2020年中考数学冲刺难点突破旋转变换问题以矩形形为基础的图形的旋转变换问题(解析版)
2020-2021中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)及详细答案
2020-2021中考数学压轴题之初中数学旋转(中考题型整理,突破提升)及详细答案一、旋转1.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=3FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.2.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V ()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD V 的面积为212a ,理由详见解析;(3)BCD V 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==o ,由旋转知,AB AD =,ABD 90∠=o ,ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=,在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴V ≌()BDE AAS VBC DE a ∴==,BCD 1SBC DE 2=⋅V Q , 2BCD 1S a 2∴=V ; ()2BCD V 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==o ,Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,AB BD ∴=,ABD 90∠=o ,ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=,在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴V ≌()BDE AAS V ,BC DE a ∴==,BCD 1SBC DE 2=⋅V Q , 2BCD 1S a 2∴=V ; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==o ,11BF BC a 22==, FAB ABF 90∠∠∴+=o ,ABD 90∠=o Q ,ABF DBE 90∠∠∴+=o ,FAB EBD ∠∠∴=,Q 线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB V 和BED V 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB ∴V ≌()BED AAS V ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.3.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m =8,∵a <0,5≤m≤7,∴m =7时,S 取到最大值;②如图2,过点P 作PF ⊥x 轴于F ,过点D 作DG ⊥FP 交FP 的延长线于G ,∴∠DGP =∠PFE =90°,∴∠DPG+∠PDG =90°,由旋转知,PD =PE ,∠DPE =90°,∴∠DPG+∠EPF =90°,∴∠PDG =∠EPF ,∴△PDG ≌△EPF (AAS ),∴DG =PF ,∵DG =AF =m ﹣4,∴P (m ,m ﹣4),∵点P 在反比例函数y =16x , ∴m (m ﹣4)=16,∴m =2+25或m =2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________;(理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由;(拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆, ∴60CAE =︒,AC AE =.∴ACE ∆是等边三角形.∴AC AE CE ==.∴AB BC CE AE ===.∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆, ∴AF AD =,90DAF ∠=︒.∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形.∵AF AD =,∴四边形ADGF 是正方形.(4)如图,连接DE .∵四边形ADGF 是正方形,∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆, ∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ∆沿AE 折叠得到AME ∆, ∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =,∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.5.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(313+11312;(4)PC 的最大值=3,PC 的最小值31. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OBCOA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH=32.在Rt△AOH中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为1312+或1312-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD ≌△BCE ∴AD=BE ,由(1)知:FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.7.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.8.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.9.如图1.在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB 、PC ,将△BCP 沿射线CA 方向平移,得到△DAE ,点B 、C 、P 的对应点分别为点D 、A 、E ,连接CE . ①依题意,请在图2中补全图形;②如果BP ⊥CE ,AB +BP =9,CE =33,求AB 的长.(2)如图3,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC =4,AB =8时,根据此图求PA +PB +PC 的最小值.【答案】⑴①见解析,②AB =6;⑵47. 【解析】分析:(1)①根据题意补全图形即可;②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE , ∴BC ∥AD 且BC =AD ,PB =DE . ∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -, DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE , ∴222CE DE CD +=,∴(()222339x x +-=,∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN≌△APB,∴PB=MN.易得△APM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=8,∠BNA=60°,∠PAM=60°,∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°.在Rt△ABC中,易得:2222=8443BC AB AC-=-=,∴在Rt△BCN中,22486447CN BC BN=+=+=.点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.10.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记ACBC=k,当k为何值时,△CPE总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE V 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FPMC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM , ∴DM FP MC PB =, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,∵AC k BC =,AC BC=tan30°, ∴k=tan30°=3, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.11.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B 1A 1C =30°,点B ,C ,B 1在同一条直线上.(1)求证:AB=2BC(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.(3)如图3,当△ABC绕点C顺时针方向旋转至如图所示的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.【答案】(1)证明见解析(2)当旋转角等于30°时,AB与A1B1垂直.(3)理由见解析【解析】试题分析:(1)由等边三角形的性质得AB=BB1,又因为BB1=2BC,得出AB=2BC;(2) 利用AB与A1B1垂直得∠A1ED=90°,则∠A1DE=90°-∠A1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A1CB=180°-∠BDC-∠B=60°,所以∠ACA1=90°-∠A1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB与A1B1垂直;(3)由于AB∥CB1,∠ACB1=90°,根据平行线的性质得∠ADC=90°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到CD=12AC,再根据旋转的性质得AC=A1C,所以CD=12A1C,则A1D=CD.试题解析:(1)∵△ABB1是等边三角形;∴AB=BB1∵BB1=2BC∴AB=2BC(2)解:当AB与A1B1垂直时,∠A1ED=90°,∴∠A1DE=90°-∠A1=90°-30°=60°,∵∠B=60°,∴∠BCD=60°,∴∠ACA1=90°-60°=30°,即当旋转角等于30°时,AB与A1B1垂直. (3)∵AB∥CB1,∠ACB1=90°,∴∠CDB=90°,即CD是△ABC的高,设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD. 【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.12.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD .探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD 有最大值是a+b.【解析】【分析】 (1)a=b=3,且∠ACB=60°,△ABC 是等边三角形,且CD 是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC 是等腰直角三角形,且CD 是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D 为中心,将△DBC 逆时针旋转60°,则点B 落在点A ,点C 落在点E .连接AE ,CE ,当点E 、A 、C 在一条直线上时,CD 有最大值,CD=CE=a+b .【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC 是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.13.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)证明见解析(2)BF+EQ=BP(3)BF+BP=EQ【解析】试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG).证明如下:∵点E、F、G分别是正方形边AD、AB、BC的中点,∴△AEF和△BGD是两个全等的等腰直角三角形.∴EF=FG,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF⊥FG.(2)取BC的中点G,连接FG,则由SAS易证△FQE≌△FPG,从而EQ=GP,因此()=-.EF2BP EQ(3)同(2)可证△FQE≌△FPG(SAS),得EQ=GP,因此,()()===-=-.EF GF2BG2GP BP2EQ BP14.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.∠=o,将一直角三角板15.如图1,O为直线AB上一点,过点O作射线OC,AOC30()∠=o的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线M30AB的上方.()1将图1中的三角板绕点O以每秒5o的速度沿逆时针方向旋转一周.如图2,经过t秒后,ON落在OC边上,则t=______秒(直接写结果).()2如图2,三角板继续绕点O以每秒5o的速度沿逆时针方向旋转到起点OA上.同时射线OC也绕O点以每秒10o的速度沿逆时针方向旋转一周,∠的度数.①当OC转动9秒时,求MOC②运动多少秒时,MOC35∠=o?请说明理由.【答案】(1)6;(2)①45o ;②11秒或25秒,理由见解析. 【解析】【分析】(1)因为∠AOC=30°,所以ON 落在OC 边上时,三角板旋转了30°,即可求出旋转时间;(2)在整个旋转过程中,可以看做这样一个追及问题更容易理解,即:ON 绕点O 以每秒5°的速度沿逆时针方向旋转,同时射线OC 也绕O 点以每秒10°的速度沿逆时针方向旋转; ①9秒时,∠NOC=45°,而OC 旋转了90°,所以∠MOC 的度数就是45°;②∠MOC=35°时,应分OC 与OM 重合前35°与重合后35°两种情况考虑,分别进行求解即可.【详解】()1AOC 30∠=o Q ,而三角板每秒旋转5o ,∴当ON 落在OC 边上时,有5t 30o =,得t 6=,故答案为6;()2①当OC 转动9秒时,COA 30109120∠=+⨯=o o o ,而MOA 309059165∠=++⨯=o o o o ,又MOC MOA COA Q ∠∠∠=-,即:MOC 16512045∠=-=o o o ,答:当OC 转动9秒时,MOC ∠的度数为45o ;②设OC 运动起始位置为射线OP(如图1),运动t 秒时,MOC 35∠=o ,则MOP 905t o ∠=+,COP 10t ∠=,当MOC 35∠=o 时,有()905t 10t 35+-=o o 或()10t 905t 35o o-+=,得t 11=或t 25=,因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况,故当运动11秒或25秒时,MOC 35∠=o .【点睛】本题考查的是用方程的思想解决角的旋转的问题,找准等量关系,正确列出一元一次方程是解题的关键.。
2020年中考数学复习微专题《旋转》突破和提升专题(知识梳理+例题+真题反馈)(无答案)
2020中考数学复习微专题《旋转》突破与提升专题(知识梳理+例题+真题反馈)一.知识梳理1.图形的旋转定义:在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动叫做图形的旋转.三要素:旋转中心,旋转角,旋转方向.2.旋转的性质(1)旋转前后的图形全等.(2)对应点到旋转中心的距离相等.(3)两组对应点分别与旋转中心连线,所成的角(旋转角)相等.3.中心对称定义:一个图形绕某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.4.中心对称的性质(1)具有图形旋转的一切性质.(2)成中心对称的两个图形,对应点的连线经过对称中心,且被对称中心平分.5.中心对称与轴对称的区别联系6.中心对称图形定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形重合,那么这个图形叫做中心对称图形.7.中心对称与中心对称图形的区别联系二.典例剖析例1:若两个图形成中心对称,则下列说法:①对称点的连线必过对称中心;②这两个图形的形状和大小完全相同;③这两个图形的对应线段一定互相平行;④将一个图形围绕对称中心旋转某个角度后必与另一个图形重合,其中正确的有________.分析:本题主要考查了中心对称的概念及性质,强调的是两个图形,注意,若对称中心在图形的某一条边上,则对应线段在同一直线上.解答:例2:如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为______.分析:根据旋转的性质和四边形的内角和是360°,可以求得∠C AD的度数,本题得以解决.解答:例3.在下面给出的条件中,能判定四边形ABCD是平行四边形的是.①AB=BC,AD=CD;②AB∥CD,AD=BC;③AB∥CD,AB=CD;④∠A=∠B,∠C=∠D;⑤AB∥CD,AD∥BC;⑥AB=CD,AD=BC;⑦AO=CO,BO=DO;例4.在平面直角坐标系中,已知三点坐标A(-2,1),B(-1,-1),C(0,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是________.分析:拿到这类题目,我们可在草稿纸上随意画出A、B、C三个点的位置,再作出点D的三种位置.显然,过给定的三个点A、B、C,作对边的平行线,三条平行线的交点即为点D的三个位置.只要抓住一个点,其与另外三个点的连线,都能作为对角线,例5.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.分析:(1)由平行加角平分线构造等腰三角形,可得∠BAE=∠BEA,即AB=BE,再结合平行四边形对边相等即可得证;(2)易证△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,再证△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积,即可得出结果。
2020中考数学二轮复习几何专题突破 图形变换中题型解法技巧(解析版)
【答案】
【解析】
【分析】
先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得CF= ,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF-CD即可.
Rt△AOF∽Rt△ADC,则 ,求出AF=5,即可得出结果.
【详解】
解:连接 交 于点 ,如图所示:
∵四边形 是矩形,
∴ , ,
,
∵折叠矩形使 与 重合时, , ,
∴ , ,
∴则Rt△AOF∽Rt△ADC
∴ ,即: ,
解得: ,
∴ ,
故选:C.
【点睛】
本题考查了折叠的性质、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握折叠的性质,证明三角形相似是解题的关键.
∴H(1,0),
∴BH= =4,
∴ = .
故选:B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH、CF的长是解题的关键.
5.(2019·山西省中考真题)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.
中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案
在△ DAG 与△ DCG 中, ∵ AD=CD,∠ ADG=∠ CDG,DG=DG, ∴ △ DAG≌ △ DCG. ∴ AG=CG. 在△ DMG 与△ FNG 中, ∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG, ∴ △ DMG≌ △ FNG. ∴ MG=NG 在矩形 AENM 中,AM=EN. 在 Rt△ AMG 与 Rt△ ENG 中, ∵ AM=EN, MG=NG, ∴ △ AMG≌ △ ENG. ∴ AG=EG ∴ EG=CG. (3)(1)中的结论仍然成立.
4.如图(1)所示,将一个腰长为 2 等腰直角△ BCD 和直角边长为 2、宽为 1 的直角△ CED 拼在一起.现将△ CED 绕点 C 顺时针旋转至△ CE’D’,旋转角为 a. (1)如图(2),旋转角 a=30°时,点 D′到 CD 边的距离 D’A=______.求证:四边形 ACED′ 为矩形; (2)如图(1),△ CED 绕点 C 顺时针旋转一周的过程中,在 BC 上如何取点 G,使得 GD’=E’D;并说明理由.
