhole pump 井下泵dotted line 虚线* downtime n. 停运时间* drain n. 排放口,排污管* drip n. 滴水器,水滴* droplet n. 液滴drum n. 反应鼓* drying agent 干燥剂* dual emulsion 双重乳状液* dump v. 清除,倾卸eccentricity n. 偏心度* electrostatic coalescer 静电聚结器* electrostatic line of force 电力线* elevated temperature 较高的反应温度eliminate vt. 消除,排除* emulsifier n. 乳化剂* emulsion n. 乳状液,乳化液* emulsion breaker= emulsion-breaking chemical 破乳剂* emulsifying agent 乳化剂encircle vt. 围绕,包围end product 终端产品* epoxy n. 环氧树脂* ethane n. 乙烷* ethylene n. 乙烯* evaporate vt. 蒸发* excessive ad. 过量的* exothermic ad. 放热的expansion refrigeration 膨胀制冷* external phase 外相exhaust stack 排气烟囱* extractor n. 提取器* extraction n. 抽取,提炼family of curves 曲线簇* Fahrenheit华氏度* feed n. 原料feedstock n. 原料* feedstock conversion原料转化率* feedstock quality原料性质* feasibility n. 可行性* field-processing method 现场处理法,现场加工法* filter n. 过滤器* filter separation 过滤式分离器finely ad. 微细的fire-retardant wall 防火墙* fixed-bed 固定床flare n. 火焰,火炬* flash n. 闪光,闪蒸* flash separator 闪蒸分离器* flash zone 闪蒸区flexibility n. 灵活性* flowing pressure 流动压力* flow controller 流量控制器* flow diagram 流程图* flue n. 烟道* fluid-bed 流化床* fluid-jacket heater 水套加热炉* fluid coking 流化焦化* formation n. 地层,岩层;形成物* freezing point 冰点,凝固点fractional a. 分数的,分馏的* fractional distillation 精镏,分馏* fractionation n. 精镏,分镏* fractionating deck 蒸馏板fraction n. 分数fracture n. 破裂,断裂* free water 游离水,自由水* free water knockout (FWKO) 游离水分离器* furnace n. 炉* gage column 量液管,液位指示管galvanize vt. 通电流于…;电镀,镀锌于* gas gathering system 集气系统* gas hydrates 气体水化物* gasoline n. 汽油* gas process plant 气体处理厂* gas vent 通气口,通气管* gas transmission pipeline 输气干线* gathering line 集油(气)管线* gauge n. 仪表vt. 测量* globule n. 液滴,小球* glycol n. 已二醇,甘醇* glycol absorber tower 甘醇吸收塔* glycol dehydrator 甘醇脱水器* granulate v. 使成颗粒handrail n. 扶手,栏杆hazardous a. 危险的,有害的header n. 汇管,集管* heater n. 加热炉,加热器* heater-treater 加热处理器* heat exchanger 换热器* heating load 热负荷* heating oil 加热用油* helium n. 氦* heteroatom n. 杂原子* higher boiling component 高沸点化合物hinge v. 以…而定* homogeneous a. 均匀的homogeneous mixture 匀质混合物hostile a. 恶劣的* hot spot 局部过热,过热点* hydrate inhibitor 水化物抑制剂(防冻剂)hurdle n. 篱笆,障碍* hydrate n. 水化物,水合物* hydrocarbon n. 烃(类),碳氢化合物(类)* hydrocracking 加氢裂化* hydrodemetallization 加氢脱金属* hydrodesulfurization 加氢脱硫* hydrogen n. 氢气* hydrogen consumption 氢耗* hydrogenolysis 氢解* hydrogen partial pressure 氢分压* hydrogen sulfide 硫化氢* hydrotreating 加氢处理* immiscible a. 不能混合的,非互溶的* impurity n. 杂质in conjunction wit h…连同,与…协力* indirect heater 间接加热炉* injector n. 注射器,喷射泵innovative a. 创新的* inspect vt. 检查,检测instrument gas 仪表气intended life 预期寿命* interfere (with) vi.干涉,妨碍* intermittent a. 间断的,断续的* internal a. &n. 内部的;(pl.) 内部构件* internal phase 内相internal firebox heater 内火箱加热炉intimately ad. 紧密地* investment n. 投资,花费* iron sulfide 硫化铁* isobutylene n. 异丁烯* isoparaffin n. 异构烷烃* jet fuel 喷气燃料joint n. 接头joint-venture company 合资公司jug n. 水罐,水壶keep pace with 与…保持同步* kerosene n. 煤油* lateral a. 侧面地,横向地;n. 分支管,支线* lean solution 贫液* lease n. 矿场,租借物* lease operator 矿场操作LACT (lease automatic-custody transfer) 矿场自动交接转输系统* level control 液位控制lightweight a. 轻便的* liquid level 液位* liquid-phase 液相* liquefaction n. 液化liquefy v. 使液化* LNG=liquefied natural gas 液化天然气* liquefied petroleum gases (LPG)=液化石油气* lubricant n. 润滑剂* lubricator n. 润滑器,化学药剂容器* malfunction n. 故障,失灵manifold n. 管汇main line bypass 主管线旁通* major product主要产物* manually ad. 手动地* mass-transfer zone 传质区meter run 计量线* mechanical separation 机械分离* mechanism of hydrocracking 加氢裂化机理* medium n. 介质mercaptan n. 硫醇* merge vi. 合并,沉没* metal sulfides金属硫化物* methane n. 甲烷* methanol n. 甲醇* microscopic a. 显微的,极微的mid-continent n. 中大陆mileage n. 里程* mild ad. 缓和的* mist n. 油雾,湿气* mist extractor 除雾器,捕雾器mobile a. 运动的,活动的* molecular-sieve 分子筛* molecular weight 分子量* monocyclic aromatics 单环芳烃* monoolefine n. 单烯烃化合物* moving-bed 移动床multitude n. 许多municipal a. 城市的* mutual a. 共同的,相互的* naphtha n. 石脑油* natural gas 天然气* neutralize vt. 使中和,抵消,失效,抑制* nickel (Ni) n. 镍* nominal a. 公称的* nominal size 公称尺寸* noncorrosive emulsion 非腐蚀性乳状液* nonvolatile fraction不挥发组成* normal butane 正丁烷obstacle n. 障碍* objectionable a. 有害的* octane number 辛烷值* offshore n. 海洋offshore production platform海洋采油平台* oil-in-water type 水包油型* oil-soluble a. 油溶性的oil truck 油罐车* olefin intermediate 烯烃中间产物open flow 明火* operating pressure 操作压力* optimize v. 优化option n. 选择;可选方案* organic acid 有机酸ounce n. 盎司(=1/12磅)* overflow v. 溢流oxyacetylene n. 氧乙炔* packed column 填料塔* packaged unit 成套装置,可移动装置pantagraph n. 缩放仪* paraffin n. 烷烃partial loading 不满负荷payment n. 支付(额)pinpoint vt. 指出,确认,为…准确定位permafrost n. 永久冻土periphery n. 圆周,周边* permeability n. 渗透率,渗透性platform n. 平台* plunger pump 柱塞泵pilot n. &a. 导向器;导向的,先导的pilot gas 引火气pin n. 大头针,图针* pipeline specification 管道规范* pipestill furnace 管式炉* pipe roughness 管子粗糙度piping n. 管道系统* polar molecule 极性分子pontoon n. (浮顶的)浮舱,浮筒* pore n. 细孔* pore structure 孔结构* porosity n. 孔隙,孔隙率port n. 孔,港口* preheat v. 预热* preheat coil 预热盘管* pressure drop 压降* pressure reducing valve 减压阀pressure control set point 压力控制设定值preferentially ad. 择优地primarily ad. 主要地,基本上primer mover 原动机* process n. 过程,工艺* process requirement 工艺要求* process variables 过程变量* processing facility 处理设备* product pipeline 成品油管道* pyrolysis n. 热解propagation n. 传播,普及* propane n. 丙烷* propylene n. 丙烯protrusion n. 伸出(物),突出(物)publicize vt. 大众化* purchase vt. 购买,采购;n. 购置,购得物* purification n. 净化* reaction chamber 反应室* reaction time 反应时间* reactor temperature 反应器温度* reboiler n. 重沸器,再沸器* recycle oil 循环油* recycle rate 循环比* remedy n. 补救,治疗* refining n. 炼制* refinery n. 炼厂* reflux n. 倒流,回流* reflux condenser 回流冷凝器* regenerate v. 使再生,使恢复(原来性质)* regeneration gas 再生气* regenerator n. 