锂离子动力电池PACK部BMS系统
锂电池为什么需要BMS电池管理
锂电池为什么需要BMS电池管理系统?锂电池处于严重过充电状态下还存在爆炸的危险,造成锂电池组损坏的同时还对使用者的人生安全造成威胁。
因此,必须为锂电池组配备一套具有针对性的锂电池管理系统BMS从而对电池组进行有效的监控、保护、能量均衡和故障警报,进而提高整个锂电池工作效率和使用寿命。
(1)安全性锂电池存在安全性差,时有发生爆炸等缺陷。
尤其是钻酸锂为正极材料的锂电池不能大电流放电,安全性较差。
此外,几乎所有种类的锂电池过度充电或过度放电都会引起电芯不可逆转的损伤。
锂电池对温度也极为敏感:如果在温度过高的状况下使用,可能引起电解液分解、燃烧甚至爆炸;温度过低将导致锂电池的各项性能明显恶化,影响设备的正常使用。
由于电池制作工艺的限制,每个电池单元的内阻、容量等均会存在差异。
当多个电池单元串联使用时,会引起各个电芯的充放电速率不一致,这导致了电池容量的利用率低下。
鉴于此,锂电池在实际使用过程中通常需要专门的保护系统来监控电池的健康状态,从而管理锂电池的使用过程。
(2)可维护性锂电池低温下容量衰减和电量无法准确预测使得设备的可维护性较差。
长期在线的仪表需要定期更换电池,而远程监控设备工作站点分散,各个站点之间路途遥远,因此更换电池工作量巨大,成本高昂。
为了减小维护的工作量,降低维护成本,需要锂电池BMS管理系统具有准确的电荷状态估算功能以准确掌握电池的电荷状态,更有目的地进行电池更换工作;同时还需要电池管理系统具有较低的自身功耗,以降低维护频率,延长电池的使用寿命。
因此对长时间持续供电的远程监控仪表,合理地设计锂电池BMS管理系统对设备的维护有着非常重要的意义。
BMS锂电池管理系统的作用电池管理系统(BMS)是一套保护电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施调节电池的异常使用状态,为换电柜及车辆的使用安全提供安全保障。
BMS锂电池管理系统的主要目的就是保证电池系统的设计性能,从安全性、耐久性、动力性三个方面提供作用。
动力锂电池组的管理系统(BMS)的认知
放电 V = g 一 ,( R + r ) 一V C
+3 0 m V o 充 电大 电流均 衡时应避 免出现 被均 能 ”范 畴 。 但 这 里 讲 的 智 能 主 要 是 指 操 作 衡 电池处在 放电状 态, 而放电被均衡时应避 免 “ 智能” 。 管 理 系统 工作 时, 无 论 是 充电 、 放 被均 衡电池 处在 充电状 态。 否则被 均衡的单节 电 、 电 池 检 查 皆是 一 键式 , 即 同一 按 键 一次 电池 , 相当于循环使 用一 次。
! ! 垒 : 塑
工 业 技 术
Sc i e n ce e nd Tech nol og y 1 n no va t i o n Her a l d
动 力锂电池组的管理 系统 ( B MS)韵认 知
李永菲 ( 无锡汽车工程学校 江苏无锡
2 1 4 1 5 3 )
放电每节 能 自检 , 并 能 有 效处 理 。 确 保 不 会 因管 理 系 1 管理 系统 B MS 应 能对 每 节电池的特 征 组 充电每节电池 皆充 满而又无过 充, 电池 都放 完而又无过放 , 才能达到提 高续 行距 统 有 问题 而使 如车辆 等用 电设 备发 生故 障 , 参 数 进 行测 算
操作。 系 统 自动 识 别工作 内 容及 工作 是 否结
式中 : 为电池 的电 极结 点和 引线 电 阻,
可认 为是 已知的常 数 。 R : 为 电池的内阻, 它是
束, 当判 定 工作 已结 束时 则 自动 切 断 电源 包 括 自身的供 电电源。 动力锂 电池 组管 理系统 ,
中图分类号: T M 9 1 2
文献标识码 : A
电池pack原理