【答案】(1)详见解析;(2)FE·sin( -90°) 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得 AF∥ BE,所以∠ FAE=∠ BEA,由折叠的性质得 ∠ BAE=∠ FAE,∠ BEA=∠ FEA,所以∠ BAE=∠ FEA,故有 AB∥ FE,因此四边形 ABEF 是平行四 边形,又 BE=EF,因此可得结论; (2)根据点 M 在线段 BE 上和 EC 上两种情况证明∠ ENG=90°- ,利用菱形的性质得到
2020-2021中考数学初中数学 旋转的综合热点考点难点含答案解析
2020-2021中考数学初中数学旋转的综合热点考点难点含答案解析一、旋转1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.如图1,在Rt△ABC中,∠ACB=90°,AC=BC.点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD.点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)PM与BE的数量关系是,BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中BE与MN的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB=6.CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D三点在一条直线上时,求MN的长度.【答案】(1)1,22PM BE BE MN==;(2)成立,理由见解析;(3)MN17﹣117【解析】【分析】(1)如图1中,只要证明PMNV的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可.【详解】(1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB , ∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE ,∴AD =BE ,∴PM =PN ,∵∠ACB =90°,∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC ,∴PM ⊥PN , ∴△PMN 的等腰直角三角形,∴2MN PM =, ∴122MN BE =, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H .∵△ABC 和△CDE 是等腰直角三角形,∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°,∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE ,∴∠ACD =∠ECB ,∴△ECB ≌△DCA ,∴BE =AD ,∠DAC =∠EBC ,∵∠AHB =180°﹣(∠HAB +∠ABH )=180°﹣(45°+∠HAC +∠ABH )=∠180°﹣(45°+∠HBC +∠ABH )=180°﹣90°=90°,∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°, ∴2222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =-=∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=, ∴342BE BG GE =+=+,∴21712MN BE ==+. 综上所述,MN =17﹣1或17+1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF ⊥BD 交 BC 于 F ,连接 DF ,G 为 DF 中点,连接 EG ,CG .(1) 求证:EG =CG ;(2) 将图①中△BEF 绕 B 点逆时针旋转 45∘,如图②所示,取 DF 中点 G ,连接 EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
2020初中数学中考专题复习——图形变换旋转综合题专项训练A(附答案详解)
2020初中数学中考专题复习——图形变换旋转综合题专项训练A (附答案详解) 1.如图,在矩形ABCD 中,AB=3,BC=4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPG=∠DAC ,且过D 作DG ⊥PG ,连接CG ,则CG 最小值为( )A .65B .75C .3225D .36252.等边△ABC 的边长为6,点O 是三边垂直平分线的交点,∠FOG=120°,∠FOG 的两边OF ,OG 分别交AB ,BC 与点D ,E ,∠FOG 绕点O 顺时针旋转时,下列四个结论正确的是( )①OD=OE ;②ODE BDE S S ∆∆=;③2738ODBE S =;④△BDE 的周长最小值为9. A .1个 B .2个 C .3个 D .4个3.如图,DEF ∆是由ABC ∆绕着某点旋转得到的,则这点的坐标是A .(1,1)B .(2,0)C .(0,1)D .(3,1) 4.如图,在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……依此规律,得到等腰直角三角形A 2 017OB 2 017.则点B 2 017的坐标( )A .(22 017,-22 017)B .(22 016,-22 016)C .(22 017,22 017)D .(22 016,22 016) 5.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC=65°,则∠EFD 的度数是( )A.15B.20C.25D.306.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①以点O为中心逆时针方向旋转180°;②先以A为中心顺时针方向旋转90°,再向右平移4格,向上平移4格;③先以直线MN为对称轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将三角形ABC变换成三角形PQR的是()A.①②B.①③C.②③D.①②③7.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+22B.4+33C.2+213D.108.如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为()A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)9.如图,和都是等腰直角三角形,,四边形是平行四边形,下列结论中错误的是( )A .以点为旋转中心,逆时针方向旋转后与重合B .以点为旋转中心,顺时针方向旋转后与重合C .沿所在直线折叠后,与重合D .沿所在直线折叠后,与重合 10.如图,将△ABC 绕点C 按逆时针方向旋转得△A′B′C ,且A′点在AB 上,A′B′交CB 于点D ,若∠BCB′=α,则∠CA′B′的度数为( )A .180°﹣αB .90°12α-C .180°12α-D .90°12α+ 11.如图,将平行四边形ABCD 绕点D 逆时针旋转150,得到平行四边形DEFG ,这时点C 、E 、G 恰好在同一直线上,延长AD 交CG 于点H .若2AD =,75A ∠=,则HG =__________.12.如图,在平面直角坐标系xOy 中,△ABC 可以看作是△DEF 经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF 得到△ABC 的过程____.13.如图,在Rt △ABC 中,∠C =90°,CB =2,CA =4,线段AD 由线段AB 绕点A 逆时针方向旋转90°得到,△EFG 由△ABC 沿CB 方向平移得到,当直线EF 恰好经过点D 时,CG 的长等于_____.14.如图,在Rt △ABC 中,∠ABC =90°,∠BAC =30°,BC =2,点D 是AC 边的中点,E 是直线BC 上一动点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连接AF 、EF ,在点E 的运动过程中线段AF 的最小值为_____.15.如图,E 、F 分别为正方形ABCD 的边AB 、AD 上的点,且A E =AF ,连接EF ,将△AEF 绕点A 逆时针旋转45°,使E 落在E 1,F 落在F 1,联接BE 1并延长交DF 1于点G ,如果AB =22,AE =1,则DG =______.16.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).17.如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,将线段AP 绕点A 逆时针旋转90°,得到线段AQ ,当点P 从点(−3,0)运动到点(1,0)时,点Q 运动的路径长为____.18.如图,正方形OABC 的边长为2,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是______.19.如图,将矩形ABCD 绕点A 按逆时针方向旋转一定角度后,BC 的对应边'B C 交CD 边于点G 。
2020年中考数学复习之挑战压轴题(解答题):几何变换(10题)
5
第 9页(共 40页)
b 、如图乙 2 中,当点 E 在 BA 延长线上时, BE 6 .
EAC 90 ,
CE AE2 AC2 2 5 ,
同(1)可证 ADB AEC .
DBA ECA .
BEP CEA ,
PEB∽AEC ,
PB BE , AC CE
PB 6 , 4 25
【考点】 RB :几何变换综合题 【分析】(1)①由条件证明 ABD ACE ,就可以得到结论②由 ABD ACE 就可以得出 ABD ACE , 就 可 以 得 出 BDC 90 , 进 而 得 出 结 论 ; ③ 由 条 件 知 ABC ABD DBC 45 ,由 ABD ACE 就可以得出结论;④ BDE 为直角三角形 就可以得出 BE2 BD2 DE2 ,由 DAE 和 BAC 是等腰直角三角形就有 DE2 2AD2 , BC 2 2 AB2 ,就有 BC 2 BD2 CD2 BD2 就可以得出结论;
2 他条件不变,求线段 AM 的长.
2020年中考数学冲刺难点突破旋转变换问题以矩形形为基础的图形的旋转变换问题(解析版)
2020年中考数学冲刺难点突破旋转变换问题专题二以矩形为基础的图形的旋转变换问题【例题精讲】两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,AD GDADE GDCED CD⎪∠⎪⎩∠⎧⎨===,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.【教师总结】四边形的旋转,可以构造全等三角形,在根据旋转的性质画出相应的图形,再综合其他知识解决.【针对训练】1、如图,有一矩形纸片ABCD,AB=6,AD =8,如图1,将纸片折叠使AB落在AD边上,B的对应点为B′,折痕为AE.如图2,再将△AB'E以B'E为折痕向右折叠,AE与CD交于点F.(1)求的值;(2)四边形EFDB′的面积为;(3)如图3,将△A′DF绕点D旋转得到△MDN,点N刚好落在B′E上,A′的对应点为M,F的对应点为N,求点A'到达点M所经过的距离.解:(1)∵将纸片折叠使AB落在AD边上,B的对应点为B′,∴AB=AB',∠BAE=∠B'AE,∠B=∠B'=90°,∴四边形ABEB'为正方形,∴△AB'E为等腰直角三角形,∵AB=6,AD=8,∴B'D=AD﹣AB'=8﹣6=2,∵将△AB'E以B'E为折痕向右折叠,∴AB'=A'B'=6,∠A'=∠A=45°,∴A'D=DF=6﹣2=4,∵CD=AB=6,∴CF=6﹣4=2,∴.(2)由(1)可知B'D=2,DF=4,B'E=6,∴四边形EFDB′的面积=×(B'E+DF)×B'D==10.故答案为:10.(3)∵将△A′DF绕点D旋转得到△MDN,∴DF=DN=4,∠NDM=90°,∵B'D=2,∠NB'D=90°,∴∠B'ND=30°,∴∠B'DN=60°,∴∠A'DM=90°﹣∠B'DN=90°﹣60°=30°,∵△A′DF在绕点D旋转过程中,点A'到达点M所经过的路径是圆弧A'M,∴的长为.即点A'到达点M所经过的距离为.2、已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点.点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点为线段BC关于点B的逆转点;(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F 是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.①补全图;②判断过逆转点G,F的直线与x轴的位置关系并证明;③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围.解:(1)由题意,点A是线段AB关于点B的逆转点,故答案为A.(2)①图形如图3所示.②结论:GF⊥x轴.理由:∵点F是线段EF关于点E的逆转点,点G是线段EP关于点E的逆转点,∴∠OEF=∠PEG=90°,EG=EP,EF=EO,∴∠GEF=∠PEO,∴△GEF≌△PEO(SAS),∴∠GFE=∠EOP,∵OE⊥OP,∴∠POE=90°,∴∠GFE=90°,∵∠OEF=∠EFH=∠EOH=90°,∴四边形EFHO是矩形,∴∠FHO=90°,∴FG⊥x轴.③如图4﹣1中,当0<x<5时,∵E(0,5),∴OE=5,∵四边形EFHO是矩形,EF=EO,∴四边形EFHO是正方形,∴OH=OE=5,∴y=•FG•PH=•x•(5﹣x)=﹣x2+x.如图4﹣2中,当x>5时,y=•FG•PH=•x•(x﹣5)=x2﹣x.综上所述,.3、如图,△ABC是等腰直角三角形,∠ACB=90°,D为AC延长线上一点,连接DB,将DB绕点D逆时针旋转90°,得到线段DE,连接AE.(1)如图①,当CD=AC时,线段AB、AE、AD三者之间的数量关系式是AB+AE=AD.(2)如图②,当CD≠AC时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D在射线CA上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB、AE、AD三者之间的数量关系式.解:(1)∵△ABC是等腰直角三角形,∠ACB=90°,∴CA=BC,AC⊥BC,∠BAC=45°∵AC=CD,BC⊥AC,∴AB=BD,∴∠BAC=∠BDC=45°,∴∠ABD=90°,∵将DB绕点D逆时针旋转90°,得到线段DE,∴BD=DE,∠BDE=90°,∴DE=AB=BD,AB∥DE,∴四边形ABDE是平行四边形,且∠ABD=90°,∴四边形ABDE是矩形,且AB=BD,∴四边形ABDE是正方形,∴AB=AE,AD=AB,∴AB+AE=AD,故答案为:;(2)结论仍然成立;如图②过点D作DF∥BC交AB的延长线于点F,∵BC∥DF,∴∠ADF=∠ACB=90°,∠F=∠ABC=45°,∴∠F=∠DAF=45°,∴AD=DF,∴AF=AD,∵∠ADF=∠EDB=90°,∴∠ADE=∠BDF,且DE=DB,AD=DF,∴△ADE≌△FDB(SAS),∴AE=BF,∴AB+AE=AB+BF=AF=AD;(3)不成立,当点D在线段AC上时,如图③,过点D作DF∥BC,∴∠AFD=∠ABC=45°,∠ACB=∠ADF=90°,∴∠DAF=∠AFD=45°,∴AD=DF,AF=AD,∵∠EDB=90°=∠ADF,∴∠ADE=∠BDF,且AD=DF,DE=BD∴△ADE≌△FDB(SAS)∴AE=BF,∵AB﹣BF=AF,∴AB﹣AE=AD;当点D在CA的延长线上时,如图④,过点D作DF∥BC,交BA延长线于点F,∴∠AFD=∠ABC=45°,∠ACB=∠ADF=90°,∴∠DAF=∠AFD=45°,∴AD=DF,AF=AD,∵∠EDB=90°=∠ADF,∴∠FDB=∠EDA,且AD=DF,DE=BD∴△ADE≌△FDB(SAS)∴AE=BF,∵AB+AF=BF,∴AB+AD=AE.4、如图,将△ABC绕点A逆时针旋转90°得到△ADE,将BC绕点C顺时针旋转90°得CG,DG交EC于O点(1)求证:DO=OG;(2)若∠ABC=135°,AC=2,求DG的长;(3)若∠ABC=90°,BC>AB,且=时,直接写出的值.解:(1)如图1,延长CB交DE于H.∵∠ABC+∠ABH=180°,∠ABC=∠ADH,∴∠ADH+∠ABH=180°,∴∠DAB+∠DHB=180°,∵∠DAB=90°,∴∠DHB=90°,∴∠DHB=∠HCG=90°,∴DE∥CG,∴∠EDO=∠G,∵DE=BC=CG,∠DOE=∠GOC,∴△DOE≌△GOC(AAS),∴EO=OC.(2)如图2,连接EG,BD,由旋转知,AD=AB,∠BAD=90°,∴∠ABD=45°,∵∠ABC=135°,∴∠ABD+∠ABC=180°,∴点D,B,C在同一条直线上,由(1)知,∠EDG=∠CGD,∴DE∥CG,∵DE=CG,∴四边形CDEG是平行四边形,∵将BC绕点C顺时针旋转90°得CG,∴∠DCG=90°,∴平行四边形CDEG是矩形,∴DG=CE,由旋转知,∠CAE=90°,AE=AC=2,∴CE=AC=2,∴DG=2,(3)如图3,延长DA,CG相交于点F,由旋转知,∠BAD=∠BCG=90°,∴∠BAF=∠BCF=90°,∵∠ABC=90°,∴四边形ABCF是矩形,∴AF=BC,CF=AB,∴FD=FG,在Rt△DFG中,DG=DF=(AD+AF)=(AB+BC),在RtACF中,AF2+CF2=AC2,∴AB2+BC2=AC2,∵=,∴=,∴=,∴=,∴2AB2﹣5AB•BC+2BC2=0,∴(2AB﹣BC)(AB﹣2BC)=0,∴2AB﹣BC=0或AB﹣2BC=0,∴=或=2(舍弃),故答案为:.5、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.6、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.7、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.8、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD 的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.解:(1)∵△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,∴AC=BC=4,AB=AC=4,DE=BE,DB=BE,∠ABC=45°,∠DBE=45°,∵AB=2BD,∴AD=BD=2,∴BE=2,∵∠CBE=∠ABC+∠DBE=90°,∴CE===2,∵点F是CE的中点,∴BF=CE=;(2)如图,连接AN,设DE与AB交于点H,∵点M是AD中点,∴AM=MD,又∵MN=ME,∠AMN=∠DME,∴△AMN≌△DME(SAS),∴AN=DE,∠MAN=∠ADE,∴AN∥DE,∴∠NAH+∠DHA=180°,∵∠NAH=∠NAC+∠CAB=∠NAC+45°,∠DHA=∠EDB+∠DBH=45°+∠DBH,∴∠NAC+45°+45°+∠DBH=180°,∴∠NAC+∠DBH=90°,∵∠CBA+∠DBE=45°+45°=90°,∴∠CBE+∠DBH=90°,∴∠CBE=∠NAC,又∵AC=BC,AN=DE=BE,∴△ACN≌△BCE(SAS),∴∠ACN=∠BCE,∵∠BCE+∠ACE=90°,∴∠ACN+∠ACE=90°=∠NCE,∴CN⊥CE.9、如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.解:(1)等腰三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,∴∠PCB=∠PBC,∴PC=PB,∴△BCP是等腰三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.10、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题:(1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由.