再生器* regenerator temperature 再生器温度* relief valve 泄压阀* replacement n. 代替* resemble (in) vt. 像,类似* reservoir n. 油气藏;油箱residence n. 居住,住处* residue n. 渣油resilient a. 有弹性的* resinous a. 含树脂的,树脂状的resultant a.(作为)结果(而产生)的* retention n. 保留,滞留* retention time 停留时间return bend 回弯头revamp v. 翻新* reverse emulsion 反相乳状液* rich solution 富液robust a. 坚固的,耐用的* rough separation 粗分safety head 安全头* sales line 销售管线salt water bearing formation含盐水地层* sample n. 油样* saturate vt. 使饱和* saturated gas 饱和气体*saturation n. 饱和(度)* saturation point 饱和点*s cale n. 结垢;vt. 使生水垢* scale deposit 水垢,积垢scaling n. 结垢,生成水垢scrubber n. 洗涤塔,涤气器screw n. 螺丝* sediment n. 沉积物,沉淀物* semicontinuous 半连续* sensor n. 传感器* severe a. 苛刻的shipment n. 装载货物shroud n. 护罩,屏蔽板*shutdown 停工,关闭* sidestream product 侧线产品* sludge n. 油泥,污泥* silica-gel n. 硅胶* sieve n.筛子,滤网vt. 筛分,过筛* soak v. 浸泡* soluble a. 可溶的sorber n. 吸附器,吸收器sour a. 酸的* space velocity 空速span n. 全长,跨距* spark-ignition 火花点火sparsely a. 稀少的spell n. (连续一段)时间spill v. 溢出* spot n. 斑点,污点,焊点* specification n. 详细说明;(pl.)技术要求,规范* specific gravity 比重* spreader n. 布液管,配液管* stable emulsion 稳定乳状液stem from 源自,起源于stiffen v. 加强,增强* still n. 蒸馏釜* still column 蒸馏柱,蒸馏塔stipulate v. 规定strainer n. 粗滤器,滤网,筛网* stripper n. 汽提(解吸)塔* stack n. 烟囱* stock tank 库存罐,矿场原油储罐* storage n. 储存stylize vt. 仿效* suction line 吸入管线* sulfide n. 硫化物* sulfur compounds 含硫化合物superimpose vt. 附加,把…加在…上supersede vt. 代替,取代supply gas 供气* surface active 表面活性surge n. 波动,喘振* surge tank 缓冲罐* surplus n. 剩余物*susceptible (to) a.灵敏的,敏感的* susceptibility n. 敏感性* suspend vt. 悬浮* switching valve 切换阀* tanker n. 油轮* tank battery 罐群,罐组* tank deck 罐顶* tar sand油砂* TEG, triethylene glycol 三甘醇* temperate a. 温和的* tendency n. 趋势* thermostat n.恒温器,温度调节器* thermal cracking热裂化* thermal reforming 热重整* thermally degrade 热降解* thickness n. 厚度* thread n. 螺纹thread coupling 螺纹接头* throughput n. 输量,产量tong n. 管钳* toughness n. 韧性,刚度* tower 塔* toxic a. 有毒的trade-off n. 折衷方案* transmission line 输气(干)管* tray n. 塔板* trunk line 干线* transformer n. 变压器* transmission n. 输气干线traverse vt. 横穿* treating process 处理工艺* trouble-free operation无故障操作* turbulence n. 紊流tube bundle 管束* tubular heater 管式加热炉ultimate user 最终用户* undersaturate v. 未饱和underway ad. 正在进行unduly ad. 过度地,不适当地* uneven flow 不均匀流动unkinkable a. 不会纽结的,不会缠绕的* urethane n. 氨基甲酸甲酯*urethane foam 聚氨脂泡沫* vacuum distillation减压蒸馏* vacuum gas oil 减压瓦斯油* vanadium (V) n. 钒* vapor-phase气相vapor-tight a. 气密的* vaporization loss 蒸发损失* vaporize v. 气化* vent v. 排入大气via prep. 经过,借助于violent a. 激烈的,极度的* visbreaking n. 减粘裂化* viscous a. 粘性的* viscosity n. 粘度,粘性* volatile ad. 挥发的* water bath 水浴* water-in-oil type 油包水型* water content 含水量welded tank 焊接罐wettable a. 可润湿的* well fluids 井(产)流(体)wildlife n. 野生动物wire-mesh mist extraction 丝网捕雾器* withdraw v. 抽取,提取* yield n. 收率。
油气储运专业英语第一单元翻译(成品)
The Wellhead井口The wellhead is the equipment used to maintain surface control of the well. It is usually made of cast or forged steel and machined to a close fit to form a seal and prevent well fluids from blowing or leaking at the surface. The wellhead is sometimes made up of many heavy fittings with certain parts designed to hold pressure up to 30,000 psi. A high pressure assembly is shown in Fig. 1-8. Other wellheads may be just a simple assemble to support the weight of the tubing in the well, and may not be built to hold pressure.井口装置是用来维持井口表面控制的设备。
它通常用铸钢或锻钢加工成密紧密配合的部件,从而形成密封,防止井流在地表泄露。
井口有时是由一些可以承受30,000 psi高压的重型设备组合而成。
高压装配如图1-8所示。
其他井口可能只是一个能承受井中油管重量的简单设备,并不能承受高压。
The kind of the wellhead configuration to be used is determined by well conditions. The high pressure wellhead is required where formation pressure are extremely high. Pressures higher than 20,000 psi have been found in some fields, requiring the use of a heavy wellhead. Where production and pressures are very low, the simple wellhead may be used.采用什么类型的井口取决于井的条件。
油气储运英语
By:ZhouHeng
emulsion
emulsion[ɪˈm ʌlʃən] 乳状液 immiscible[ɪˈm ɪsəbl] 非互溶的 dispersed/continuous phase 分散相/连续相 oil-in-water emulsions 水包油乳状液 water-in-oil emulsioins 油包水乳状液 phase inversion 相反转 demulsifier 破乳剂 coalescence[ˈk əʊə‘lesns] 聚结
Hale Waihona Puke Thank Youdiglycolamine(DGA) di-glycol-amine 二甘醇胺 diisopropanolamine(DIPA) di-iso-propanol-amine 二异丙醇胺 monoethanolamine(MEA) mono-ethanol-amine 一乙醇胺 triglycol(TEG) tri-glycol 三甘醇 ethane 乙烷 propane 丙烷
pipeline
centrifugal pumps 离心泵 impeller 叶轮 parallel pump arrangement 并联泵 series pump arrangement 串联泵 put and take operation 罐到罐操作 float tank operation 旁接罐操作 tight line operation 密闭操作
sweetening and dehydration
sulfur compound 硫化物 amine processes 胺工艺 physical solvent processes 物理溶剂工艺 diethanolamine(DEA) dew point 露点 affinity 亲和力 liquid-desiccant dehydrators 液体干燥剂脱水器 solid-desiccant dehydrators 固体干燥剂脱水器
外文翻译油气储运
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载外文翻译油气储运地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容本科毕业论文(翻译)利用天然气管道压差能量液化天然气流程摘要长输管道天然气的输送压力通常较高(高达10兆帕),在城市门站通常需要一套节流装置完成减压过程,这个过程通常由节流装置实现,而且在此过程中会浪费非常巨大的压力能。
在该文章中通过HYSYS软件来设计和模拟回收利用该巨大能量来完成一股天然气的膨胀液化过程。
将单位能量消耗和液化率作为目标函数并作为优化设计选择的关键变量。
同样对天然气管道在不同运输用作压力下的工作情况进行计算和讨论,同时对不同设备压力能损失进行评估,并对具体细节进行分析。
结果显示,这一液化率显然低于普通液化过程的液化率,该天然气膨胀液化过程适用于进行天然气液化是由于他的单位能耗低,过程简单及灵活。
介绍长距离输送管线通常在较高的工作压力下运行(高达10兆帕),高压天然气通常在城市门站内通过一个不可逆的节流过程从而降压到达较低的压力为了适应不同的需求,在这个过程中有用的压力能就这样被浪费了,因而,利用合适的能源利用方法回收这部分大量的压力能是十分有价值的。
天然气管道压力能多用于发电,轻质烃的分离以及天然气的液化。
现在已经有很多关于一些小型的LNG站场天然气液化的研究报告,天然气技术研究所开发了一个小型的利用混合制冷机制冷循环的天然气液化系统,起液化能力在4-40m3 /d,kirllow等人研究了利用涡流液化技术和膨胀液化技术的小型天然气液化调峰厂。
Len等人描述了几个基于压力能回收利用的天然气液化流程。
Lentransgaz公司开发了充分利用压力能而没有外来能源输入来液化天然气的天然气液化的新设备。
对油气储运认识作文英语