电池pack原理
电池pack是由若干个单体电池组合而成的,用于存储和释放电能的装置。
它主要由电池单体、电池管理系统(BMS)和电池外壳组成。
电池单体是电池pack的基本组成部分,通常是由多个电池单元串联而成。
每个电池单元都是一个能够储存和释放电能的单元,通常采用特定的化学反应来实现。
电池单元可以是锂离子电池、镍氢电池等。
电池管理系统(BMS)是电池pack的重要部分,用于监测和控制电池的工作状态。
BMS可以对每个电池单元进行电压、温度等参数的实时监测,以确保电池pack的安全和稳定性。
BMS还能进行电池的均衡充放电,以保证各个电池单元之间的电能分配均衡。
电池pack还需要一个外壳来保护电池单体和BMS。
外壳通常采用耐高温、防震、防水等特性的材料制造,以确保电池pack在各种环境下的安全运行。
外壳还可以提供散热功能,以保证电池pack在高负载工作时的稳定性。
电池pack的工作原理是将电池单体的电能储存起来,在需要时释放出来。
当外部电源供应电流时,电池pack会将电能储存到电池单体中;当需要使用电能时,电池pack会将储存在电池单体中的电能释放出来,供应给需要的设备或系统。
总之,电池pack通过将若干个电池单体组合而成,并通过
BMS进行管理和控制,实现了电能的存储和释放,为各种设备提供了可靠的电源。
锂离子电池BMS电池管理系统具有哪些功能-
锂离子电池BMS电池管理系统具有哪些功能?BMS电池管理系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
BMS管理系统主要由各类传感器、执行器、控制器以及信号线等组成。
为了使新能源汽车能够安全的上路行驶,且符合相关标准和规范,BMS管理系统应当具有以下功能:电池参数检测包括总电压、总电流、单体电池电压检测(防止出现过充、过放甚至反极现象)、温度检测(最好每串电池、关键电缆接头等均有温度传感器)、烟雾探测(监测电解液泄漏等)、绝缘检测(监测漏电)、碰撞检测等。
电池状态估计包括荷电状态(SOC)或放电深度(DOD)、健康状态(SOH)、功能状态(SOF)、能量状态(SOE)、故障及安全状态(SOS)等。
在线故障诊断包括故障检测、故障类型判断、故障定位、故障信息输出等。
故障检测是指通过采集到的传感器信号,采用诊断算法诊断故障类型,并进行早期预警。
电池故障是指电池组、高压电回路、热管理等各个子系统的传感器故障、执行器故障(如接触器、风扇、泵、加热器等),以及网络故障、各种控制器软硬件故障等。
电池组本身故障是指过压(过充)、欠压(过放)、过电流、超高温、内短路故障、接头松动、电解液泄漏、绝缘降低等。
电池安全控制与报警包括热系统控制、高压电安全控制。
BMS诊断到故障后,通过网络通知整车控制器,并要求整车控制器进行有效处理(超过一定阈值时BMS也可以切断主回路电源),以防止高温、低温、过充、过放、过流、漏电等对电池和人身的损害。
充电控制BMS中具有一个充电管理模块,它能够根据电池的特性、温度高低以及充电机的功率等级,控制充电机给电池进行安全充电。
电池均衡不一致性的存在使得电池组的容量小于组中最小单体的容量。
电池均衡是根据单体电池信息,采用主动或被动、耗散或非耗散等均衡方式,尽可能使电池组容量接近于最小单体的容量。
热管理根据电池组内温度分布信息及充放电需求,决定主动加热/散热的强度,使得电池尽可能工作在最适合的温度,充分发挥电池的性能。
锂动力电池管理系统(BMS)的电磁兼容(EMC)
锂动力电池管理系统(BMS)的电磁兼容(EMC) 根据法拉第电磁感应定律:电磁互生,弱电生弱磁,强电生强磁。
众说周知,电动汽车工作在强电高压状态,除了高压安全问题,电磁辐射问题也极为重要,如何保证电磁兼容的安全,驱动器、充电机、BMS等核心电气零部件设备的EMC等级对于电动汽车用户的意义更大。