解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.11、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.(1)求BC的长;(2)求证∠ABE=∠ABC;(3)当FB=FE时,求CD的长.解:(1)如图,过点A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH=BC,∵tan∠ACB==,∴设AH=3k(k>0),CH=4k,∵AC2=AH2+CH2,∴9k2+16k2=25,∴k=1,∴HC=4,∴BC=2CH=8;(2)∵∠DAE=∠BAC,∴∠DAC=∠BAE,∵将线段AD绕点A顺时针旋转得AE,∴AE=AD,又∵AB=AC,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACD,∴∠ABE=∠ABC;(3)∵AD=AE,∴∠AED=∠ADE=(180°﹣∠DAE),∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC),∵∠DAE=∠BAC,∴∠ADE=∠AED=∠ABC=∠ACB,∴∠ABE=∠ABC=∠ADE,又∵∠BFE=∠DFA,∴∠BEF=∠DAF,∵FB=FE,∴∠FBE=∠FEB,∴∠DAF=∠ADF=∠FBE=∠FEB,∴∠DAF=∠ABC=∠ACB,又∵∠ABC=∠ABD,∴△BAD∽△BCA,∴∴BD==,∴CD=BC﹣BD=8﹣=.12、(1)如图1,O是等边三角形ABC内一点,连接OA,OB,OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.填空:①旋转角为°;②线段OD的长是;③∠BDC=°;(2)如图2,O是△ABC内一点,且∠ABC=90°,BA=BC.连接OA,OB,OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA,OB,OC满足什么条件时,∠BDC=135°?请说明理由.解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;故答案为:60;4;150;(2)OA2+2OB2=OC2时,∠ODC=90°,理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠BDC=135°.12、在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE的长.解:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:AF=BE,90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴,∵AB=8,∴BE=AF=4,故BE的长为2或4.13、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.14、如图1,在Rt△ABC中,∠B=90°,∠C=30°,BC=4,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至DE∥AC时,请直接写出BD的长.解:(1)①当α=0°时,∵在Rt△ABC中,∠B=90°,∠C=30°,BC=4,∴AB=,∴AC=,∵点D、E分别是边BC、AC的中点,∴BD=CD=BC=2,AE=CE=AC=,∴;故答案为:.②如图1,,当α=180°时,∵将△EDC绕点C按逆时针方向旋转,∴CD=2,CE=,∴AE=AC+CE=4,BD=BC+CD=6,∴.故答案为:.(2)当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵CE=,CD=2,AC=,BC=4,∴,∴△ECA∽△DCB,∴.(3)2或2.①如图3,过点D作DF⊥BC交BC的延长线于点F,∵DE∥AC,∴∠DCA=∠EDC=90°,∵∠ACB=30°,∴∠DCF=60°,∵DC=2,∴CF=1,DF=,∴BF=1+4=5,∴==2;②如图4,过点D作DF⊥BC交BC于点F,同理可得,CF=1,DF=,∴BF=3,∴BD==2.故BD的长为2或2.15、(1)问题发现如图1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∠BCD的度数是;线段BD,AC之间的数量关系是.(2)类比探究在Rt△ABC中,∠BAC=45°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?(3)拓展延伸如图3,在Rt△ABC中,AB=2,AC=4,∠BAC=90°,若点P满足PB=PC,∠BPC=90°,请直接写出线段AP的长度.解:(1)∵在Rt△ABC中,∠BAC=30°,∠ABC=90°,∴∠ACB=60°,∵将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∴∠CAD=α=2∠BAC=60°,AC=AD,∴△ACD是等边三角形,∴∠ACD=60°,∴∠BAD=90°,∠BCD=120°,∵在Rt△ABC中,AB=AC,∴BD2=AB2+AD2=(AC)2+AC2=AC2,即线段BD,AC之间的数量关系是BD=AC;故答案为:120°,BD=AC;(2)不成立,理由:在Rt△ABC中,∠BAC=45°,∠ABC=90°,∴∠ACB=45°,∵将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∴∠CAD=α=2∠BAC=90°,AC=AD,∴△ACD是等腰直角三角形,∴∠ACD=45°,∴∠BCD=90°,∵在Rt△ABC中,AB=BC=AC,在Rt△ACD中,CD=AC,∴BD2=BC2+CD2=(AC)2+(AC)2=AC2,即线段BD,AC之间的数量关系是BD=AC;(3)如图3,作PE⊥AC于E,连接PA,∵在Rt△ABC中,AB=2,AC=4,∠BAC=90°,∴BC==2,∵∠BPC=90°,PB=PC,∴PB=PC=,∠PBC=∠PCB=45°,∵∠BAC=∠BPC=90°,∴点B,C,P,A四点共圆,∴∠PAE=45°,∴△PAE是等腰直角三角形,∴PE=AE,∴CE=4﹣AE,∵PE2+CE2=PC2,∴PE2+(4﹣PE)2=10,∴PE=1,PE=3,∴PA=或PA=3;故线段AP的长度为或3.16、综合与实践问题情境数学活动课上,老师让同学们以“三角形平移与旋转”为主题开展数学活动,△ACD和△BCE是两个等边三角形纸片,其中,AC=5cm,BC=2cm.解决问题(1)勤奋小组将△ACD和△BCE按图1所示的方式摆放(点A,C,B在同一条直线上),连接AE,BD.发现AE=DB,请你给予证明;(2)如图2,创新小组在勤奋小组的基础上继续探究,将△BCE绕着点C逆时针方向旋转,当点E恰好落在CD边上时,求△ABC的面积;。
类型17 图形旋转与剪纸类问题(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)
图形旋转与剪纸类问题1.如图所示,欢欢首先将一张正方形的纸片按(2)、(3)、(4)的顺序三次折叠,然后沿第三次折痕剪下一个四边形,这个四边形一定是()A.平行四边形B.矩形C.菱形D.正方形2.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2B.4C.8D.103.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A.B.C.D.4.正方形ABCD与正八边形EFGHKLMN的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合,…,按这样的方式将正方形ABCD旋转2013次后,正方形ABCD中与正八边形EFGHKLMN 重合的边是()A.AB B.BC C.CD D.DA5.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK 边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0B.0.8C.2.5D.3.46.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.57.如图1,四边形ABCD是边长为3的正方形,长方形AEFG的宽AE=,长EF=.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图2),这时BD与MN相交于点O.则在图2中,D、N两点间的距离是()A.5B.3C.D.78.如图,矩形ABCD的对角线交于点O,正方形OEFG的一条边OE在直线OD上,OG 与CD交于点M,正方形OEFG绕点O逆时针旋转,OG′,OE′分别与CD,AD交于点P,Q.已知矩形长与宽的比值为2,则在旋转过程中PM:DQ=()A.1:3B.2:3C.1:2D.3:49.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°10.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对11.如图,⊙O的半径为3,AB为圆上一动弦,以AB为边作正方形ABCD,求OD的最大值.12.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,以下四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正确的是.13.如图,在Rt△ABC中,∠ACB=90°,AC=16,将Rt△ABC绕点B顺时针旋转一定角度后得到Rt△A1B1C1,连接CC1,AA1,过点A作AM⊥AC交A1C1于点D,若CC1=AA1,BC1=C1D,且AD<BC,则AD的长为.14.如图,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF现将小长方形CEFD绕点C顺时针旋转至长方形CE'F'D'旋转角为α,当点D'恰好落在EF边上时,旋转角α的大小为°.15.如图,在△ABC中,AB=AC,将线段BC绕点B逆时针旋转60°得到线段BD,∠BCE =150°,∠ABE=60°,连接DE,若∠DEC=45°,则∠BAC的度数为.16.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是.(填入正确的序号)17.已知:在Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上一点,连结CD,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE,BE.(1)依题意补全图形;(2)若∠ACD=α,用含α的代数式表示∠DEB.(3)若△ACD的外心在三角形的内部,请直接写出α的取值范围.18.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,点C、D分别在边OA、OB上,求证:OH=AD且OH⊥AD;(2)将△COD绕点O旋转到图2所示位置时,线段OH与AD又有怎样的关系,证明你的结论.(3)如图3所示,当AB=8,CD=2时,求OH长的取值范围.19.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(不与点B、点C重合),将线段AD绕A逆时针旋转90°得到线段AE,作射线BA与射线CE,两射线交于点F.(1)若点D在线段BC上,如图1,请直接写出CD与EF的关系.(2)若点D在线段BC的延长线上,如图2,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,连接DE,G为DE的中点,连接GF,若tan∠AEC=,AB=,求GF的长.20.如图,在△ABC中,∠ABC=90°,∠ACB=60°,将△ABC绕点C逆时针旋转60°得到△DGC,再将△ABC沿AB所在直线翻折得到△ABE,连接AD,BG,延长BG交AD于点F,连接CF.(1)求证:四边形ABCF是矩形;(2)若GF=2,求四边形AECD的面积.试题解析1.如图所示,欢欢首先将一张正方形的纸片按(2)、(3)、(4)的顺序三次折叠,然后沿第三次折痕剪下一个四边形,这个四边形一定是()A.平行四边形B.矩形C.菱形D.正方形解:由图形可得出:剪掉的三角形是4个直角三角形,故得到一个菱形.故选:C.2.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2B.4C.8D.10解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.3.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A.B.C.D.解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.故选:A.4.正方形ABCD与正八边形EFGHKLMN的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合,…,按这样的方式将正方形ABCD旋转2013次后,正方形ABCD中与正八边形EFGHKLMN 重合的边是()A.AB B.BC C.CD D.DA解:由题意可得出:正方形每旋转8次则回到原来位置,∵2013÷8=251…5,∴正方形旋转251周后,再旋转5次,即正方形旋转4次一周后,BC与ML重合.故选:B.5.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK 边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0B.0.8C.2.5D.3.4解:如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=+,∴0≤d≤+,即0≤d≤3.1,故点B,O间的距离不可能是3.4,故选:D.6.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,故选C.7.如图1,四边形ABCD是边长为3的正方形,长方形AEFG的宽AE=,长EF=.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图2),这时BD与MN相交于点O.则在图2中,D、N两点间的距离是()A.5B.3C.D.7解:连接AN、DN,AN交BD于P点,如图2,∵长方形AEFG绕点A顺时针旋转15°得到长方形AMNH,∴AM=AE=,MN=EF=,∠MAB=15°,在Rt△AMN中,∵AM=,MN=,∴AN==7,∴∠ANM=30°,∠MAN=60°,∴∠NAB=∠NAM﹣∠BAM=45°,∴点P为正方形ABCD的对角线的交点,即点C在AN上,∴DP=AP=AB=×3=3,BD⊥AN,∴PN=AN﹣AP=4,在Rt△PDN中,DN===5.故选:A.8.如图,矩形ABCD的对角线交于点O,正方形OEFG的一条边OE在直线OD上,OG 与CD交于点M,正方形OEFG绕点O逆时针旋转,OG′,OE′分别与CD,AD交于点P,Q.已知矩形长与宽的比值为2,则在旋转过程中PM:DQ=()A.1:3B.2:3C.1:2D.3:4解:由旋转的性质得∠MOP=∠DOQ,∵∠DMO+∠MDO=∠MDO+∠QDO=90°,∴∠PMO=∠QDO,∴△OPM∽△DOQ,∴,∵CD∥AB,∴∠MDO=∠ABD,∴tan∠MDO=tan∠ABD,即==,∴PM:DQ=,故选:C.9.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°解:设点E第一次落在圆上时的对应点为E′,连接OA、OB、OE′,如图,∵五边形ABCDE为正五边形,∴∠EAB=108°,∵正五边形ABCDE绕点A逆时针旋转,点E第一次落在圆上E′点,∴AE=AE′=3,∵OA=AB=OB=OE′=3,∴△OAE′、△OAB都为等边三角形,∴∠OAB=∠OAE′=60°,∴∠E′AB=120°,∴∠EAE′=12°,∴当点E第一次落在圆上时,则点C转过的度数为12°.故选:A.10.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B。
(精品资料)2020年中考数学压轴题突破专题十 图形变换综合题探究专题解析版
(精品资料)2020年中考数学压轴题突破专题十图形变换综合题探究专题类型一【图形的平移】【典例指引1】1.两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC =DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图①中,通过观察、测量,猜想直接写出AB与AP满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想写出BQ 与AP满足的数量关系和位置关系,并说明理由.类型二【图形的轴对称--折叠】【典例指引2】将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(3,0),点B(0,4),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着折叠该纸片,得点B的对应点B′.(∠)如图∠,当∠BOP=30°时,求点B′的坐标;(∠)如图∠,当点B′落在x轴上时,求点P的坐标;(∠)当PB′与坐标轴平行时,求点B′的坐标(直接写出结果即可).【举一反三】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F 处,过点F作FG∠CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.类型三【图形的旋转】【典例指引3】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE∠AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.∠在旋转过程中,当∠OAG′是直角时,求α的度数;∠若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【举一反三】(1)(问题发现)如图1,在Rt∠ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.类型四【图形的位似】【典例指引4】如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将∠OAB按相似比2:1放大,得到∠OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出∠OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).∠连接AP,若2AP>OQ,求m的取值范围;∠当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.∠Q′P′M∠∠QB′N,则线段NQ的长度等于.【举一反三】如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的∠ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把∠ABC向下平移5格后得到∠A1B1C1,写出点A1,B1,C1的坐标,并画出∠A1B1C1;(2)把∠ABC绕点O按顺时针方向旋转180°后得到∠A2B2C2,写出点A2,B2,C2的坐标,并画出∠A2B2C2;(3)把∠ABC以点O为位似中心放大得到∠A3B3C3,使放大前后对应线段的比为1∠2,写出点A3,B3,C3的坐标,并画出∠A3B3C3.【新题训练】1.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)写出点B的坐标;(3)将∠ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形∠A′B′C′;(4)计算∠A′B′C′的面积﹒(5)在x轴上存在一点P,使P A+PC最小,直接写出点P的坐标.2.