对油气储运认识作文英语Oil and gas transportation and storage are integral components of the global energy industry. Understanding their significance requires delving into their operational mechanisms, environmental implications, and economic impacts.First and foremost, oil and gas transportation involves the movement of crude oil, natural gas, and refined petroleum products from extraction sites to refineries, distribution centers, and ultimately to consumers. This transportation primarily occurs through pipelines, ships, trucks, and trains. Pipelines are the most common method due to their efficiency, cost-effectiveness, and ability to transport large volumes over long distances. Ships, trucks, and trains are utilized for shorter distances or where pipelines are not feasible.Storage facilities play a crucial role in ensuring a steady supply of oil and gas to meet fluctuating demand andmarket conditions. These facilities include tanks, underground caverns, and salt domes. Storage helps mitigate supply disruptions, stabilize prices, and ensure energy security. Additionally, strategic petroleum reserves are maintained by many countries as a safeguard against emergencies or geopolitical uncertainties.However, oil and gas transportation and storage pose significant environmental challenges. Pipeline leaks, tanker spills, and storage tank ruptures can result in devastating oil spills, contaminating waterways, soil, and air. These incidents have severe ecological consequences, harming aquatic life, disrupting ecosystems, and endangering human health. Moreover, the combustion offossil fuels transported and stored in these facilities is a major contributor to air pollution and greenhouse gas emissions, exacerbating climate change and global warming.Efforts to mitigate these environmental risks include stringent regulations, technological advancements, and industry best practices. Improved pipeline monitoring systems, double-hull tankers, and enhanced spill responseprocedures have been implemented to minimize the likelihood and impact of accidents. Furthermore, there is a growingshift towards cleaner and renewable energy sources,reducing reliance on fossil fuels and thus the need fortheir transportation and storage.From an economic perspective, oil and gastransportation and storage are vital for the functioning of the global economy. The efficient movement of energy resources enables industrial production, transportation,and commerce, driving economic growth and prosperity. Moreover, the infrastructure associated with transportation and storage creates jobs, fosters innovation, and attracts investment in both developed and developing regions.In conclusion, oil and gas transportation and storage are indispensable components of the modern energy landscape. While they facilitate the global energy trade and support economic development, they also present environmental risks that must be addressed through regulation, innovation, and sustainable practices. Balancing the need for energysecurity with environmental stewardship is crucial for a sustainable future.。
油气储运英语教程-第一章-第二版
Chapter1 Oil and Gas Fields◎ 1.1 An Introduction to Oil and Gas ProductionThe complex nature of wellstreams is responsible for the complex processing of the produced fluids (gas, o il,water, and solids). The hydrocarbon portion must be separated into products that can be stored and/or transported. The nonhydrocarbon contaminants must be removed as much as feasible to meet storage, transport, reinjection, and disposal specifications. Ultimate disposal of the various waste streams depends on factors such as the location of the field and the applicable environmental regulations. The overriding criterion for product selection, construction, and operation decisions is economics.Fig. 1-1is a comprehensive picture of the individual unit operations carried out in field processing. All the various modules shown will not all be present in every system. Furthermore, the modules used in a given application may not be arranged in the exact sequence shown, although the sequence is,in general, correct. The selection and sequencing of modules is determined during the design phase of field development.As shown in Fig. 1-1,the individual phases (gas,liquid hydrocarbon, liquid water, and solids) should be separated from each other as early as practical. Individual streams can then be treated with less technical difficulty and more economically. Hartley and Bin Jadid (1989) illustrate how lab and field tests performed before construction can identify and minimize future production and processing problems such as scaling, foaming, emulsion formation, wax deposition»and hydrate formation. Processing of the separated streams is now reviewed briefly because many of the individual unit operationsThe Course of English in O i卜gas Storage and TransportationBacteriocide Scale inhibitorFormationSeawater Corrosion inhibitor(b)Fig. 1-1General field processing scheme,are discussed in detail in subsequent chapters.1.1.1 Gas ProcessingAs shown in Fig. 1-1,gas processing begins with treating, if necessary, to remove the acid gases—hydrogen sulfide and carbon dioxide. Both gases are very corrosive when liquid water is present and hydrogen sulfide is most toxic. Environmental regulations almost always prohibit the release of significant amounts of hydrogen sulfide to the surroundings. Conversion to elemental sulfur is becoming irlcreasingly necessary.Gas sweetening113 usually uses aqueous solutions of various