八年级上学期数学压轴题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013八年级上学期数学几何复习
【图形的剪拼】
1.如图,有边长为1、3的两个连接的正方形纸片,用两刀裁剪成三块,然后拼成
一个正方形,如何拼?
2.如图,有一张长为5 ,宽为3的矩形纸片ABCD,要通过适当的剪拼,得到
一个与之面积相等的正方形
(1)正方形的边长为____________.(结果保留根号)
(2)现要求只能用两条裁剪线,请你设计出一种裁剪的方法,在图中画出裁
剪线,并简要说明剪拼过程_____________.
(天津市中考题)【三角形】
1.在△ABC中,∠ACB=90°,直线MN经过点C且AD⊥MN于D,BE⊥MN于E
(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE
(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE
(3)当直线MN绕点C旋转到图③的位置时,试问DE、AD、BE具有怎样的等量关系并证明。
2.如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限做
等边△AOB,点C为x轴正半轴一动点(OC > 2),连接BC,以BC为边在第
四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点
E的坐标;若有变化,请说明理由.
3.如图,△ABC中AB=AC,∠ABC=36°,D、C为BC上的点,且
∠BAD=∠DAE=∠EAC,则图中的等腰三角形有()个。
A. 2
B. 4
C. 6
D. 8
4.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.
(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式
(4)当x的值为多少事,S△DEF能最大化?
图一图二
5.M为△ABC中BC中点,AN平分∠BAC,BN⊥AN,已知AB=10,
BC=15,MN=3
(1)求证:BN=DN
(2)求△ABC周长
6.在△ABC中,∠ACB=90°,AC=BC,DA=DB,CD为直角边作等腰直角
三角形CDE,∠DCE=90°
(1)求证:△ACD≌△BCE
(2)若AC=3cm,则BE = ________ cm .
7.已知:△ABC为等边三角形,ED=EC,探究AE与DB的大小关系
8.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为
AD延长线上一点,且CE=CA
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM.,求证:ME=BD.
9.如图,DE=BF,将平行四边形沿EF折叠,求证:(1)∠1=∠2 (2)DG=B’G
10.已知,△ABC为等边三角形,D为AC中点,CE=CD
(1)用尺规作图,过D作DM⊥PF,垂足为M
(2)求证:BM=EM
11.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?
(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.
Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
12.操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.
(1)探究线段BM、MN、NC之间的关系,并加以证明
(2)若点M、N 分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.
(3)求证:CN-BM=MN
图①图②图③
图④
13.如图,已知△ABC和△ADC是以AC为公共底边的等腰三角形,E、F
分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF
(1)求证:EF=AE+FC
(2)若点E、F在直线AD和BD上,则是否有类似的结论?