如图(1),在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),将线段AB 先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD ,连接AC ,BD ,构成平行四边形ABDC . (1)请写出点C 的坐标为 ,点D 的坐标为 ,S 四边形ABDC ; (2)点Q 在y 轴上,且S ∠QAB =S 四边形ABDC ,求出点Q 的坐标;(3)如图(2),点P 是线段BD 上任意一个点(不与B 、D 重合),连接PC 、PO ,试探索∠DCP 、∠CPO 、∠BOP 之间的关系,并证明你的结论.3.(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图∠,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形,,,则拼得的四边形的周长是_____.(操作发现)将图∠中的沿着射线方向平移,连结、、、,如图∠.当的平移距离是的长度时,求四边形的周长. (操作探究)将图∠中的继续沿着射线方向平移,其它条件不变,当四边形是菱形时,将四边形沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的ABCD 3AD =4BD =ABCD ABE △DB AD BC AF CE ABE △12BE AECF ABE △DB ABCD ABCD矩形周长.4.如图,在的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,是一个格点三角形.在图中,请判断与是否相似,并说明理由;在图中,以O 为位似中心,再画一个格点三角形,使它与的位似比为2:1在图中,请画出所有满足条件的格点三角形,它与相似,且有一条公共边和一个公共角.5.已知:是的高,且. (1)如图1,求证:;(2)如图2,点E 在AD 上,连接,将沿折叠得到,与相交于点,若BE =BC ,求的大小;(3)如图3,在(2)的条件下,连接,过点作,交的延长线于点,若,,求线段的长.图1. 图2. 图3.6.如图,长方形在平面直角坐标系的第一象限内,点在轴正半轴上,点在轴的正半轴上,点、分别是、的中点,,点的坐标为.66⨯ABC V ()1①ABC V DEF V ()2②ABC V ()3③ABCV AD ABC ∆BD CD =BAD CAD ∠=∠BE ABE ∆BE 'A BE ∆'A B AC F BFC ∠EF C CG EF ⊥EF G 10BF =6EG =CF OABC xOy A x C y D E OC BC 30∠=︒CDE E ()2,a(1)求的值及直线的表达式;(2)现将长方形沿折叠,使顶点落在平面内的点处,过点作轴的平行线分别交轴和于点,. ∠求的坐标;∠若点为直线上一动点,连接,当为等腰三角形,求点的坐标. (说明:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半) 7.如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB =OD ,OC =OA +AB ,AD =m ,BC =n ,∠ABD +∠ADB =∠ACB .(1)填空:∠BAD 与∠ACB 的数量关系为________; (2)求的值; (3)将∠ACD 沿CD 翻折,得到∠A ′CD (如图2),连接BA ′,与CD 相交于点P .若CD =,求PC 的长.8.如图,直线:y =﹣+4与x 轴、y 轴分别別交于点M 、点N ,等边∠ABC 的高为3,边BC 在x 轴上,将∠ABC 沿着x 轴的正方向平移,在平移过程中,得到∠A 1B 1C 1,当点B 1与原点O 重合时,解答下列问题:a DE OABC DE C 'C 'C y x BC F G 'C P DE 'PC 'PC D P 30°mn23x(1)点A1的坐标为.(2)求∠A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.9.已知:∠ABC和∠ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当∠ADE绕点A旋转时,如图1,则∠FGH的形状为,说明理由;(2)在∠ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在∠ADE旋转的过程中,若AB=a,AD=b(a>b>0),则∠FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.10.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN,B'E与AB交于点P.则P即为AB的三等分点,即AP:PB=2:1.解决问题(1)在图1中,若EF 与MN 交于点Q ,连接CQ .求证:四边形EQCM 是菱形; (2)请在图1中证明AP :PB =2:l . 发现感悟若E 为正方形纸片ABCD 的边AD 上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若=2.则= ;(4)如图3,若=3,则= ; (5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.11.在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.(∠)如图∠,当点落在边上时,求点的坐标; (∠)如图∠,当点落在线段上时,与交于点. ∠求证; ∠求点的坐标.(∠)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).DEAEAP BP DEAEAP BP AOBC (0,0)O (5,0)A (0,3)B A AOBC ADEF O B C D EF D BC D D BE AD BC H ADB AOB △△≌H K AOBC S KDE △S12.已知O 为直线MN 上一点,OP ∠MN ,在等腰Rt ∠ABO 中,,AC ∠OP 交OM 于C ,D 为OB 的中点,DE ∠DC 交MN 于E .(1) 如图1,若点B 在OP 上,则∠AC OE (填“<”,“=”或“>”);∠线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt ∠ABO 绕O 点顺时针旋转α(),如图2,那么(1)中的结论∠是否成立?请说明理由;(3) 将图1中的等腰Rt ∠ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;13.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想 图1中,线段与的数量关系是 ,位置关系是 ;(2)探究证明 把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸 把绕点在平面内自由旋转,若,,请直接写出面积的最大值.14.已知∠MAN =135°,正方形ABCD 绕点A 旋转.(1)当正方形ABCD 旋转到∠MAN 的外部(顶点A 除外)时,AM ,AN 分别与正方形ABCD 的边CB ,CD 的延长线交于点M ,N ,连接MN .90BAO ∠=︒045α︒<<︒∠如图1,若BM =DN ,则线段MN 与BM +DN 之间的数量关系是 ;∠如图2,若BM ≠DN ,请判断∠中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由; (2)如图3,当正方形ABCD 旋转到∠MAN 的内部(顶点A 除外)时,AM ,AN 分别与直线BD 交于点M ,N ,探究:以线段BM ,MN ,DN 的长度为三边长的三角形是何种三角形,并说明理由.15.已知:如图,是由一个等边∠ABE 和一个矩形BCDE 拼成的一个图形,其点B ,C ,D 的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E 点和A 点的坐标;(2)试以点B 为位似中心,作出位似图形A 1B 1C 1D 1E 1,使所作的图形与原图形的位似比为3∠1; (3)直接写出图形A 1B 1C 1D 1E 1的面积.16.如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为,P 是半径OB 上一动点,Q 是上的一动点,连接PQ .发现:∠POQ =________时,PQ 有最大值,最大值为________;思考:(1)如图2,若P 是OB 中点,且QP ∠OB 于点P ,求的长; (2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B ′恰好落在OA 的延长线上,求阴影部分面积; 探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB ′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.»AB »AB »BQ17.(本小题10分) 将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点A (),点B (0,1),点O (0,0).过边OA 上的动点M (点M 不与点O ,A 重合)作MN ∠AB 于点N ,沿着MN 折叠该纸片,得顶点A 的对应点A ′.设OM =m ,折叠后的∠A ′MN 与四边形OMNB 重叠部分的面积为S .图∠(∠)如图∠,当点A ′与顶点B 重合时,求点M 的坐标;(∠)如图∠,当点A ′落在第二象限时,A ′M 与OB 相交于点C ,试用含m 的式子表示S ; (∠)当S =时,求点M 的坐标(直接写出结果即可). 18.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中,(1)如图2,当时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当时,EP 与EQ 满足的数量关系式为 ,其241CEEA =2CEEA=CEm EA=中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若且AC =30cm ,连接PQ ,设∠EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应∠EPQ 的个数有哪些变化,求出相应S 的值或取值范围.类型一 【图形的平移】【典例指引1】1.两个三角板ABC ,DEF 按如图所示的位置摆放,点B 与点D 重合,边AB 与边DE 在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C =∠DEF =90°,∠ABC =∠F =30°,AC =DE =4 cm .现固定三角板DEF ,将三角板ABC 沿射线DE 方向平移,当点C 落在边EF 上时停止运动.设三角板平移的距离为x (cm ),两个三角板重叠部分的面积为y (cm 2). (1)当点C 落在边EF 上时,x =________cm ;(2)求y 关于x 的函数表达式,并写出自变量x 的取值范围;(3)设边BC 的中点为点M ,边DF 的中点为点N ,直接写出在三角板平移过程中,点M 与点N 之间距离的最小值.【答案】(1)10;(2)见解析;(3. 【解析】分析:(1)由锐角三角函数,得到BG 的长,进而得出GE 的长,又矩形的性质可求解;(2)分类讨论:①当0≤t <4时,根据三角形的面积公式可得答案;②当4≤t <8时,③当810x ≤≤时,根2CEEA=据面积的和差求解;(3)根据点与直线上所有点的连线中垂线段最短,可得M 在线段NG 上,根据三角形的中位线,可得NG 的长,根据锐角三角函数,可得MG 的长,然后根据线段的和差求解. 详解:(1)如图: 作CG ⊥AB 于G 点.在Rt △ABC 中,由AC =4,∠ABC =30,得BC =tan 30ACo在Rt △BCG 中,BG =BC •cos 30°=6. 四边形CGEH 是矩形, CH =GE =BG +BE =6+4=10cm , 故答案为:10 .(2)①当04x ≤<时,如解图∵∠GDB =60°,∠GBD =30°, ∴DB =x ,DG =x ,BG =x ,重叠部分的面积y =DG ·BG =×x ×x =x 2 ②48x ≤<时,如解图BD =x ,DG =x ,BG =x ,BE =x -4,EH = (x -4)重叠部分的面积y =S △BDG -S △BEH =DG ·BG -BE ·EH ,即y =×x ×x - (x -4)× (x -4),化简得:2y x =+ ③当810x ≤≤时,如解图AC =4,BC =4,BD =x ,BE =x -4, EG = (x -4)重叠部分的面积y =S △ABC -S △BEG =AC ·BC -BE ·EG , 即y =×4×4- (x -4)× (x -4),化简得:2y x x =+综上所述,()222(04)88)810633x x y x x x x x x ⎧≤<⎪⎪⎪⎪=+-≤<⎨⎪⎪-++≤≤⎪⎪⎩ (3)【名师点睛】此题主要考查了几何变换综合,①利用锐角三角函数和矩形的性质,②利用三角形的面积,面积的和差,分类讨论是解题关键,以防遗漏,③利用垂线段最短,三角形的中位线定理,锐角三角函数解答即可.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC 的边BC 在直线l 上,AC ⊥BC 且AC =BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,EF ⊥FP 且EF =FP .(1)在图①中,通过观察、测量,猜想直接写出AB 与AP 满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP 沿直线l 向左平移到图②的位置时,EP 交AC 于点Q ,连接AP 、BQ .猜想写出BQ 与AP 满足的数量关系和位置关系,并说明理由.【答案】(1)AB =AP 且AB ⊥AP ,(2)BQ 与AP 所满足的数量关系是AP =BQ ,位置关系是AP ⊥BQ 【解析】分析:(1)根据等腰直角三角形性质得出AB =AP ,∠BAC =∠P AC =45°,求出∠BAP =90°即可;(2)求出CQ =CP ,根据SAS 证△BCQ ≌△ACP ,推出AP =BQ ,∠CBQ =∠P AC ,根据三角形内角和定理求出∠CBQ +∠BQC =90°,推出∠P AC +∠AQG =90°,求出∠AGQ =90°即可. 详解:(1)AB =AP 且AB ⊥AP 。
2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用) 第02讲 旋转问题专题解析版
硬核:狙击2020中考数学重点/难点/热点一、旋转的理解1. 将图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,如图所示;2. 旋转前后的两个图形全等,即旋转只改变图形的位置,不改变图形的大小与形;状如△AOB≌△A1OB1;3. 图形的旋转,本质上是图形上的点在同心圆上作同步运动;4. 以每组对应点和旋转中心为顶点的三角形相似,且都是等腰三角形,如等腰△AOA1∽等腰△BOB'1;5. 当旋转角为特殊角时,如60°、90°等,会出现特殊等腰三角形,如等边三角形、等腰直角三角形等;6. 当旋转角不大于90°时,对应线段所在直线的夹角等于旋转角,如AB与A1B1所在直线的夹角等于∠AOA1;7. 当旋转角不大于90时,两组对应点连线所在直线(如AA1与BB1)的夹角等于∠AOB。
图1 图2二、位似的理解1. 如果两个图形不仅相似,而且每组对应点的连线交于同一点,对应边互相平行或在同一条直线上,那么这两个图形叫做位似图形,这个交点叫位似中心,这时的相似比又称为位似比,如图2所示;2. 位似前后的两个图形相似,即位似不改变图形的形状,它可以将一个图形进行放大或缩小;3. 图形的位似,本质上是图形上的点在共顶点的直线上的同步运动。
旋转运用<1>:共顶点模型的旋转全等1. 如图1-1,△ABC绕点A旋转到△AB1C1,则有△ABB1≌△ACC1(SAS);2. 如图1-2,若△ABC与△AED式等边三角形,则△ABE≌△ACD(SAS);3. 如图1-3,若△ABC与△AED式等腰直角三角形,则△ABD≌△ACE(SAS);图1-1 图1-2 图1-3旋转运用<2>:角含半角旋转模型1. 如图2-1,在正方形ABCD中,若∠EBF=45°,将△BAE绕点B旋转至△BCG,则有①EF=AE+CF;②BE平分∠AEF;③BF平分教EFC.2. 如图2-2,在四边形ABCD中,若BA=BC,∠ABC+∠D=180°,且∠EBF=12∠ABC,图2-1则有①EF=AE+CF;②BE平分∠AEF;③BF平分教EFC.3. 如图2-3,在等腰Rt△ABC中,若交DAE=45°,可将△ABD绕点A旋转至△ACF,则有DE2=BD2+CE2;4. 如图2-4,在等腰Rt△ABC中,若交DAE=45°,可将△ABD绕点A旋转至△ACF,仍有DE2=BD2+CE2;5. 如图2-5,在等腰Rt△ABC中,若交DAE=135°,图2-2 可将△ABD绕点A旋转至△ACF,则有DE2=BD2+CE2;图2-3 图2-4 图2-51. 如图3-1,已知四边形ABCD中,∠BDC=∠BAC=90°,且DB=DC,则有AB+AC=2AD;2. 如图3-2,已知四边形ABCD中,∠BDC=∠BAC=90°,且DB=DC,则有AB-AC=2AD;图3-1 图3-23. 如图3-3,已知等边△ABC,且∠BPC=120°,则有PA=PB+PC;4. 如图3-4,已知等边△ABC,且∠BPC=30°,则有PA2=PB2+PC2;图3-3 图3-45. 如图3-5,已知等腰△ABC,且∠BAC=120°,且∠BPC=60°,则有PB+PC=3PA;6. 如图3-6,已知等腰△ABC,且∠BAC=120°,且∠BPC=120°,则有PC-PB=3PA;图3-5 图3-61. 如图4-1,已知等腰△ABC,AB=AC,将△ABD旋转至△ACE,则有△ADE∽△ABC;2. 如图4-2,若△ADE∽△ABC,则有△ADE∽△ABC;图4-1 图4-2旋转运用<5>:费马旋转模型1. 如图5-1,在△ABC中找一点P,使得AP+BP+CP的值最小,将△APC绕点A逆时针旋转60°至△AQE,则有AP+BP+CP=PQ+BP+QE≥BE,当且仅当B、P、Q、E四点共线时取得最小值为BE,且此时有∠APB=∠BPC=∠APC=120°.图5-12. 如图5-2,等腰△ABC中,∠BAC=120°,P是△ABC内部一点,且AP=1,CP=3,∠APC=120°,求BP的长。
2020-2021中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)及答案