chemicals. Therefore,sweetening will precede dehydration. Dehydration is often necessary to prevent the forChapter 1Oil and Gas Fieldsmation of gas hydrates, which may plug high-pressure processing equipment or pipelines at high pressure and at temperatures considerably higher than 32 °F (0 °C).Gas that contains considerable amounts of liquefiable hydrocarbons (ethane or propane and heavier)⑴ can produce condensate upon compressing or cooling. The condensate may cause difficulty in pipelining or subsequent processing. Field processing to remove these natural-gas liquids (N G L), sometimes referred to simply as condensate, may be economical or may be required to meet a hydrocarbon dew-point specification⑴. In remote locations such processing is generally avoided if possible. Recovered condensate may, in turn,* have to be stabilized by removing dissolved gaseous components to obtain a transportable product1-4-1.Final disposal of the gas stream depends on the situation. Early in the life of a remote field,before the availability of a pipeline, the gas may simply be flared. It is becoming more common to conserve the gas by compression and reinjection into the formation with a view to its eventual recovery and sales. Conservation is often demanded by law;permits to flare are usually temporary and granted only during the initial start-up of production. Environmental restraints may also prevent flaring especially if the gas contains any hydrogen sulfide.The common situation is to flow the natural gas into a pipeline for sales. Gas pipelines have operating pressure levels of the order of 700 — 1000 psia to allow economical transport in pipes of reasonably small diameter. Compression of the gas to pipeline inlet pressure may be required.1.1.2 Oil ProcessingAfter free water removal, produced oil often contains excessive residual emulsified water。
油气储运专业英语
FPSO:Floating Production, Storage and Offloading. Typically a tanker type hull or barge with wellheads on a turret that the ship can rotate freely around (to point into wind, waves or current). The turret has wire rope and chain connections to several anchors (position mooring-POSMOR), or it can be dynamically positioned using thrusters (dynamic positioning-DYNPOS). Water depths 200 to 200 meters, Common with subsea wells. The main process is placed on the deck, while the hull is used for storage and offloading to a shuttle tanker. May also be used with pipeline transport.浮动生产储卸油装置。
通常油轮船体上的塔楼或该船舶可以自由旋转左右(一般朝向风浪或水流)。
塔楼通过绳索连接到锚上(定位抛锚),也可以用推进器进行动态定位(动态定位)。
它水深200至2000米,这些井在海底是比较常见的。
其主要的处理工艺放置在甲板上,这种船体是用于储存和卸油到穿梭油轮上。
也可用于管道运输。
TLP: A Tension Leg Platform consists of a structure held in place by vertical tendons connected to the sea floor by pile-secured templates. The structure is held in a fixed position by tensioned tendons, which provide for use of the TLP in a broad water depth rang up to about 2000m. Limited vertical motion. The tendons are constructed as hollow high tensile strength steel pipes that carry the spare buoyancy of the structure and ensure limited vertical motion. A variant is Seastar platforms which are miniature floating tension leg platforms, much like the semi submersible type, with tensioned tendons.张力腿式平台是由垂直的绳索连接到海底的桩护底板上的这样的结构组成的。
油气储运工程英文作文
油气储运工程英文作文Oil and gas transportation engineering plays a crucial role in the energy industry. It involves the construction and maintenance of pipelines, terminals, and storage facilities for the efficient and safe transportation of oil and gas. This field requires a combination of engineering expertise and knowledge of the oil and gas industry.In this line of work, engineers are responsible for designing and building pipelines that can withstand the high pressure and corrosive nature of oil and gas. They must consider factors such as terrain, climate, and environmental regulations to ensure the integrity of the pipeline system. Additionally, engineers must also plan for the transportation of oil and gas from extraction sites to processing plants or refineries, taking into accountfactors such as distance, capacity, and efficiency.Maintenance of oil and gas transportationinfrastructure is another important aspect of this field.Engineers are tasked with inspecting and repairingpipelines and storage facilities to prevent leaks or other malfunctions. They must also ensure that the infrastructure meets safety standards and regulatory requirements. Regular maintenance and monitoring are essential to prevent accidents and ensure the continuous flow of oil and gas.Safety is a top priority in oil and gas transportation engineering. Engineers must implement measures to prevent accidents and respond effectively in case of emergencies. This includes the installation of safety systems, such as leak detection and fire suppression systems, as well as the development of emergency response plans. Engineers must also stay updated on the latest safety regulations and industry best practices to ensure compliance and minimize risks.In addition to technical skills, effective communication and collaboration are essential in oil and gas transportation engineering. Engineers often work in teams with professionals from various disciplines, such as geologists, environmentalists, and project managers. Theymust be able to effectively communicate their ideas and collaborate with others to achieve project goals. This includes coordinating with stakeholders, such as government agencies and local communities, to address concerns and ensure the smooth implementation of projects.In conclusion, oil and gas transportation engineeringis a complex and important field in the energy industry. It requires a combination of engineering expertise, knowledge of the oil and gas industry, and effective communication skills. Engineers in this field are responsible for designing, building, and maintaining pipelines and storage facilities to ensure the efficient and safe transportation of oil and gas. Safety and collaboration are key aspects of this field, as engineers must implement measures to prevent accidents and work with various stakeholders to achieve project goals.。