EMC简介 EMC(ElectromagneTIc CompaTIbility)是衡量设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备的任何事物构成不能承受的电磁骚扰的能力,它包括EMI(电磁干扰)和EMS(电磁抗干骚扰)。
EMC=EMI+EMS;EMI:电磁干扰(污染力),EMS:电磁抗干扰性(免疫力) EMI(ElectromagneTIc Interference)为电磁干扰,是指产品的对外电磁干扰,可分为传导ConducTIon及辐射Radiation两部分,EMI包括传导、辐射、电流谐波、电压闪烁等等。
电磁干扰是由干扰源、藕合通道和接收器三部分构成的(通常称作干电磁干扰)和EMS(电磁抗干扰)。
EMC=EMI+EMS;EMI:电磁干扰(污染力),EMS:电磁抗干扰扰性(免疫力) EMI(Electromagnetic Interference)为电磁干扰,是指产品的对外电磁干扰,可分为传导Conduction及辐射Radiation两部分,EMI包括传导、辐射、电流谐波、电压闪扰的三要素。
EMI的辐射和传导的不同等级对峰值和平均值要求不同,不同等级的限值一般会在测试软件上显示。
EMS(Electromagnetic susceptibility)电磁敏感度一般俗称为电磁免疫力,是设备抗外界干扰之能力。
针对汽车零部件的EMS测试项目一般有:射频辐射抗干扰(RS)、电源线瞬态传导抗干扰、信号线瞬态传导抗干扰、静电放电抗干扰(ESD)、射频电流注入抗干扰(BCI)等项目。
动力锂电池BMS的EMC要求: 电动汽车要求动力电池BMS等核心电气零部件满足GB/T18655-2010 《车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法》中要求的(1)传导骚扰(2)辐射骚扰(含GPS),目前是电动汽车电气零部件推荐执行指标。
(完整)电池管理系统(BMS)解决方案
电池管理系统(BMS)解决方案
背景
电池管理系统(Battery Management System,BMS),通常被业内称为新能源汽车电池的“大脑”,与动力电池组、整车控制系统共同构成新能源汽车的三大核心技术。
动力锂离子电池的高能量密度特性使其成为新能源车辆的主要动力源,但由于生产工艺、使用环境的差异导致电池组的不一致性在使用过程中逐渐扩大,可能出现过充、过放和局部过热的危险,严重影响电池组的使用寿命和安全.BMS作为保护动力锂离子电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。
产品功能
针对新能源车辆高压电池组的电池管理系统采用分布式结构,拓扑结构如下图所示:
图一高压电池管理系统拓扑结构
BMU:BMS 总控制器 , 电池组状态计算、充放电控制等
BCU:BMS 从控制器,电池单体电压、温度采集 ,主动/ 被动均衡电路
IVU:电池组电流、总电压采集
绝缘模块:电池组绝缘电阻采集 , 可以与 IVU集成
同时积极开展48V BSG 系统的BMS 的研究。
48V BMS 系统的拓扑结构如下图所示,BMS 控制器负责电池单体电压、温度采集,电池组间的主、被动均衡,电池组参数计算以及充放电控制。
图二电池管理系统拓扑结构产品参数
高压电池管理系统BMU 参数
高压电池管理系统BCU 参数
48V BSG 系统BMS 参数
成功案例
•上海某新能源公司 48V BSG系统 BMS 开发项目•某新能源公司 BMS 控制系统开发
•天津力神电池本体模型及 SOC算法开发
•国内某研究所 600V铅酸电池组管理系统开发。
电池保护系统之管理系统(PACK基础培训) 动力电池及电池管理系统BMS
模块的控制信息作必要的控制响应目前一般意义上的BMS是指狭义的电池管理概念。充电管