2020-2021中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)及答案一、旋转1.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标; (2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证△ADB ≌△AOB ; ②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】 【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中,∵A (5,0),B (0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC-=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(34)30334-当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.2.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE =∠DAF ,所以△FAD ≌△EAB ,因此BE 与DF 相等,延长DF 交BE 于G ,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF =90°,所以DF ⊥BE ; (2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD ∽△EAB ,所以DF =kBE ,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF =90°,所以DF ⊥BE ;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF =180°,所以DF 与BE 的夹角β=180°﹣α. 【详解】(1)DF 与BE 互相垂直且相等. 证明:延长DF 分别交AB 、BE 于点P 、G在正方形ABCD 和等腰直角△AEF 中 AD =AB ,AF =AE , ∠BAD =∠EAF =90° ∴∠FAD =∠EAB ∴△FAD ≌△EAB ∴∠AFD =∠AEB ,DF =BE ∵∠AFD+∠AFG =180°, ∴∠AEG+∠AFG =180°, ∵∠EAF =90°,∴∠EGF =180°﹣90°=90°, ∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE . 延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE = ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE∵△FAD ∽△EAB , ∴∠AFD =∠AEB , ∵∠AFD+∠AFH =180°, ∴∠AEH+∠AFH =180°, ∵∠EAF =90°,∴∠EHF =180°﹣90°=90°, ∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a . 延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE = ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE由△FAD ∽△EAB 得∠AFD =∠AEB ∵∠AFD+∠AFH =180° ∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°, ∴∠EAF+∠EHF =180° ∵∠EAF =α,∠EHF =β ∴a+β=180°∴β=180°﹣a 【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.3.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】 【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】(1)证明:∵ABC ∆是等边三角形, ∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆, ∴60CAE =︒,AC AE =. ∴ACE ∆是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆, ∴AF AD =,90DAF ∠=︒. ∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒. ∴四边形ADGF 是矩形. ∵AF AD =,∴四边形ADGF 是正方形. (4)如图,连接DE .∵四边形ADGF 是正方形, ∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ∆沿AE 折叠得到AME ∆, ∴MAE FAE ∠=∠,AF AM =. ∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =, ∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.4.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(3)13+12或1312;(4)PC 的最大值=3,PC 的最小值31. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OB COA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A 、C 、D 共线时,作OH ⊥AC 于H . 在Rt △COH 中,∵OC =1,∠COH =30°,∴CH =HD =12,OH=3.在Rt △AOH 中,AH =22OA OH -=13,∴BD =AC =CH +AH =113+.如图4中,当A 、C 、D 共线时,作OH ⊥AC 于H .易知AC =BD =AH ﹣CH 131- 综上所述:当A 、C 、D 三点共线时,BD 的长为1312或1312-; (4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.5.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD 的长,即可得△PMN 周长的最小值;当点D 在BA 延长线上时,BD 最大,PM 的值最大,此时求得△PMN 周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE ,又AB=AC ,AD=AE ,所以△ABD ≌△ADE ;(2)△PMN 是等边三角形.理由:∵点P ,M 分别是CD ,DE 的中点,∴PM=12CE ,PM ∥CE , ∵点N ,M 分别是BC ,DE 的中点,∴PN=12BD ,PN ∥BD , 同(1)的方法可得BD=CE ,∴PM=PN ,∴△PMN 是等腰三角形,∵PM ∥CE ,∴∠DPM=∠DCE ,∵PN ∥BD ,∴∠PNC=∠DBC ,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC ,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC ,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN 是等边三角形.(3)由(2)知,△PMN 是等边三角形,PM=PN=12BD , ∴PM 最大时,△PMN 周长最大,∴点D 在AB 上时,BD 最小,PM 最小,∴BD=AB-AD=2,△PMN 周长的最小值为3;点D 在BA 延长线上时,BD 最大,PM 最大,∴BD=AB+AD=10,△PMN 周长的最大值为15.故答案为△PMN 周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D 在AB 上时,BD 最小,PM 最小,△PMN 周长的最小;点D 在BA 延长线上时,BD 最大,PM 最大,△PMN 周长的最大值为15.6.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O , ()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD 重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=;②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3②【解析】【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论;(2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论;(3)借助①的结论即可得出结论.【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O ,∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=, ()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°,∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF ,∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S △OEE′=S △OBF ,∴S 四边形OE′BF =OEB S 3=V .【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.7.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,∴△DAF ≌△EAF (AAS ),∴AD=AE ,在△DAP 和△EAP 中,∵AD=AE ,∠DAP=∠EAP ,AP=AP ,∴△DAP ≌△EAP (SAS ),∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM ,∴DM FP MC PB=, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,AC BC=tan30°, ∴k=tan30°=3, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.8.把两个直角边长均为6的等腰直角三角板ABC 和EFG 叠放在一起(如图①),使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=+,236x=-(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.9.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.10.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题11.如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE 的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.【答案】(1)BE=CD.理由见解析;(2)△CHQ是等腰三角形;(3)2-x.【解析】试题分析:(1)根据等边三角形的性质可得AB=BC,CD=CE,∠ACB=∠ECD=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;(2)求出∠ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CHQ=30°,从而得到∠ACF=∠CHQ,判断出△CHQ是等腰三角形;(3)求出∠CGP=90°,然后利用∠ACF的余弦表示出CG,再根据等腰三角形的性质表示出CH,然后根据GH=CG-CH整理即可得解.试题解析:(1)BE=CD.理由如下:∵△ABC与△CDE是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB-∠ACE=∠ECD-∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴BE=AD;(2)∵旋转角为30°,∴∠BCF=30°,∴∠ACF=60°-30°=30°,∴∠CHQ=∠RQP-∠ACF=60°-30°=30°,∴∠ACF=∠CHQ,∴△CHQ是等腰三角形;(3)∠CGP=180°-∠ACF-∠RPQ=180°-30°-60°=90°,∴CG=CP•cos30°=(x+4),∵△CHQ是等腰三角形,∴CH=2•CQcos30°=2x•=x,∴GH=CG-CH=(x+4)-x=2-x.考点:几何变换综合题.12.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+3+3m,在Rt△EBH中,sin∠EBH=3+362246EHEB m==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,13.如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.【答案】(1)见解析;5π;(2)旋转中心P的坐标为(3,3)或(6,6).【解析】【分析】(1)依据旋转的方向、旋转角和旋转中心即可得到点A运动的路径为弧线,再运用弧长计算公式即可解答;(2)连接两对对应点,分别作出它们连线的垂直平分线,其交点即为所求.【详解】解:(1)点A运动的路径如图所示,出点A运动的路径长为229024π⨯⨯+=5π;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换及其作图,掌握旋转的性质、旋转角以及确定旋转中心的方法是解答本题的关键.14.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE ≌△C 1BF ,∴BE=BF(2)解:四边形BC 1DA 是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A 1=∠C 1=30°,∵∠ABA 1=∠CBC 1=30°,∴∠ABA 1=∠A 1,∠CBC 1=∠C ,∴A 1C 1∥AB ,AC ∥BC 1,∴四边形BC 1DA 是平行四边形.又∵AB=BC 1,∴四边形BC 1DA 是菱形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.15.如图,四边形ABCD 中,45ABC ADC ∠=∠=o ,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)判断ABC ∆的形状,并说明理由;(2)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.【答案】(1)ABC ∆是等腰直角三角形,理由详见解析;(222【解析】【分析】(1)利用旋转不变性证明A4BC 是等腰直角三角形.(2)证明ACDE 是等腰直角三角形,再在Rt △ADE 中,求出AE 即可解决问题.【详解】解:(1)ABC ∆是等腰直角三角形.理由:∵BC CA =,∴45CBA CAB ∠=∠=o ,∴90ACB ∠=o ,∴ACB ∆是等腰直角三角形.(2)如图:由旋转的性质可知:90DCE ACB ∠=∠=o ,3CD CE ==,BD AE =, ∴32DE =,45CDE CED ∠=∠=o ,∵45ADC ∠=o ,∴454590ADE ∠=+=o o o ,∴()222223222AE AD DE =+=+=,∴22BD AE ==.【点睛】本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型。
2020初中数学中考专题复习——图形变换旋转综合题解答题专项训练(附答案详解)
2020初中数学中考专题复习——图形变换旋转综合题解答题专项训练(附答案详解) 1.已知四边形ABCD 和四边形CEFG 都是正方形,且AB CE >.(1)如图1,连接,BG DE .求证:BG DE =;(2)如图2,将正方形CEFG 绕着点C 旋转到某一位置时恰好使得//CG BD ,BG BD =.求BDE ∠的度数;(3)在(2)的条件下,当正方形ABCD 的边长为2时,请直接写出正方形CEFG 的边长.2.如图,已知∠AOB =60°,在∠AOB 的平分线OM 上有一点C ,∠DCE =120°,当∠DCE 的顶点与点C 重合,它的两条边分别与直线OA 、OB 相交于点D 、E .(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE+OD 与OC 的数量关系,并说明理由;(2)由(图1)的位置将∠DCE 绕点C 逆时针旋转θ角(0<θ<90°),线段OD 、OE 与OC 之间又有怎样的数量关系?请写出你的猜想,并说明理由.3.如图,E 是正方形ABCD 申CD 边上任意一点.(1)以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形;(2)在BC 边上画一点F ,使△CFE 的周长等于正方形ABCD 的周长的一半,请简要说明你取该点的理由.4.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.5.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.6.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.7.点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =65°,将一直角三角板的直角顶点放在点O 处.(1)如图①,将三角板MON 的一边ON 与射线OB 重合时,则∠MOC = ;(2)如图②,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的角平分线,求旋转角∠BON 和∠CON 的度数;(3)将三角板MON 绕点O 逆时针旋转至图③时,∠NOC =14∠AOM ,求∠NOB 的度数.8.如图1,长方形纸片ABCD 的两条边AB 、BC 的长度分别为a 、b (0)a b <<,小明它沿对角线AC 剪开,得到两张三角形纸片(如图2),再将这两张三角纸片摆成如图3的形状,点A 、B 、D 、E 在同一条直线上,且点B 与点D 重合,点B 、F 、C 也在同一条直线上.(1)将图3中的△ABC 沿射线AE 方向平移,使点B 与点E 重合,点A 、C 分别对应点M 、N ,按要求画出图形,并直接写出平移的距离;(用含a 或b 的代数式表示) (2)将图3中的△DEF 绕点B 逆时针方向旋转60°,点E 、F 分别对应点P 、Q ,按要求画出图形,并直接写出∠ABQ 的度数;(3)将图3中的△ABC 沿BC 所在直线翻折,点A 落在点G 处,按要求画出图形,并直接写出GE 的长度.(用含a 、b 的代数式表示)9.(1)问题发现如图①,在Rt △ABC 中,∠A =90°,AB =kAC ,点D 是AB 上一点,DE ∥BC . 填空:BD ,CE 的数量关系为 ;位置关系为 ;(2)类比探究如图②,将△ADE绕着点A顺时针旋转,旋转角为α(0°<α≤90°),连接BD,CE,请问(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.(3)拓展延伸在(2)的条件下,将△ADE绕点A顺时针旋转,旋转角为α,直线BD,CE交于点F,若AC=1,AB=3,当∠ACE=15°时,请直接写出BF的长.10.如图,在△ABC中,∠ACB=90°,AC=BC,以C为顶点作等腰直角三角形CMN.使∠CMN=90°,连接BN,射线NM交BC于点D.(1)如图1,若点A,M,N在一条直线上,①求证:BN+CM=AM;②若AM=4,BN=32,求BD的长;(2)如图2,若AB=4,CN=2,将△CMN绕点C顺时针旋转一周,在旋转过程中射线NM交AB于点H,当三角形DBH是直角三角形时,请你直接写出CD的长.11.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.12.在△ABC和△ADE中AC=BC,AE=DE , ∠ACB=∠AED=90° , 点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=32,BE=4 ,求EF的长(2)求证:CE=2EF(3)将图1中的△ADE绕点A顺时针旋转,使△AED的一边AE恰好与△ABC的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.13.如图,AB是⊙O的直径,点C是⊙O上一点,»»AC BC,点D是AB上一点(点D与A,B不重合),连接CD.(1)用尺规作图,线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC 于点F,连接BE;(保留作图痕迹,不写作法.)(2)当AD=BF时,求∠BEF的度数.(3)求证:AD2+BD2=2CD2.14.在矩形ABCD中,AB=3,BC=2,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0°<α<180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.(1)如图①,当点E落在DC边上时,直写出线段EC的长度为;(2)如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,①求证:△ACD≌△CAE;②直接写出线段DH的长度为.