油气储运专业英语reading部分翻译
油气储运专业英语reading部分翻译Petroleum and Its Modern Uses[1] Petroleum, coal, and natural gas are the most widely used sources of energy in the m odern world. They are of primary importance in the industrialized countries, where vast am ounts of energy are consumed to operate the different kinds of machines used today. The se three energy sources are collectively referred to as fossil fuels.石油、煤炭和天然气是现代世界最广泛使用的能源。
它们在工业化国家中最为重要,在这些国家,人们消耗大量的能源来操作今天使用的各种机器。
这三种能源统称为化石燃料。
[2] At various depths beneath land and sea, there are accumulations of hydrocarbons form ed millions and even hundreds of millions of years ago by decomposition of animal and v egetable remains. They were covered by sand or mud, which in time was itself covered by the water of the seas. Hydrocarbons are compounds of hydrogen and carbon which, at n ormal temperatures and pressures, may be gaseous, liquid or solid according to their mole cular complexity. The natural deposits are correspondingly gaseous, liquid or solid, dependi ng on the relative proportion of the various hydrocarbons present in mixture. Petroleum is composed largely of the remains of these tiny marine animals and plants that lived so lo ng ago.在陆地和海洋的不同深处,有数百万年甚至数亿年前由于动物和植物残骸的分解而形成的碳氢化合物的积聚。
专业英语课程论文-油气储运工程TechnicalEnglishforOilandGas
T echnical English for Oil and GasStorage and T ransportation Engineering Since September this year, we have had a new course called Technical English for oil and gas storage and transportation engineering. Professor Liu is the teacher of this course and she is very well to us. In the teaching of Professor Liu, I get much knowledge and I fell very happy.Now,let me write somethings about my profession with some personnal ideals.Extensive Reading①The title of the first paper I viewed is “Fluid and Hydraulic System”.As far as I am concerned,this paper mainly describes two important contents which are fluid and hydraulic system.The former part of this paper gives an account of Fluid that is a substance which may flow.Its constituent particles may continuously change their positions relative to one another.Moreover,it offers no lasting resistance to the displacement,however great ,of one layer over another.This means that,if the fluid is at rest,no shear force(that is a force tangential to the surface on which it acts)can exist in it.Meanwhile,fluid may be classified as Newtonian or non- Newtonian.In Newtonian fluid there is a linear relation between the magnitude of applied shear stresses and the resulting rate of angulardeformation.In non- Newtonian fluid there is a nonlinear relation between the magnitude of applied shear stresses and the resulting rate of angular deformation.The after part of this paper is concerned with the hydraulic system. I think the ligament between the two sides is “Pascal’s law”. Because all hydraulic systems depend on Pascal’s law,named after Braise Pascal, who discovered the law. This law states that pressurized fluid within a closed container-such as cylinder or pipe-exerts equal force on all of the surfaces of the container. Moreover, in actual hydraulic systems, Pascal’s law defines the basis of the results which are obtained from the system.Thus,pump moves the liquid in the system. The intake of the pump is connected to a liquid source,usually called the tank or reservoir. Atmospheric pressure,pressing on the liquid in the reservior,forces the liquid into the pump.when the pump operates,it forces liquid from the tank into the discharge pipe at a suitable pressure.②The title of the second paper I viewed is “A Discussion on Modern Design Optimization”. In this paper,the author focuses on the theory underlying some of the mathematical methods employed by design optimization procedures.To begin with, this paper treats of the optimization techniques taking one with another. The integration of optimization techniqueshas the power to reduce design costs by shifting the burden from the engineer to the computer. Furthermore,the mathematical rigor of a properly implemented potimization tool can add confidence to the design process.Modern optimization methods perform shape optimizations on components generated within a choice of CAD packages. Ideally, there is seamless data exchange via direct memory transfer between the CAD and FEA applications without the need for file translation. Furthermore, if associativity between the CAD and FEA software exist, any changes made in the CAD geometry are immediately reflected in the FEA model.The second, this paper describe how the optimization problem arises. Consider a three-step process:(1)Generation of geometry of part or assembly in CAD;(2)Creation of FEA mode of part or assembly;(3)Evaluation of results of FEA models.Meanwhile,most optimization problems are made up of three basic components.