理由充电器实现。低端产品一般通过电池端来实现,充电器通过电池电压来判定是否采用
恒流充电/恒压充电,涓流充电,浮充等。现今主流则通过充电协议由电池管理系统通过
CAN线对充电机做出指令。放电管理和负载管理由电池管理的上层主控模块根据电池管理提
电主要受负载的大小影响,负载大小的调整一般在更高级别的管理层面去调节,而不是有
电池管理系统根据电池自身情况来调整。电池管理仅仅监测电池状态,以及电池中各个
CELL的状态,并根据其状态对电池及其内部部件做适当的控制调整等。电池管理并不对电
池外的其他部件作控制,仅提供通讯的数据状态告知功能。但是电池管理可接收上层主控
大纲
1.电池管理系统概述 2.电池管理系统的组成 3.磷酸锂电池的一些性能参数 4.电池管理系统技术要点 5.电池管理系统主要合作的厂家 6.主要厂家的电池管理系统使用简介及应用案例 7.管理系统设计硬件要求 8.管理系统一些控制方案和解决方案 9CK基础培训
前言
上章介绍了电池组保护系统中的保护板。 保护板的基本功能就是保护电池组不过充 过放。但实际运用中纯粹的保护电池组过 充过放的保护板已不能满足使用需求,电 池管理系统孕育而生。
本文就管理系统的一些基本功能及个人对 管理系统的一些理解进行讲解。由于个人 知识面的匮乏错误之处在所难免请批评指 正!
上产生的电压降.电动势由电极和电解质材料特性决定,电极的过电位与材料 活性、荷电状态和工况有关.在后文管理系统主要技术要点中的《电压管理》 有详细介绍。
2 内阻 电池在短时间内的稳态模型可以看作为一个电压源,其内部阻抗等效为电
压源内阻,内阻大小决定了电池的使用效率.电池内阻包括欧姆电阻和极化电 阻两部分,欧姆电阻不随激励信号频率变化,又称交流电阻,在同一充放电周期 内,欧姆电阻除温升影响外变化很小.极化电阻由电池电化学特性对外部充放 电表现出的抵抗反应产生,与电池荷电、充放强度、材料活性都有关.同批电 池,内阻过大或过小者都不正常,内阻过小可能意味材料枝晶生长和微短路,内 阻太大又可能是极板老化、活性物质丧失、容量衰减,内阻变化可以作为电池 裂化的充分性参考依据之一.
动力电池bms管理系统工作原理
动力电池bms管理系统工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!动力电池BMS管理系统工作原理动力电池管理系统(Battery Management System,BMS)是电动汽车中至关重要的部件之一,负责监测、控制和保护电池。
什么是锂离子电池BMS电池管理系统?
什么是锂离子电池BMS电池管理系统?电池管理系统,英文为BMS(Battery ManagementSystem),是电动汽车动力电池系统的重要组成部分。
它能够检测收集并初步计算电池实时状态参数,同时根据检测值与允许值的比较关系控制供电回路的通断;此外,还会将收集到的关键数据反馈给整车控制器,并接收控制器的指令,与汽车上的其他系统协调工作。
不同电芯类型,对管理系统的要求一般不太一样。
电动汽车所用的锂离子电池容量大、串并联节数多、系统复杂,而且对安全性、耐久性、动力性等性能要求高、实现难度大,因此其成为影响电动汽车推广普及的瓶颈。
锂离子电池安全工作区域受到温度、电压的窗口限制,当超过该窗口的范围时,电池性能就会加速衰减,甚至会引发安全问题。
电池管理系统的主要目的就是保证电池系统的设计性能,从安全性、耐久性、动力性三个方面提供作用。
安全性方面,即BMS管理系统能保护电池单体或电池组免受损坏,防止出现安全事故。
耐久性方面,即使电池工作在可靠的安全区域内,延长电池的使用寿命。
动力性方面,即要将电池的工作状态在维持在满足车辆要求的情况下。
一组锂离子电池组里有很多快电芯,BMS是如何管理的?BMS系统的重要工作分成两大任务对电池的检测和保证锂离子电池安全。