(3)如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.15.边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =23(1)如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)16.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每2秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果)17.如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系.(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转a度(0<a<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.18.在△ABC中,AB=AC,在BC边上有两动点D、E,满足2∠DAE=∠BAC,将△AEC 绕A旋转,使得AC与AB重合,点E落到点E’.(1)求证:∠DAE’=∠DAE;(2)当∠BE’D=20°时,求∠DEA的度数;(3)当BD=1,EC=2,△BE’D又为直角三角形时,求∠BAC的度数.19.ABC ∆是等边三角形,点P 在BC 的延长线上,以P 为中心,将线段PC 逆时针旋转n°(0180n <<)得线段PQ ,连接AP ,BQ .(1)如图,若PC AC =,画出当//BQ AP 时的图形,并写出此时n 的值;(2)M 为线段BQ 的中点,连接PM .写出一个n 的值,使得对于BC 延长线上任意一点P ,总有12MP AP =,并说明理由. 20.操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E 、F 分别在正方形的边CB 、CD 上,连接AF .取AF 中点M ,EF 的中点N ,连接MD 、MN .(1)连接AE ,求证:△AEF 是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD 、MN 的数量关系和位置关系,得出结论. 结论1:DM 、MN 的数量关系是 ;结论2:DM 、MN 的位置关系是 ;拓展与探究:(3)如图2,将图1中的直角三角板ECF 绕点C 顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.21.已知:如图1,OM 是∠AOB 的平分线,点C 在OM 上,OC =5,且点C 到OA 的距离为3.过点C 作CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E ,易得到结论:OD +OE 等于多少;(1)把图1中的∠DCE 绕点C 旋转,当CD 与OA 不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE 绕点C 旋转,当CD 与OA 的反向延长线相交于点D 时: ①请在图3中画出图形;②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD 、OE 之间的数量关系,不需证明.22.如图①,在ABC ∆中,2AB AC ==,120BAC ∠=︒,点D 、E 分别是AC 、BC 的中点,连接DE .(1)在图①中,AB BC的值为______;AD BE 的值为______.(2)若将CDE ∆绕点C 逆时针方向旋转得到11CD E ∆,点D 、E 的对应点为1D 、1E ,在旋转过程中11AD BE 的大小是否发生变化?请仅就图②的情形给出证明. (3)当CDE ∆在旋转一周的过程中,A ,1D ,1E 三点共线时,请你直接写出线段1BE 的长.23.如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1). (1)将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.24.(1)解方程:x 2﹣5x ﹣6=0(2)如图,△ABC 中∠C =90°①将△ABC 绕A 点逆时针旋转90°,画出旋转后的三角形△AB ′C ′;②若BC =3,AC =4,B 点旋转后的对应是B ′,求¼BB' 的长25.如图,已知点 D 是线段 BC 上一点,AB AC =,AD AE =,BAC DAE 90∠∠==o .(1)线段 AB 绕点 逆时针旋转 °可与线段 AC 重合.(2)若 BAD 70∠=o ,则 CAE ∠= °. (3)若 EC 4=,BD 2DC =,则 BC = .26.在等边 ABC V 中,D 是边 AC 上一点,连接 BD ,将 BCD V 绕点 B 逆时针旋转 60o ,得到 BAE V ,连接 ED ,若 BC 5=,BD 4=,有下列结论:① AE BC P ;② ADE BDC ∠∠=;③ BDE V 是等边三角形;④ ADE V 的周长是 9.其中,正确结论的个数是 ()n nA .1B .2C .3D .427.如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=2OD ,OE=2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE .(1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.28.正方形ABCD 和正方形AEFG 的边长分别为2和22,点B 在边AG 上,点D 在线段EA 的延长线上,连接BE .(1)如图1,求证:DG ⊥BE ;(2)如图2,将正方形ABCD 绕点A 按逆时针方向旋转,当点B 恰好落在线段DG 上时,求线段BE 的长.29.如图,在Rt ABC ∆中,90C ∠=︒,35CAB ∠=︒,7BC =.线段AD 由线段AC 绕点A 按逆时针方向旋转125︒得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .(1)求DAE ∠的大小;(2)求DE 的长.30.如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA ,PB 与直线MN 重合,且三角板PAC 与三角板PBD 均可绕点P 逆时针旋转。
2020中考数学压轴题旋转问题带答案
旋转问题(中考高分必备)考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质-对应线段、对应角的大小不变,对应线段的夹角等于旋转角。
注意旋转过程中三角形与整个图形的特殊位置。
一、直线的旋转1、(2009 年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,MN 4,MA 1,MB 1.以A 为中心顺时针旋转点M,以B 为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB x .(1)求x 的取值范围;(2)若△ ABC为直角三角形,求x 的值;第 1 题)(3)探究:△ ABC的最大面积?2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l 从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点 D.过点C作CE∥ AB交直线l 于点E,设直线l 的旋转角为α.(1)_____________ ①当α= ________________________________________ 度时,四边形EDBC是等腰梯形,此时AD的长为_____________________________________ ;②当α= _______ 度时,四边形EDBC是直角梯形,此时AD的长为____ ;(2)当α =90°时, 判断四边形EDBC是否为菱形,并说明理由.解:(1)①当四边形EDBC 是等腰梯形时,∠ EDB= ∠B=60 °,而∠ A=30 °,根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1;②当四边形EDBC 是直角梯形时,∠ ODA=90 °,而∠ A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5 .(2)当∠α=90°时,四边形EDBC 是菱形.∵∠α =∠ACB=90 °,∴BC‖ED,∵CE‖AB,∴四边形EDBC 是平行四边形.在Rt△ABC 中,∠ ACB=90 °,∠ B=60 °,BC=2 ,∴∠ A=30 度,∴AB=4 ,AC=2 ,∴ AO= = .在Rt△AOD 中,∠ A=30 °,∴AD=2 ,∴BD=2 ,∴ BD=BC .又∵四边形 EDBC 是平行四边形, ∴四边形 EDBC 是菱形.3、(2009 年北京市)在Y ABCD 中,过点 C 作CE ⊥CD 交AD 于点E,将线段 EC 绕点E 逆时针旋转 90o 得到线段EF (如 图 1)(1)在图 1 中画图探究:①当 P 为射线 CD 上任意一点( P 1不与 C 重合)时,连结 EP 1绕点 E 逆时针旋转 90o 得到线段 EC 1. 判断直线 FC 1与直线 CD 的位置关系,并加以证明;②当 P 2为线段 DC 的延长线上任意一点时,连结 EP 2,将线段 EP 2绕点 E 逆时针旋转 90o 得到线段 EC 2. 判断直线 C 1C 2与直线 CD 的位置关系,画出图形并直接写出你的结论4 (2)若 AD=6, tanB= 4, AE=1,在①的条件下,设 CP 1= x ,S VP 1FC 1= y ,求 y 与x 之间的函数 3关系式,并写出自变量 x 的取值范围 . 提示:(1)运用三角形全等,(2)按 CP=CE=4将 x 取值分为两段分类讨论;发现并利用好 EC 、EF 相等且垂直。
2020初中数学中考专题复习——图形变换旋转综合题专项训练10(附答案详解)
2020初中数学中考专题复习——图形变换旋转综合题专项训练10(附答案详解)1.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABDC,则OD的最小值是()A.2 B.455C.23﹣2 D.42﹣42.如图,平面直角坐标系中,矩形OABC绕原点O逆时针旋转30°后得到矩形OA′B′C′,A′B′与BC交于点M,延长BC交B′C′于N,若A(3,0),C(0,1),则点N的坐标为()A.(333-,1)B.(23-,1)C.(32-,1)D.(13-,1)3.如图,直线m,n相交于O,所夹的锐角是53°,点P,Q分别是直线m,n上的点,将直线m,n按照下面的程序操作,能使两直线平行的是( )A.将直线m以点O为中心,顺时针旋转53° B.将直线n以点Q为中心,顺时针旋转53°C.将直线m以点P为中心,顺时针旋转53°D.将直线m以点P为中心,顺时针旋转127°4.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△ADE的周长为()A .19B .20C .27D .305.如图,在等边△ABC 中,点O 在AC 上,且AO =3,CO =6,点P 是AB 上一动点,连接OP,将线段OP 绕点O 逆时针旋转60°得到线段OD.要使点D 恰好落在BC 上,则AP =( )A .6或4.5B .6C .3D .4.56.已知△ABC 和△ADE 都是等腰直角三角形,90ACB ADE ∠=∠=︒,22AC =,1AD =,F 是BE 的中点.若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是( )A .424+2AF -≤≤ B .23AF ≤≤ C .423AF -≤≤ D .222+2AF -≤≤ 7.如图,在平面直角坐标系中,等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限将△ABC 绕点A 逆时针旋转75°得到△ADE ,点C 的对应点E 恰好落在y 轴的正半轴上,若点A 的坐标为(1,0),则边AB 的长为( )A 2B 3C .2D 58.如图,正方形ABCD 的对角线AC 与BD 相交于点O .将∠COB 绕点O 顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC ,AB 交于点M ,N ,连接DM ,CN ,MN ,下列四个结论:①∠CDM =∠COM ;②CN ⊥DM ;③△CNB ≌△DMC ;④AN 2+CM 2=MN 2;其中正确结论的个数是( )A .1B .2C .3D .49.如图,已知P 为正方形ABCD 外的一点,PA=1,PB=2,将△ABP 绕点B 顺时针旋转90°,使点P 旋转至点P′,且AP′=3,则∠BP′C 的度数为 ( )A .105°B .112.5°C .120°D .135°10.如图,在等边三角形ABC 中,AB=2,动点D 从B 开始沿BC 向点C 运动,到达点C 后停止运动,将△ABD 绕点A 旋转后得到△ACE ,则下列说法中,正确的是( )①DE 的最小值为1;②ADCE 的面积是不变的;③在整个运动过程中,点E 运动的路程为2;④在整个运动过程中,△ADE 的周长先变小后变大.A .①③④B .①②③C .②③④D .①②④ 11.已知△ABC 中,AB=AC, ∠A=40°,O 为边BC 的中点,把△ABC 绕O 顺时针旋转m (0<m <180)度后,如果点B 恰好落在初始△ABC 的边上,那么m=_________12.在直角三角形ABC 中,已知0090,3,30C BC A ∠==∠=,ABC ∆内有一点P ,则PA PB PC ++的最小值为_______________________。
2020-2021 备战中考数学(初中数学 旋转提高练习题)压轴题训练附详细答案
2020-2021 备战中考数学(初中数学旋转提高练习题)压轴题训练附详细答案一、旋转1.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.【答案】(1)BD,CE的关系是相等;(2)53417或203417;(3)1,7【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到PD AE =CDCE,进而得到PD=53417;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到PB BEAB BD=,进而得出PB=63434,PD=BD+PB=203417;(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴2234AC AE+=∵∠PDA=∠AEC ,∠PCD=∠ACE ,∴△PCD ∽△ACE , ∴PD CD AE CE =, ∴PD=53417; 若点B 在AE 上,如图2所示:∵∠BAD=90°,∴Rt △ABD 中,BD=2234AD AB +=,BE=AE ﹣AB=2, ∵∠ABD=∠PBE ,∠BAD=∠BPE=90°,∴△BAD ∽△BPE , ∴PB BE AB BD=,即334PB =, 解得PB=63434, ∴PD=BD+PB=34+63434=203417, 故答案为53417或203417; (3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.如图3所示,分两种情况讨论:在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小. ①当小三角形旋转到图中△ACB 的位置时,在Rt △ACE 中,2253-,在Rt△DAE中,DE=22+=,5552∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt△PDE中,PD=2250491-=-=,DE PE即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.故答案为1,7.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.3.如图1.在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,AB+BP=9,CE=33,求AB的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=4,AB=8时,根据此图求PA+PB+PC的最小值.【答案】⑴①见解析,②AB=6;⑵7.【解析】分析:(1)①根据题意补全图形即可;②连接BD、CD.根据平移的性质和∠ACB=90°,得到四边形BCAD是矩形,从而有CD=-,由勾股定理求解即可;AB,设CD=AB=x,则PB=DE=9x(2)当C、P、M、N四点共线时,PA+PB+PC最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE ,∴BC ∥AD 且BC =AD ,PB =DE .∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -,DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE ,∴222CE DE CD +=,∴()()222339x x +-=, ∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN ≌△APB ,∴PB =MN .易得△APM 、△ABN 都是等边三角形,∴PA =PM ,∴PA +PB +PC =PM +MN +PC =CN ,∴BN =AB =8,∠BNA =60°,∠PAM =60°,∴∠CAN =∠CAB +∠BAN =60°+60°=120°,∴∠CBN =90°.在Rt △ABC 中,易得:22228443BC AB AC --=∴在Rt △BCN 中,22486447CN BC BN =+=+=点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.4.如图(1)所示,将一个腰长为2等腰直角△BCD 和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED 绕点C 顺时针旋转至△CE’D’,旋转角为a .(1)如图(2),旋转角a =30°时,点D ′到CD 边的距离D’A =______.求证:四边形ACED ′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.5.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=42,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB=42,∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE=3CE=23,∴EF=CE+BE=2+23,∴DE=2=2232+=2+6.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.6.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.7.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①B E=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.8.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.9.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.10.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.11.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM =BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是________________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.【答案】(1)①BD=CE;②AM=AN,∠MAN=∠BAC 理由如下:∵在图①中,DE//BC,AB=AC∴AD="AE."在△ABD与△ACE中∴△ABD≌△ACE.∴BD=CE,∠ACE=∠ABD.在△DAM与△EAN中,∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN,∠MAN=∠BAC.(2)AM=kAN,∠MAN=∠BAC.【解析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.12.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.13.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.14.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB,∴∠A CC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。