(1) An objective function which we want to minimize (or maximize). For instance, in designing an automobile panel, we might want to minimize the stress in a particular region.(2) A set of design variables that affect the value of theobjective function. In the automobile panel design problem, the variables used define the geometry and material of the panel.(3) A set of constraints that allow the design variables to have values but exclude others. In the automobile panel design problem, we would probably want limit its weight.The last but not the least, there is no beauideal in the world. Modern design optimization has many benefits and drawbacks. The elimination or reduction of repetitive manual tasks has been the impetus behind many software applications. Automatic design optimization is one of the latest applications used to reduce man-hours at the expense of possibly increasing the computational effort. It is even possible that an automatic design optimization scheme may actually require less computational effort than a manual approach. This is because the mathematical rigor on which these schemes are based may be more efficient than a human-based solution. Of course, these schemes do not replace human intuition, which can occasionally significantly shorten the design cycle. That is, no variable combination of the design parameters is left unconsidered. Thus,designs obtained using design optimization software should be accurate to within the resolution of the overall method.Intensive ReadingOriginal textIndustrial RobotA robot is an automatically controlled, reprogrammable, multipurpose, manipulating machine with several reprogrammable axes, which may be either fixed in place or mobile for use in industrial automation applications.The key words are reprogrammable and multipurpose because most single-purpose machines do not meet these two requirements. The term “multipurpose”means that the robot can perform many different functions, depending on the program and tooling cureently in use.Over the past two decades, the robot has been introduced into industry to perform many monotonous and often unsafe operations. Because robot can perform certain basic tasks more quickly and accurately than humans, they are being increasingly used in various manufacturing industries.The typical structure of industrial robot consists of 4 major components: the manipulator, the end effector, the power supply and the control system.The manipulator is a mechanical unit that provide motions similar to those of a human arm. It often has a shoulder joint, an elbow and a wrist. It can rotate or slide, stretch out and withdraw inevery possible direction with certain flexibility.The basic mechanical configurations of the robot manipulator are categorized as cartesian, cylindrical, spherical and ariculated. A robot with a cartesian geometry can move its gripper to any position within the cube or rectangle defined as its working volume. Cylindrical coordinate robots can move the gripper within a volume that is described by a cylinder. The cylindrical coordinate robot is positioned in the work area by two linear movements in the X and Y directions and one angular rotation about the axis. Spherical arm geometry robots position the wrist through two rotation and one linear actuation. Articulated industrial robots have an irregular work envelope. This type of robot has two main variants,vertically articulated and horizontally articulated.The end effector attaches itself to the end of robot wrist, also called end-of-arm tooling. It is the device intended for performing the designed operations as a human as a human hand can. End effectors are generally custom-made to meet special handling requirements. Mechanical grippers are the most commonly used and are equipped with two or more fingers. The selection of an appropriate end effector for a specific application depends on such factors as the payload, environment, reliability, and cost.The power supply is the actuator for moving the robot arm,controlling the joints and operating the end effector. The basic types of power sources include electrical, pneumatic, and hydraulic. Each source of energy and each type of motor has its own characteristics, advantages and limitations. An ac-powered or dc-powered motor may be used depending on the systerm design and applications. These motors convert electrical energy into mechanical energy to power the robot. Most new robot use electrical power supply. Pneumatic actuators have been used for high speed, nonservo robots and are often used for powering tooling such as grippers. Hydraulic actuators have been used for heavier lift system, typically where accuracy was not also required.The control system is the communications and information-processing system that gives commands for the movements of the robot. It is the brain of the robot; it sends signals to the power source to move the robot arm to a specific position and to actuate the end effector. It is also the nerves of the robot ; it is reprogrammable to send out sequences of instructions for all movements and actions to be taken by the robot.An open-loop controller is the simplest form of the control system, which controls the robot only by following the predetermined step-by-step instructions. This system does not have a self-correcting capability. A close-loop control system uses feedbacksensors to produce signals that felect the current states of the controlled objects. By comparing those feedback signals with the values set by the