其中电池检测实现相对简单一些,重要是通过传感器收集电池在使用过程中的参数信息比如:温度、每一个电池单体的电压、电流,电池组的电压、电流等。
这些数据在之后的电池组管理中起到至关重要的用途,可以说假如没有这些电池状态的数据作为支撑,动力锂离子电池的系统管理就无从谈起。
电池管理系统的重要功能,可以分解成如下三个方面:1,安全性,保护电池单体或电池组免受损坏,防止出现安全事故;2,耐久性,使电池工作在可靠的安全区域内,延长电池的使用寿命;3,动力性,维持电池工作在满足车辆要求的状态下。
电池管理系统(BMS)的功能性设计
电池管理系统(BMS)的功能性设计董云鹏(江西优特汽车技术有限公司,江西 上饶 334100)摘 要:随着传统汽车的普及,石油能源的需求大幅度增加,加剧了石油能源紧缺的危机。
随之而来的噪音、废气污染等问题愈演愈烈。
在此环境下,新能源汽车行业快速发展,锂离子动力电池系统作为新型能源,被大量运用在新能源汽车上。
电池管理系统(BMS)是锂离子动力电池系统的主要部分,在系统中起着至关重要的作用。
文章主要对电池管理系统(BMS)的功能、控制策略等内容进行阐述。
关键词:BMS;电池管理系统;功能性设计中图分类号:TM912 文献标志码:A 文章编号:1672-3872(2020)06-0134-02——————————————作者简介: 董云鹏(1988—),男,江西赣州人,本科,研究方向:新能源汽车的动力电池和BMS 的设计。
随着经济的发展,汽车数量大幅度增加,噪声污染和废气污染严重,加剧了石油能源紧缺的危机[1]。
在此环境下,新能源汽车应运而生,并快速发展。
锂离子动力电池系统作为新能源汽车的主要新型能源之一,在能量密度和BMS 等方面不断取得关键性的技术突破。
BMS 是锂离子动力电池系统的主要部分,在系统中起着至关重要的作用。
BMS 最核心的功能就是采集动力电池系统的电压、温度、电流、绝缘电阻、高压互锁状态等数据,然后分析数据状态和电池的使用环境,对电池系统充放电过程进行监测和控制,从而在保证电池安全的前提下最大限度地利用动力电池系统储存的能量[2]。
按照功能,可将BMS 分为电池数据采集、电池状态分析、电池安全保护、电池系统能量管理控制、数据通信和储存、故障诊断和管理等部分[3]。
1 电池数据采集电池数据采集包括电压、温度、电流、绝缘电阻、高压互锁状态等数据的采集,能为BMS 提供电池系统的实时数据,为后续的电池系统的状态分析、控制和保护提供依据。
电压采集有每串电芯的电压、电池系统内部总电压Vbat 和电池系统外部总电压Vlink。
锂电池管理系统bms原理
锂电池管理系统bms原理锂电池管理系统(BMS)是一种用于监测、控制和保护锂电池的系统,它是锂电池应用中至关重要的一部分。
本文将介绍BMS的原理及其功能。
BMS的原理主要包括两个方面:电池监测和电池保护。
首先,BMS通过对电池的监测,可以实时获取电池的电压、电流、温度等参数。
这些参数的监测对于电池的正常工作非常重要,可以帮助用户及时了解电池的状态,并做出相应的措施。
例如,当电池的电压过低或过高时,BMS可以及时发出警报,以避免电池的过放或过充;当电池的温度过高时,BMS可以自动降低电池的充放电速率,以保护电池的安全性。
BMS还可以对电池进行保护。
一方面,BMS可以对电池的充放电过程进行控制,以防止电池的过充或过放,保证电池的安全使用。
另一方面,BMS还可以对电池进行均衡,即通过控制电池的充放电过程,使各个单体电池之间的电压保持一致。
这样可以避免因某个单体电池电压过高或过低而导致整个电池组性能下降或故障。
除了电池监测和保护功能外,BMS还具备其他重要的功能。
首先,BMS可以实现电池数据的采集与存储,可以记录电池的工作状态及历史数据,为用户提供参考。
其次,BMS可以与车辆或设备的控制系统进行通信,实现对电池的远程监控和控制。