2020年九年级数学中考三轮冲刺复习 :《图形旋转综合》 练习题
中考三轮冲刺复习:《图形旋转综合》练习1.在平面直角坐标系xOy中,已知A(4,0)、B(1,3),直线l是绕着△OAB的顶点A 旋转,与y轴相交于点P,探究解决下列问题:(1)如图1所示,当直线l旋转到与边OB相交时,试用无刻度的直尺和圆规确定点P 的位置,使顶点O、B到直线l的距离之和最大(保留作图痕迹);(2)当直线l旋转到与y轴的负半轴相交时,使顶点O、B到直线l的距离之和最大,请直接写出点P的坐标是.(可在图2中分析)2.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为.3.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,将△ABC绕点C逆时针旋转90°后得到△A1B1C,再将△A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2与AC相交于点D.(1)判断四边形A1A2B2B1的形状,并说明理由;(2)求A2C的长度.4.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.连接QP并延长,分别交AB、CD于点M,N.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,已知PM=QN;若MN的最小值为,求菱形ABCD的面积.5.四边形ABCD是正方形,PA是过正方形顶点A的直线,作DE⊥PA于E,将射线DE绕点D 逆时针旋转45°与直线PA交于点F.(1)如图1,当∠PAD=45°时,点F恰好与点A重合,则的值为;(2)如图2,若45°<∠PAD<90°,连接BF、BD,试求的值,并说明理由.6.如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.7.(1)如图,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直线交于点F,求∠BFC的度数;(2)在(1)的基础上,若∠BAC每秒扩大10°,且在变化过程中∠ABC与∠ACB始终保持是锐角,经过t秒(0<t<14),在∠BFC,∠BAC这两个角中,当一个为另一个的两倍时,求t的值;(3)在(2)的基础上,∠ABD与∠ACE的角平分线交于点G,∠BGC是否为定值,如果是,请直接写出∠BGC的值,如果不是,请写出∠BGC是如何变化的.8.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL.EN、GM之间满足的数量关系,并说明理由:(2)旋转至如图③位置,使点G落在BC的延长线上,DE交BC于点L,连接BE,求BE 的长.9.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,求∠EAD的度数;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)10.如图,点O是边长为4的等边三角形ABC的中心,∠EOF的两边与△ABC的边AB,BC 分别交于E、F,∠EOF=120°.(1)如图①,当E为AB中点时,求∠EOF与△ABC的边所围成的四边形OEBF的面积;(2)如图②,∠EOF绕点O旋转.在旋转过程中四边形OEBF的面积会改变吗?请说明理由.11.如图,BC为等边△ABM的高,AB=4,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD、BD.(1)问题发现:如图①,当点D在直线BC上时,线段BP与MD的数量关系为,∠DMB=;(2)拓展探究:如图②,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)问题解决:当∠BDM=30°时,请直接写出线段AP的长度.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)直线BD和CE的位置关系是;(2)猜测BD和CE的数量关系并证明;(3)设直线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,直接写出PB的长.13.在矩形ABCD中,AD>AB,连接AC,线段AC绕点A逆时针90°旋转得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交AD,AC于点G,M,连接EF.(1)依题意补全图形.(2)求证:EG⊥AD.(3)连接EC,交BF于点N,若AB=2,BC=4,设BM=a,NF=b,试比较(a+1)(b+1)与9+6之间的大小关系,并证明.14.已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.15.如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.16.问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC 是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题:(1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE ∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC =S△AEC,请你帮他们验证这一结论是否正确,并说明理由.17.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.18.如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C 顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.参考答案1.解:(1)如图1,过A点作直线l⊥OB于点F,l与y轴的交点即为所确定的P点位置.理由如下:如图2所示,过点O作OD⊥l于D,过点B作BC⊥l于C.∵S△OAB=FA•OD+FA•BC=FA(OD+BC)=3为定值.要使点O、B到直线l的距离之和最大,即OD+BC最大,只要使FA最小,∴过A点作直线l⊥OB于点F,此时FA即为最小值(此时,点F、D、C重合).∴l与y轴的交点即为所确定的P点位置;(2)由(1)的解题过程知,如图2所示,延长BA到G点,使BA=AG,连接OG,则S△OAG =S△OAB,旋转直线l至l⊥OG于点F,与y轴的交点即为所确定的P点,过点B作BE⊥OA于点E,∵B(1,3),A(4,0),∴EB=EA=3,过点G作GH⊥x轴于点H,∴△ABE≌△AGH(AAS),∴AH=GH=3,∴OH=7,∴tan∠HOG=,又∵直线l⊥OG于点F,∴∠OPA=∠HOG,∴tan∠OPA=tan∠HOG=,∴=,∴=,∴OP=,∴P(0,﹣),故答案为:(0,﹣).2.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCE=∠ABC=∠ABF=90°,∵GF⊥CF,GH⊥AB,∴∠F=∠GHB=∠FBH=90°,∴四边形FBHG是矩形,∵ED=EG,∠DEG=90°,∵∠DEC+∠FEG=90°,∠DEC+∠EDC=90°,∴∠FEG=∠EDC,∵∠F=∠DCE=90°,∴△DCE≌△EFG(AAS),∴FG=EC,EF=CD,∵CB=CD,∴EF=BC,∴BF=EC,∴BF=GF,(2)证明:延长BC到J,使得CJ=AI.∵DA=DC,∠A=∠DCJ=90°,AI=CJ,∴△DAI≌△DCJ(SAS),∴DI=DJ,∠ADI=∠CDJ,∴∠IDJ=∠ADC=90°,∵∠IDE=45°,∴∠EDI=∠EDJ=45°,∵DE=DE,∴△IDE≌△JDE(SAS),∴∠DEI=∠DEJ,∴DE平分∠IEC.(3)解:∵△IDE≌△JDE,∴IE=EJ,∵EJ=EC+CJ,AI=CJ,∴IE=EC=AI,∴△BIE的周长=BI+BE+IE=BI+AI+BE+EC=2AB=6.故答案为6.3.解:(1)四边形A1A2B2B1是平行四边形,理由:∵∠ACB=∠B2C=90°,∴B1C∥C2B2,∵再将△A1B1C沿CB向右平移,∴B1C=C2B2,122∴B 2B 1∥B 1C ,∴B 2B 1∥A 1A 2,∵再将△A 1B 1C 沿CB 向右平移,∴A 1B 1∥A 2B 2,∴四边形A 1A 2B 2B 1是平行四边形;(2)在Rt △ABC 中,BC ===3,由题意:BC =CB 1=C 2B 2=3,∴AB 1=1,∵B 1B 2∥BC ,∴△AB 1B 2∽△ACB , ∴, ∴, ∴B 1B 2=,∴B 1B 2=CC 2=,∴CA 2=A 2C 2﹣CC 2=4﹣=.4.(1)证明:四边形ABCD 是菱形,∴BC =DC ,AB ∥CD ,∴∠PBM =∠PBC =∠ABC =30°,∠ABC +∠BCD =180°,∴∠BCD =180°﹣∠ABC =120°由旋转的性质得:PC =QC ,∠PCQ =120°,∴∠BCD =∠DCQ ,∴∠BCP =∠DCQ ,在△BCP 和△DCQ 中,,∴△BCP ≌△DCQ (SAS );(2)解:过点C作CG⊥PQ于点G,连接AC,∵PC=QC,∠PCQ=120°,∴∠PCG=60°,PG=QG,∴PG=PC,∴PQ=PC.∵PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,∴PC=2,BC=2PC=4,∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴=4,∴菱形ABCD的面积=2S=2×4=8;△ABC5.解:(1)∵∠PAD=45°,DE⊥AP,∴∠DAE=∠EDA,∴AE=DE,∴AD=AE,∵四边形ABCD是正方形,∴AD=AB=BF=AE,∴=;(2)过点B作BH⊥AP于H,∵四边形ABCD是正方形,∴AD=AB,∠ABD=45°,∠BAD=90°,∴∠BAH+∠DAE=90°,又∵∠BAH+∠ABH=90°,∴∠ABH=∠DAE,又∵AD=AB,∠DEA=∠AHB=90°,∴△ADE≌△BAH(AAS),∴AE=BH,∵将射线DE绕点D逆时针旋转45°与直线PA交于点F,∴∠EDF=45°,∴∠EFD=45°=∠ABD,∴点A,点F,点B,点D四点共圆,∴∠BFH=∠ADB=45°,又∵BH⊥AP,∴∠FBH=∠BFH=45°,∴BH=FH,∴BF=BH=AE,∴==.6.解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵△ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴△CEN≌△CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接BD',∵将△CFD沿CF翻折得△CFD′,∴CD=CD',DF=D'F,∠CFD=∠CFD'=90°,又∵EF=BF,∠EFD=∠BFD',∴△EFD≌∠BFD'(SAS),∴BD'=DE,∴BD'=CD,∵当BD'取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.7.解:(1)∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠BDC=90°,∴∠A+∠ACE=90°,∠ACE+∠CFD=90°,∴∠CFD=∠A∴∠BFC=180°﹣∠DFC=180°﹣∠A=140°.(2)由题意∠A=40°+10°×t,∠BFC=180°﹣∠A=140°﹣10°×t.①当0<t<5时,∠BFC=2∠A,则有140﹣10t=2(40+10t),解得t=2.②当5<t<14时,∠A=2∠BFC,∴40+10t=2(140﹣10t),解得t=8,综上所述,当t=2或8时,∠BFC,∠A两个角中,一个角是另一个角的两倍.(3)如图,结论∠BGC是定值.理由:∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠ADB=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,∵BG平分∠ABD,CG平分∠ACB,∠ABG=∠ABD,∠ACG=∠ACE,∴∠ABG+∠ACG=(∠ABD+∠ACE)=∠ABD,∵∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∠G+∠GBC+∠GCB=180°,∴∠G=∠A+∠ABG+∠ACG=∠A+∠ABD=90°,∴∠BGC是定值.8.解:(1)DL=EN+GM.证明:如图1,过点G作GK∥BM,∵四边形EFGD是正方形,∴∠DEF=∠DGF=∠EDG=90°,DG=DE,∴∠EDN+∠NDG=∠NDG+∠DGK=90°,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,在平行四边形DKMG中,GM=KL,∵DL=DK+KL,∴DL=EN+GM;(2)如图2,过点E作EP⊥BG于点P,在Rt△DCG中,CD=6,DG=10,CG=8,∴tan∠CGD=,∵∠CDL=∠CGD,∴tan∠CDL=,在Rt△CDL中,LC=,DL=,∴BL=8﹣=,EL=10﹣=,同理,在Rt△ELP中,PE==2,PL==,∴BP==2,∴在Rt△BPE中,BE===2.9.解:(1)如图1中,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣50°=40°,∴∠EAD=∠EAC﹣∠DAC=50°﹣40°=10°.(2)如图2中,设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)如图3中,设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°﹣n﹣x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°﹣(180°﹣n﹣x)=n+x﹣90°,∵CF平分∠BCG,∴∠FCG=(180°﹣n),∵∠AFC=∠FCG﹣∠FAC=(180°﹣n)﹣x=90°﹣n﹣x,∴∠DFE﹣∠AFC=2n+2x﹣180°,∵2x+30°+n=180°,∴2x=150°﹣n,∴∠DFE﹣∠AFC=n﹣30°.(4)如图4中,设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°﹣(180°﹣n﹣y)=n+y﹣90°,∠AF1C=180°﹣y﹣n﹣(180°﹣n)=135°﹣y﹣n,∴∠D1F1A﹣∠AF1C=n+y﹣90°﹣(135°﹣y﹣n)=n+3y﹣225°,∵2y+30°+n=180°,∴y=75°﹣n,∴∠D1F1A﹣∠AF1C=n+y﹣90°﹣(135°﹣x﹣n)=n+225°﹣n﹣225°=n.10.解:(1)连接OB,∵点O是边长为4的等边三角形ABC的中心,∴∠ABO=∠CBO=30°,∵当E为AB中点时,∴AE=BE=2,OE⊥AB,∴∠BOE=60°,OE==,∵∠EOF=120°,∴∠BOF=60°,∴∠BFO=180°﹣30°﹣60°=90°,∴BF=CF=2,∴OF==,∴四边形OEBF的面积=×2×+×2×=;(2)不变,理由如下:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的中心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=4,∴BN=NC=2,∴ON=tan∠OBC•BN=×2=,∴S=BC•ON=,△OBC∵∠EOF=∠BOC=120°,∴∠EOF﹣∠BOF=∠BOC﹣∠BOF,即∠EOB=∠FOC,,∴△EOB ≌△FOC (ASA ),∴S △EOB =S △FOC ,∴S 四边形OEBF =S △OBC =.11.解:(1)∵△ABM 是等边三角形,BC ⊥AM ,∴∠ABC =ABM =30°,∵∠APD =60°,∴∠BAP =∠ABP =∠PAC =30°,∴AP =PB ,PC =AP ,∵AP =PC ,∴PC =PD ,∴PC =CD ,∵AC =MC ,∠ACP =∠MCD ,∴△APC ≌△MDC (SAS ),∴DM =AP ,∠CMD =∠PAC =30°,∴PB =DM ,∠BMD =60°+30°=90°,故答案为:相等;90°;(2)成立,证明如下:如图②,连接AD ,∵△AMB 是等边三角形,∴AB =AM ,由旋转的性质可得:AP =DP ,∠APD =60°,∴△AMB 是等边三角形,∴PA =PD =AD ,∴∠BAP =∠BAC +∠CAP ,∠MAD =∠PAD +∠CAP ,∠BAC =∠PAD , ∴∠BAP =∠MAD ,∵,∴△BAP≌△MAD(SAS),∴BP=MD,∠AMD=∠ABC=30°.∵∠BMA=60°,∴∠DMB=∠BMA+∠AMD=90°;(3)如图③,由(2)知,∠BMD=90°∵∠BDM=30°,∴∠DBM=60°,∴D在BA的延长线上,由旋转的性质可得:AP=DP,∠APD=60°,∴△AMB是等边三角形,∴PA=PD=AD,∵BM=4,∴BD=8,∴AP=AD=4;如图④,由(2)知,∠BMD=90°,∵∠BDM=30°,∵BM=4,∴DM=4,由旋转的性质可得:AP=DP,∠APD=60°,∴△AMB是等边三角形,∴PA=PD=AD,∠PAD=∠BAM=60°,∴∠PAB=∠DAM,∵AB=AM,∴△ABP≌△AMD(SAS),∴PB=DM=4,∵AC=2,BC=2,∴CP=6,∴AP==4综上所述,线段AP的长度为4或.12.解:(1)BD⊥CE,理由:延长CE交BD于P,∵将线段AD绕点A逆时针旋转90°,得到线段AE,∴AD=AE,∠DAE=90°,∵∠BAC=90°,AB=AC,∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠EAC,∴△DAB≌△EAC(SAS),∴∠ABD=∠ACE,∵∠ABC+∠ACB=∠ABP+∠ABC+∠PCB=90°,∴∠BPC=90°,∴BD⊥CE,故答案为:BD⊥CE;(2)BD和CE的数量是:BD=CE;由(1)知△ABD≌△ACE,∴BD=CE;(3)①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∵∠AEC=∠BEP,∴∠BPE=∠EAC=90°,∵∠PBE=∠ABD,∴△BPE∽△BAD,∴=,∴=,∴BP=.②当点E在BA延长线上时,BE=3,∵∠EAC=90°,∴CE==,由△BPE∽△BAD,∴=,∴=,∴PB=,综上所述,PB的长为或.13.(1)解:图形如图1所示:(2)证明:如图2中,过点A作AH⊥FE交FE的延长线于H.∵EF∥AD,∠H=90°,∴∠HAD=180°﹣∠H=90°,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,AB=CD,BC=AD,∵∠CAE=∠DAH=90°,∴∠HAE=∠DAC,∵∠H=∠ADC=90°,AE=AC,∴△AHE≌△ADC(AAS),∴EH=CD=AB,AH=AD=EF,∵∠DAH+∠BAD=180°,∴B,A,H共线,∵AH=EF,EH=AB,∴HB=HF,∴∠HBF=∠HFB=45°,∴∠AGB=∠ABG=45°,∴AB=AG,∴EH=AG,∵EH∥AG,∴四边形AHEG是平行四边形,∵∠H=90°,∴四边形AHEG是矩形,∴∠AGE=90°,∴EG⊥AD.(3)解:如图3中,过点A作AH⊥FE交FE的延长线于H.由(2)可知,AB=BG=2,∵∠BAG=90°,∴BG=AB=2,∵AG∥BC,∴==,∴a=BM=BG=,由(2)可知,BH=HF=2+4=6,∵∠H=90°,∴BF=6,∵EF∥BC,∴∠NEF=∠NCB,∵∠ENF=∠CNB,EF=BC,∴△ENF≌△CNB(AAS),∴b=NF=BF=3,∴(a+1)(b+1)=(+1)(3+1)=8++3+1=9+<9+6,∴(a+1)(b+1)<9+6.14.解:(1)∵△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,∴AC=BC=4,AB=AC=4,DE=BE,DB=BE,∠ABC=45°,∠DBE=45°,∵AB=2BD,∴AD=BD=2,∴BE=2,∵∠CBE=∠ABC+∠DBE=90°,∴CE===2,∵点F是CE的中点,∴BF=CE=;(2)如图,连接AN,设DE与AB交于点H,∵点M是AD中点,∴AM=MD,又∵MN=ME,∠AMN=∠DME,∴△AMN≌△DME(SAS),∴AN=DE,∠MAN=∠ADE,∴AN∥DE,∴∠NAH+∠DHA=180°,∵∠NAH=∠NAC+∠CAB=∠NAC+45°,∠DHA=∠EDB+∠DBH=45°+∠DBH,∴∠NAC+45°+45°+∠DBH=180°,∴∠NAC+∠DBH=90°,∵∠CBA+∠DBE=45°+45°=90°,∴∠CBE+∠DBH=90°,∴∠CBE=∠NAC,又∵AC=BC,AN=DE=BE,∴△ACN≌△BCE(SAS),∴∠ACN=∠BCE,∵∠BCE+∠ACE=90°,∴∠ACN+∠ACE=90°=∠NCE,∴CN⊥CE.15.解:(1)等腰三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,∴∠PCB=∠PBC,∴PC=PB,∴△BCP是等腰三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.16.解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC =S△AEC.17.解:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:AF=BE,90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴,∵AB=8,∴BE=AF=4,故BE的长为2或4.18.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。