programmer, the close-loop controller can conduct the robot to move to the precise position and assume the desired attitude, and the end effector can perform with very high accuracy as the close-loop control system can minimize the discrepancy between the controlled object and the predetermined references.Industrial robots vary widely in size, shape, number of axes, degrees of freedom, and design configuration. Each factor influences the dimensions of the robot’s working envelope or the volume of space within which it can move and perform its designated task. A broader classification of robots can been described as below.Fixed-and V ariable-Sequence Robots. The fixed-sequence robot(also called a pick-and place robot) is programmed for a specific sequence of operation. Its movements are from point to point, and the cycle is repeated continuously. The variable-sequence robot can be programmed for a specific sequence of operations but can be reprogrammed to perform another sequence of operation.Playback Robot. An operator leads or walks the playback robot and its end effector through the desired path. The robot memorizes and records the path and sequence of motions and can repeat them continually without any further action or guidance by the operator.Numerically Controlled Robot. The numerically controlled robot is programmed and operated much like a numerically controlled machine. The robot is servo-controlled by digital data, and its sequence of movements can be changed with relative ease.Intelligent Robot. The intelligent robot is capable of performing some of the functions and tasks carried out by human beings. It is equipped with a variety of sensors with visual and tactile capabilities.The robot is a very special type of production tool; as a result, the applications in which robots are used are quite broad. These applications can be grouped into three categories: material processing, material handing and assembly.In material processing, robot use tools to process the raw material. For example, the robot tools could include a drill and the robot would be able to perform drilling operations on raw material.Material handing consists of the loading, unloading, and transferring of workpieces in manufacturing facilities. These operations can be performed reliably and repeatedly with robots, thereby improving quality and reducing scrap losses.Assembly is another large application area for using robotics. An automatic assembly system can incorporate automatic testing, robot automation and mechanical handing for reducing labor costs,increaing output and eliminating manual handing concerns.What I have learned form the upper paper is listed as followNowadays, along with the fast pace of economic development, more and more Industrial robots have been presented in our living. Industrial robots have many merits and their applications are very abroad in the world.The former three paragraphs of the paper mainly introduce the short and the long of the industrial robots. W e generally realize the functions and use of them. W e know that robots have been used in various vocations. There is a word “reprogrammable”that attracts me in the second paragraph. In my opinion, the term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be written to accommodate a variety of manufacturing tasks.From 4th to 10th paragraph, this paper mainly introduce the structures of robots. There are a large number of professional words which I list as follow.Elbo(肘) wrist(腕) shoulder joint(肩关节) Coordinate(坐标) volume(范围) cylindrical(圆柱的) spherical(球状的) open-loop(开环) close-loop(闭环) articulated(铰接的) cartesian(笛卡尔的) pneumatic(气动的) payload(有效载荷) feedback(反馈) nonservo(非伺服系统) end effector(终端操作机构)When I read the first sentence of the 4th paragraph, I wonde what is the mechanical unit. V ia some reference books, I know that the major of mechanism is the mechanical system. And the mechanical system is decomposed into mechanisms,which can be further decomposed ino mechanical components. In this sense, the mechanical components are the fundamental elements of machinery. On the whole, mechanical components Can be classified as universal and special components.From 11th to 15th paragraph, this paper mainly introduce the classification of robots. In the point, the classification is presented broad sense. as a matter of fact, there are a lot of categorys of the classification. What attracts me is the word “playback”. The original intention of “playback”is “repeatedly play”, but over here, it’s meaning is “示教”.The last four paragraphs mainly introduce several robot applications. At present there are two main types of robots, based on their use: general-purpose autonomous robots(通用机器人)and dedicated robots(专用机器人). Robots can be classified by their specificity of purpose. There are many application in our society nowadays. For example, in our school, they has three main applications: Robotic kits, V irtual tutors and teacher's assistants.Along with various techniques having emerged to develop the science of robotics and robots, One method shows itself that is evolutionary robotics, in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent "generation" of robots. Another method is developmental robotics, which tracks changes and development within a single in the areas of problem-solving and other functions.In a word, the prospect of robots is very bright.Appendix: all the papers in my discourse are extracted from the book named Technical English published in Peking University Press that borrowed from the library of my school.。
【课件】油气储运工程外文翻译应用特征方法的天然气管道破裂问题的计算课件
【关键字】课件中文译文应用特征方法的天然气管道破裂问题的计算J.A. Olorunmaiye ,机械工程系,Ilorin大学,P.M.B. 1525, Ilorin(Nigeria))N.E. Imide,机械工程系,Abubakar Tafawa Balewa大学,Bauchi (Nigeria)(完稿于1992年7月4日,校正后定稿于1992年12月2日)摘要将在长距离、高压、伴随有突然断裂的天然气管道内的流动模拟为不稳定的一维等温流动。
集合的双曲线偏微分方程已由数值特征方法所解答。
应用具备二次插值的线性特性时,其数值计算的准确性是满足要求的。
我们也发现,等温流动中特征曲率的作用并不像Flatt的绝热流的报道中所说的那样明显。
为了评估天然气管道破裂的危险,有必要了解断点处气体的外泄速率。
预测的断裂口处泄漏气体的质量流量要比应用绝热流理论预算的小18%,然而,这与早些时候利用等温流动理论的工作者得出的结果却很好的吻合,其理论计算方法是基于加权残差的。
1.说明天然气管道的瞬态压力波动通常是由阀门或者压缩机的突然开启与关闭引起的。
管道系统内存在压力波的传输与反射,从而会因为压力过大导致管道破裂。
天然气工业对长输管道在事故破裂后的气体不稳定流动是相当感兴趣的,因为管道内含有大量的可燃气体,它的破裂也就意味着相当大的危害。
为计算气体扩散范围和空气—天然气混合气的地面浓度,有必要了解气体的泄漏速率。
破裂后,由于在低压段的流动条件下,膨胀波进入管道后会造成流动逆转,低压段管道内的气体流动将比高压段更复杂。
在图1中,假定了破裂相当于管道截面大小,并立即向左方延伸(其高压管段),阀门在断裂的瞬间完全关闭。
Fannelsp and Ryhming [1]研究了高压下发生破裂时天然气管道内的不稳定流动。
他们将流动划分为三个时间状态。
紧接着破裂发生的“早期”状态受波动进程影响,并且开口端的压力接近周围环境压力。
“中期”状态伴随着一个内部压力峰值的出现,大约对应于流动逆转速度为0的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文(翻译)英文标题学号学生姓名教学院系石油与天然气工程学院专业年级油气储运工程2011级指导教师职称单位辅导教师职称单位完成日期 2015年06月利用天然气管道压差能量液化天然气流程摘要长输管道天然气的输送压力通常较高(高达10兆帕),在城市门站通常需要一套节流装置完成减压过程,这个过程通常由节流装置实现,而且在此过程中会浪费非常巨大的压力能。
在该文章中通过HYSYS软件来设计和模拟回收利用该巨大能量来完成一股天然气的膨胀液化过程。
将单位能量消耗和液化率作为目标函数并作为优化设计选择的关键变量。
同样对天然气管道在不同运输用作压力下的工作情况进行计算和讨论,同时对不同设备压力能损失进行评估,并对具体细节进行分析。
结果显示,这一液化率显然低于普通液化过程的液化率,该天然气膨胀液化过程适用于进行天然气液化是由于他的单位能耗低,过程简单及灵活。
1.介绍长距离输送管线通常在较高的工作压力下运行(高达10兆帕),高压天然气通常在城市门站内通过一个不可逆的节流过程从而降压到达较低的压力为了适应不同的需求,在这个过程中有用的压力能就这样被浪费了,因而,利用合适的能源利用方法回收这部分大量的压力能是十分有价值的。
天然气管道压力能多用于发电,轻质烃的分离以及天然气的液化。
现在已经有很多关于一些小型的LNG站场天然气液化的研究报告,天然气技术研究所开发了一个小型的利用混合制冷机制冷循环的天然气液化系统,起液化能力在4-40m3 /d,kirllow等人研究了利用涡流液化技术和膨胀液化技术的小型天然气液化调峰厂。
Len等人描述了几个基于压力能回收利用的天然气液化流程。
Lentransgaz 公司开发了充分利用压力能而没有外来能源输入来液化天然气的天然气液化的新设备。
Mokarizadeh等人应用了基因遗传学的相关算法对于天然气调峰厂的液化天然气的压力能使用进行优化以及损失的评估,Cao等人使用Hysys软件分析了应用于小型天然气液化流程的使用混合制冷剂循环以及N2,CH4膨胀循环的撬装包。
Remeljej等人比较了四种液化流程包括单级混合制冷循环,两级膨胀氮循环,两开环膨胀流程,以及类似的能量分析得到单级的混合制冷剂循环有最低的能量损失。
表1 符号命名Maunder设计了一种甲烷饱和液化流程,在膨胀过程中温度压力的降低从而达到气体液化的效果。
Alabdulkaremet等人通过使用丙烷预冷的混合制冷剂循环将制冷过程进行优化,并发现了一种可以降低单位产品的能耗的混合制冷剂的新组成。
Shen等人提出了一种利用压力能的液化天然气流程,但是并没有进行详细的分析及优化设计。
Xiong等人设计了一种适用于利用压缩机制冷及换热设备的城市门站。
Gao等人设计了一种带有丙烷预冷的氮气膨胀制冷循环液化煤层气的流程,并分析了氮气含量对液化率的影响。
在本文中,通过利用接近城市门站的气体压力能来完成液化天然气的膨胀液化过程。
这种液化过程的液化率大概在10%-15%之间。
这种循环的液化率要低于像混合制冷剂循环和氮膨胀循环的液化流程。
然而这种液化循环却有低能耗,使用灵活,简单的优点。
2.工艺流程设计原料气参数管输天然气的压力值设置在4MPA,温度设置在15℃,流量假设在100104Nm3/d。
这种制冷过程是一种液化天然气直接膨胀循环利用高野液化天然气的一部分。
大部分供给的天然气膨胀到然后输送到中高压的管网中,另一部分的天然气膨胀到0,4MPA然后进入中等压力的管网,此时的管输流量低于100104Nm3/d,该天然气各个组分的摩尔百分数以及该流程中的其他参数在表2中展示。
液化流程该液化天然气膨胀液化流程如图1所示。
首先供给的天然气被分为两个部分,其中较小部分的天然气流入预处理流程从而脱除二氧化碳,水及硫化氢,然后通过两级LNG热交换器(LNG-100和LNG-101)从而到达气液分离器所需的重烃分离温度从而达到重烃的分离,此时天然气在另外的两个LNG热交换器(LNG-102和LNG-103)中逐渐冷却及液化。
之后通过一个气体节流阀调节天然气的压力,最终LNG产品在一个气液分离器中分离出来。
该气液分离器顶端排出的气体则流回四个LNG换热器从而回收冷量然后流入中等压力天然气管网。
另外一部分的天然气通过压缩机增压后经过水冷系统冷却然后通过LNG 换热器(LNG-100)在此冷却。
在此冷却的天然气被分为两个部分第一个部分通过第一个膨胀机(exp-1)为其他三个LNG 换热器(LNG-101,LNG-102,LNG-103)提供冷量,最终被输入中高压天然气管网。
另外的一部分天然气随后经过两个LNG 换热器(LNG-101,LNG-102)冷却,.随后这部分天然气经过第二个膨胀机(EXP-2)之后回到四个LNG 换热器中提供冷量。
最终该部分天然气输入中高压天然气管网及中压天然气管网。
在本文中,研究的液化天然气流程不同于传统的液氮膨胀流程及甲烷膨胀流程。
在传统的甲烷膨胀流程及氮气膨胀流程中两个膨胀机是级联式连接,但是在这个系统中,两个膨胀机是平行连接,因而具有可以通过调节两个膨胀机通过的天然气流量来满足不同液化能力的需求的优点。
相平衡方程相平衡方程是在液化过程中各物理参数计算的基础,在本文中使用P-R 方程,P-R 方程如下所示:()()b v b b v v a b v RT -++--=p其中:()()ij j i j i k a a z z a -=∑∑15.0 i i b z b ∑=P-R 方程还可以使用在压缩因数中,()()()023132223=-----+--B B AB Z B B A Z B Z其中:RT PV Z /=()2/RT ap A = RT bp B /=3. 优化处理关键参数的优化单位能源消耗是用来评价液化天然气流程的一个重要方面,因而它往往被用作优化流程的目标函。
其中几个参数对于单位能源消耗有重要的影响,其中包括压缩机的出口压力,两个膨胀机的进口温度以及重烃分离温度。
这四个参数可以通过变量X=(P 202,t 204,t 208,t 105)T ,能源消耗作为目标函数如下所示:()LNG net MIN q W X f /=其中∑∑-=ander compressor net W W W exp表明膨胀机产生的效果全部应用于压缩机(单位为KW)。
q LNG 为LNG 的体积流量(单位为Nm 3/h )。
由于非常低的能源消耗以及相当低的液化率,因而仅仅考虑参数对单位能源消耗的影响是不正确的。
实际上,还应该考虑这四个参数对于液化率的影响,在进行优化的过程中,应该保证单位能源消耗处于一个相当低的水平,然后让液化率可以到达一个尽可能高的值。
在HYSYS 中的优化程序在优化流程和原始方法中被选中,给出的约束函数如下所示:(1)换热器LNG-103的进出温差的最小值设置为3K 。
(2)输入中压天然气管网的天然气流量不超过10104Nm 3/d 。
(3)天然气经过膨胀机后不留下任何液体。
(4)经过重烃的分离后C 5的摩尔分率不超过70%。
压缩机输出压力P 202在这个工艺流程中的影响压缩机的输出压力对于单位能量消耗及液化率的影响是十分巨大的。
该压缩机的出口压力同压缩机性能之间的关系如图2所示。
随着压缩机出口压力的增高,液化率也随着显著的增高。
这是因为压缩机出口压力的增高会增大膨胀机的膨胀比,这将导致制冷机产生更强的制冷能力,从而可以液化更多的天然气。
同时也表明,在压缩机出口压力不断增高的同时,压缩机的能耗也在不断的增高。
如图2 压缩机的出口压力同压缩机性能之间的关系第一个膨胀机的入口温度对于该流程性能的影响膨胀剂的入口温度对于制冷效果以及膨胀机的出口工作量有十分显著的影变化,单位能量消耗以响。
图3展示了随着函数变量第一个膨胀机入口温度t204及液化率相应的变化关系(EXP-1),随着膨胀机入口温度t的不算降低,单位能204到达-20℃时,单位能量消耗有最低量消耗先降低随后不断增高,当入口温度t204值。
产生这个现象的原因是,随着膨胀机入口温度的不断降低,使得流过制冷循环的单位制冷剂产生更大的制冷能力,因而使得制冷机中所需要的总制冷剂减少,压缩机所需要的压力也随着减少。
然而,制冷剂流量的减少使膨胀机的输出功率降低,同时使整体流程的单位能源消耗的升高。
因此第一膨胀机的入口温度t和制冷剂流量有一个获得最低单位能量消耗的最优值。
另一个方面,液化率204随着膨胀机入口温度的减少而增加。
图3单位能量消耗以及液化率同第一个膨胀机入口温度t204的变化图第二个膨胀机的入口温度t208对于该流程性能的影响第二个膨胀机的入口温度对于第二个膨胀机的出口温度有轻微的影响。
而第二个膨胀机的出口温度对于节流前的天然气温度有重要影响。
这个影响的结果展示在图4中。
为了使膨胀剂中不产生液体因而要保证t208在℃以上。
流程的液化率随着t208的降低而增加,这是因为随着第二个膨胀机的t208的降低可以将天然气在节流前冷却到一个较低的温度,从而使得天然气的液化率升高。
而单位能量消耗量随着第二个膨胀机的入口温度的降低而减少。
这是因为随着液化率的升高闪蒸汽的产生量会减少,很容易从约束函数中发现,闪蒸汽需要经过压缩才可以输入中高压天然气管网。
综上所述,单位能量消耗因而减少。
图4 第二个膨胀机的出口温度对于节流前的天然气温度影响对于该流程性能的影响重烃的分离温度t205重烃的分离工作在天然气的液化中起着非常大的作用。
如果重烃的分离不在一个合适的温度中完成,将使重烃在较低的温度中固化产生运输管道的堵塞。
重烃的分离温度对于该液化流程性能的影响展示在图5中。
当随着重烃分离温度的降低,液化率也同时降低。
重烃分离温度越低,天然气的中就有更多的重烃分离出来。
结果使得天然气的液化率降低,无论如何,单位能源消耗量会随着重烃分离温度的降低而升高。
图5 重烃的分离温度对于该液化流程性能的影响4.结果及分析通过利用天然气管道压力能对液化过程的主要参数进行优化设计,如表3所示。
很显然,这个流程的单位能源消耗量是非常低的,在Nm3。
相比较之下,MRC 流程中单位能源消耗量在,氮膨胀流程中单位能源消耗量在Nm3左右。
无论如何,相较于其他的液化流程,较低的液化率是这个流程的缺点。
而且相较于其他的液化流程95%的液化率这个流程的液化率只有%。
这个液化能力相当于一个小型的LNG厂的液化能力,大约为×104Nm3/d。
如图6所示,热的和冷的复合曲线是LNG换热器中的重要参数。
将压力分析理论应用于LNG换热器。
在高温传热系统中的高温曲线通过一个小型的LMTD同低温复合曲线相匹配。
当这个传热系统降低到一个较低的温度时,高温复合曲线同低温复合曲线匹配的不是很好而且此时需要的LMTD 十分巨大。