2020-2021备战中考数学初中数学 旋转的综合热点考点难点附答案
2020-2021备战中考数学初中数学 旋转的综合热点考点难点附答案一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。
(2)△ABE 为等边三角形。
证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。
∴11BAD CAD BAC 22α∠=∠=∠=。
∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。
而1EBC 30152α∠=︒-=︒。
∴30α=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学冲刺难点突破旋转变换问题专题二以矩形为基础的图形的旋转变换问题【例题精讲】两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,AD GDADE GDCED CD⎪∠⎪⎩∠⎧⎨===,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.【教师总结】四边形的旋转,可以构造全等三角形,在根据旋转的性质画出相应的图形,再综合其他知识解决.【针对训练】1、如图,有一矩形纸片ABCD,AB=6,AD =8,如图1,将纸片折叠使AB落在AD边上,B的对应点为B′,折痕为AE.如图2,再将△AB'E以B'E为折痕向右折叠,AE与CD交于点F.(1)求的值;(2)四边形EFDB′的面积为;(3)如图3,将△A′DF绕点D旋转得到△MDN,点N刚好落在B′E上,A′的对应点为M,F的对应点为N,求点A'到达点M所经过的距离.解:(1)∵将纸片折叠使AB落在AD边上,B的对应点为B′,∴AB=AB',∠BAE=∠B'AE,∠B=∠B'=90°,∴四边形ABEB'为正方形,∴△AB'E为等腰直角三角形,∵AB=6,AD=8,∴B'D=AD﹣AB'=8﹣6=2,∵将△AB'E以B'E为折痕向右折叠,∴AB'=A'B'=6,∠A'=∠A=45°,∴A'D=DF=6﹣2=4,∵CD=AB=6,∴CF=6﹣4=2,∴.(2)由(1)可知B'D=2,DF=4,B'E=6,∴四边形EFDB′的面积=×(B'E+DF)×B'D==10.故答案为:10.(3)∵将△A′DF绕点D旋转得到△MDN,∴DF=DN=4,∠NDM=90°,∵B'D=2,∠NB'D=90°,∴∠B'ND=30°,∴∠B'DN=60°,∴∠A'DM=90°﹣∠B'DN=90°﹣60°=30°,∵△A′DF在绕点D旋转过程中,点A'到达点M所经过的路径是圆弧A'M,∴的长为.即点A'到达点M所经过的距离为.2、已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点.点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点为线段BC关于点B的逆转点;(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F 是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.①补全图;②判断过逆转点G,F的直线与x轴的位置关系并证明;③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围.解:(1)由题意,点A是线段AB关于点B的逆转点,故答案为A.(2)①图形如图3所示.②结论:GF⊥x轴.理由:∵点F是线段EF关于点E的逆转点,点G是线段EP关于点E的逆转点,∴∠OEF=∠PEG=90°,EG=EP,EF=EO,∴∠GEF=∠PEO,∴△GEF≌△PEO(SAS),∴∠GFE=∠EOP,∵OE⊥OP,∴∠POE=90°,∴∠GFE=90°,∵∠OEF=∠EFH=∠EOH=90°,∴四边形EFHO是矩形,∴∠FHO=90°,∴FG⊥x轴.③如图4﹣1中,当0<x<5时,∵E(0,5),∴OE=5,∵四边形EFHO是矩形,EF=EO,∴四边形EFHO是正方形,∴OH=OE=5,∴y=•FG•PH=•x•(5﹣x)=﹣x2+x.如图4﹣2中,当x>5时,y=•FG•PH=•x•(x﹣5)=x2﹣x.综上所述,.3、如图,△ABC是等腰直角三角形,∠ACB=90°,D为AC延长线上一点,连接DB,将DB绕点D逆时针旋转90°,得到线段DE,连接AE.(1)如图①,当CD=AC时,线段AB、AE、AD三者之间的数量关系式是AB+AE=AD.(2)如图②,当CD≠AC时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D在射线CA上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB、AE、AD三者之间的数量关系式.解:(1)∵△ABC是等腰直角三角形,∠ACB=90°,∴CA=BC,AC⊥BC,∠BAC=45°∵AC=CD,BC⊥AC,∴AB=BD,∴∠BAC=∠BDC=45°,∴∠ABD=90°,∵将DB绕点D逆时针旋转90°,得到线段DE,∴BD=DE,∠BDE=90°,∴DE=AB=BD,AB∥DE,∴四边形ABDE是平行四边形,且∠ABD=90°,∴四边形ABDE是矩形,且AB=BD,∴四边形ABDE是正方形,∴AB=AE,AD=AB,∴AB+AE=AD,故答案为:;(2)结论仍然成立;如图②过点D作DF∥BC交AB的延长线于点F,∵BC∥DF,∴∠ADF=∠ACB=90°,∠F=∠ABC=45°,∴∠F=∠DAF=45°,∴AD=DF,∴AF=AD,∵∠ADF=∠EDB=90°,∴∠ADE=∠BDF,且DE=DB,AD=DF,∴△ADE≌△FDB(SAS),∴AE=BF,∴AB+AE=AB+BF=AF=AD;(3)不成立,当点D在线段AC上时,如图③,过点D作DF∥BC,∴∠AFD=∠ABC=45°,∠ACB=∠ADF=90°,∴∠DAF=∠AFD=45°,∴AD=DF,AF=AD,∵∠EDB=90°=∠ADF,∴∠ADE=∠BDF,且AD=DF,DE=BD∴△ADE≌△FDB(SAS)∴AE=BF,∵AB﹣BF=AF,∴AB﹣AE=AD;当点D在CA的延长线上时,如图④,过点D作DF∥BC,交BA延长线于点F,∴∠AFD=∠ABC=45°,∠ACB=∠ADF=90°,∴∠DAF=∠AFD=45°,∴AD=DF,AF=AD,∵∠EDB=90°=∠ADF,∴∠FDB=∠EDA,且AD=DF,DE=BD∴△ADE≌△FDB(SAS)∴AE=BF,∵AB+AF=BF,∴AB+AD=AE.4、如图,将△ABC绕点A逆时针旋转90°得到△ADE,将BC绕点C顺时针旋转90°得CG,DG交EC于O点(1)求证:DO=OG;(2)若∠ABC=135°,AC=2,求DG的长;(3)若∠ABC=90°,BC>AB,且=时,直接写出的值.解:(1)如图1,延长CB交DE于H.∵∠ABC+∠ABH=180°,∠ABC=∠ADH,∴∠ADH+∠ABH=180°,∴∠DAB+∠DHB=180°,∵∠DAB=90°,∴∠DHB=90°,∴∠DHB=∠HCG=90°,∴DE∥CG,∴∠EDO=∠G,∵DE=BC=CG,∠DOE=∠GOC,∴△DOE≌△GOC(AAS),∴EO=OC.(2)如图2,连接EG,BD,由旋转知,AD=AB,∠BAD=90°,∴∠ABD=45°,∵∠ABC=135°,∴∠ABD+∠ABC=180°,∴点D,B,C在同一条直线上,由(1)知,∠EDG=∠CGD,∴DE∥CG,∵DE=CG,∴四边形CDEG是平行四边形,∵将BC绕点C顺时针旋转90°得CG,∴∠DCG=90°,∴平行四边形CDEG是矩形,∴DG=CE,由旋转知,∠CAE=90°,AE=AC=2,∴CE=AC=2,∴DG=2,(3)如图3,延长DA,CG相交于点F,由旋转知,∠BAD=∠BCG=90°,∴∠BAF=∠BCF=90°,∵∠ABC=90°,∴四边形ABCF是矩形,∴AF=BC,CF=AB,∴FD=FG,在Rt△DFG中,DG=DF=(AD+AF)=(AB+BC),在RtACF中,AF2+CF2=AC2,∴AB2+BC2=AC2,∵=,∴=,∴=,∴=,∴2AB2﹣5AB•BC+2BC2=0,∴(2AB﹣BC)(AB﹣2BC)=0,∴2AB﹣BC=0或AB﹣2BC=0,∴=或=2(舍弃),故答案为:.5、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.6、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.7、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.8、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD 的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.解:(1)∵△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,∴AC=BC=4,AB=AC=4,DE=BE,DB=BE,∠ABC=45°,∠DBE=45°,∵AB=2BD,∴AD=BD=2,∴BE=2,∵∠CBE=∠ABC+∠DBE=90°,∴CE===2,∵点F是CE的中点,∴BF=CE=;(2)如图,连接AN,设DE与AB交于点H,∵点M是AD中点,∴AM=MD,又∵MN=ME,∠AMN=∠DME,∴△AMN≌△DME(SAS),∴AN=DE,∠MAN=∠ADE,∴AN∥DE,∴∠NAH+∠DHA=180°,∵∠NAH=∠NAC+∠CAB=∠NAC+45°,∠DHA=∠EDB+∠DBH=45°+∠DBH,∴∠NAC+45°+45°+∠DBH=180°,∴∠NAC+∠DBH=90°,∵∠CBA+∠DBE=45°+45°=90°,∴∠CBE+∠DBH=90°,∴∠CBE=∠NAC,又∵AC=BC,AN=DE=BE,∴△ACN≌△BCE(SAS),∴∠ACN=∠BCE,∵∠BCE+∠ACE=90°,∴∠ACN+∠ACE=90°=∠NCE,∴CN⊥CE.9、如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.解:(1)等腰三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,∴∠PCB=∠PBC,∴PC=PB,∴△BCP是等腰三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.10、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题:(1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由.解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.11、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.(1)求BC的长;(2)求证∠ABE=∠ABC;(3)当FB=FE时,求CD的长.解:(1)如图,过点A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH=BC,∵tan∠ACB==,∴设AH=3k(k>0),CH=4k,∵AC2=AH2+CH2,∴9k2+16k2=25,∴k=1,∴HC=4,∴BC=2CH=8;(2)∵∠DAE=∠BAC,∴∠DAC=∠BAE,∵将线段AD绕点A顺时针旋转得AE,∴AE=AD,又∵AB=AC,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACD,∴∠ABE=∠ABC;(3)∵AD=AE,∴∠AED=∠ADE=(180°﹣∠DAE),∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC),∵∠DAE=∠BAC,∴∠ADE=∠AED=∠ABC=∠ACB,∴∠ABE=∠ABC=∠ADE,又∵∠BFE=∠DFA,∴∠BEF=∠DAF,∵FB=FE,∴∠FBE=∠FEB,∴∠DAF=∠ADF=∠FBE=∠FEB,∴∠DAF=∠ABC=∠ACB,又∵∠ABC=∠ABD,∴△BAD∽△BCA,∴∴BD==,∴CD=BC﹣BD=8﹣=.12、(1)如图1,O是等边三角形ABC内一点,连接OA,OB,OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.填空:①旋转角为°;②线段OD的长是;③∠BDC=°;(2)如图2,O是△ABC内一点,且∠ABC=90°,BA=BC.连接OA,OB,OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA,OB,OC满足什么条件时,∠BDC=135°?请说明理由.解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;故答案为:60;4;150;(2)OA2+2OB2=OC2时,∠ODC=90°,理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠BDC=135°.12、在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE的长.解:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:AF=BE,90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴,∵AB=8,∴BE=AF=4,故BE的长为2或4.13、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.14、如图1,在Rt△ABC中,∠B=90°,∠C=30°,BC=4,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至DE∥AC时,请直接写出BD的长.解:(1)①当α=0°时,∵在Rt△ABC中,∠B=90°,∠C=30°,BC=4,∴AB=,∴AC=,∵点D、E分别是边BC、AC的中点,∴BD=CD=BC=2,AE=CE=AC=,∴;故答案为:.②如图1,,当α=180°时,∵将△EDC绕点C按逆时针方向旋转,∴CD=2,CE=,∴AE=AC+CE=4,BD=BC+CD=6,∴.故答案为:.(2)当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵CE=,CD=2,AC=,BC=4,∴,∴△ECA∽△DCB,∴.(3)2或2.①如图3,过点D作DF⊥BC交BC的延长线于点F,∵DE∥AC,∴∠DCA=∠EDC=90°,∵∠ACB=30°,∴∠DCF=60°,∵DC=2,∴CF=1,DF=,∴BF=1+4=5,∴==2;②如图4,过点D作DF⊥BC交BC于点F,同理可得,CF=1,DF=,∴BF=3,∴BD==2.故BD的长为2或2.15、(1)问题发现如图1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∠BCD的度数是;线段BD,AC之间的数量关系是.(2)类比探究在Rt△ABC中,∠BAC=45°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?(3)拓展延伸如图3,在Rt△ABC中,AB=2,AC=4,∠BAC=90°,若点P满足PB=PC,∠BPC=90°,请直接写出线段AP的长度.解:(1)∵在Rt△ABC中,∠BAC=30°,∠ABC=90°,∴∠ACB=60°,∵将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∴∠CAD=α=2∠BAC=60°,AC=AD,∴△ACD是等边三角形,∴∠ACD=60°,∴∠BAD=90°,∠BCD=120°,∵在Rt△ABC中,AB=AC,∴BD2=AB2+AD2=(AC)2+AC2=AC2,即线段BD,AC之间的数量关系是BD=AC;故答案为:120°,BD=AC;(2)不成立,理由:在Rt△ABC中,∠BAC=45°,∠ABC=90°,∴∠ACB=45°,∵将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∴∠CAD=α=2∠BAC=90°,AC=AD,∴△ACD是等腰直角三角形,∴∠ACD=45°,∴∠BCD=90°,∵在Rt△ABC中,AB=BC=AC,在Rt△ACD中,CD=AC,∴BD2=BC2+CD2=(AC)2+(AC)2=AC2,即线段BD,AC之间的数量关系是BD=AC;(3)如图3,作PE⊥AC于E,连接PA,∵在Rt△ABC中,AB=2,AC=4,∠BAC=90°,∴BC==2,∵∠BPC=90°,PB=PC,∴PB=PC=,∠PBC=∠PCB=45°,∵∠BAC=∠BPC=90°,∴点B,C,P,A四点共圆,∴∠PAE=45°,∴△PAE是等腰直角三角形,∴PE=AE,∴CE=4﹣AE,∵PE2+CE2=PC2,∴PE2+(4﹣PE)2=10,∴PE=1,PE=3,∴PA=或PA=3;故线段AP的长度为或3.16、综合与实践问题情境数学活动课上,老师让同学们以“三角形平移与旋转”为主题开展数学活动,△ACD和△BCE是两个等边三角形纸片,其中,AC=5cm,BC=2cm.解决问题(1)勤奋小组将△ACD和△BCE按图1所示的方式摆放(点A,C,B在同一条直线上),连接AE,BD.发现AE=DB,请你给予证明;(2)如图2,创新小组在勤奋小组的基础上继续探究,将△BCE绕着点C逆时针方向旋转,当点E恰好落在CD边上时,求△ABC的面积;。