例如,当电池组出现故障时,BMS可以及时向控制系统发送警报,以便及时采取措施。
此外,BMS还可以实现对电池的充放电过程进行优化,以提高电池的效率和使用寿命。
为了保证BMS的准确性和可靠性,BMS的设计需要考虑以下几个方面。
首先,BMS需要采用高精度的传感器,以确保对电池参数的测量准确。
其次,BMS需要具备一定的计算和处理能力,以实时处理和分析电池数据,并做出相应的控制决策。
此外,BMS还需要具备一定的安全性能,以防止电池的过充、过放、短路等情况发生。
最后,BMS的设计还需要考虑电池组的规模和应用环境,以满足不同用户的需求。
锂电池管理系统(BMS)是一种用于监测、控制和保护锂电池的系统。
动力电池的电池管理系统(BMS)简介
动力电池的电池管理系统(BMS)简介动力电池是电动车等电动设备的重要组成部分,其中电池管理系统(Battery Management System,简称BMS)扮演着至关重要的角色。
BMS的作用是有效监控和管理动力电池的状态,确保其在充电、放电和储存过程中的安全性和性能表现。
本文将对动力电池BMS的基本原理、功能和应用进行简要介绍。
一、动力电池BMS的基本原理动力电池BMS是一种集成电子系统,由控制器、传感器、通信模块和电源电路等组成。
其基本原理是通过传感器对动力电池的电压、电流、温度和其他关键参数进行实时监测,并将监测到的数据传输给控制器。
控制器利用这些数据对电池的状态进行评估,然后根据需要采取相应的控制措施,以确保电池在安全范围内运行。
二、动力电池BMS的功能1. 电池状态监测:BMS能够对电池的电压、电流、温度和电池容量等关键参数进行实时监测,及时发现和报告异常情况。
2. 充电管理:BMS能够根据电池的状态实时调节充电功率和充电电流,以确保电池在最佳充电状态下进行充电,延长电池寿命。
3. 放电管理:BMS能够监测电池的电流和负载情况,并根据需求动态调整输出功率,以确保电池在放电过程中的安全性和性能表现。
4. 温度管理:BMS能够监测电池的温度,并根据温度变化调节电池的工作状态,防止电池过热或过冷,提高电池的寿命和性能。
5. 安全保护:BMS能够监测和控制电池的工作状态,当电池发生过放、过充、短路和过温等危险情况时,能及时采取措施进行保护,以避免安全事故的发生。
三、动力电池BMS的应用动力电池BMS广泛应用于电动汽车、混合动力汽车、电动自行车和储能系统等领域。
在电动汽车中,BMS不仅起到了对电池进行管理和保护的作用,还能提高整个车辆的能源利用效率和续航里程。
综上所述,动力电池BMS是动力电池系统中的重要组成部分,通过监测和管理电池的状态,确保其在不同工作状态下的安全性和性能表现。
随着电动交通的快速发展,BMS技术也在不断进步和完善,为电动车辆行驶的安全性和可靠性提供了重要保障。
锂离子动力电池PACK部BMS系统
锂离子动力电池P A C K部B M S系统Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-先给初学者一个简单的科普,因为几年前我和人家说起BMS,大部分是不知道是什么东西。
BMS就是Battery Management System,中文就是电池管理系统,一般针对动力电池组,很多电芯串并的情况来说的。
BMS的作用是保护电池安全,延长电池的使用寿命,实时监测电池的状态并把电池的情况告诉给上位机系统。
为什么说BMS才是动力电池PACK厂的核心竞争力,两个方面的原因,第一个原因是电芯最终要成为一个标准品,第二个原因是BMS很复杂,且非常重要。
针对第一个原因,电芯最终要成为一个没有科技含量的标准品,一起来分析一下。
动力电池的电芯最后的发展会像手机电池一样,用不了几年的时间就会达到这种状态。
最后能够在动力电池领域活的很好的电芯厂不会很多的,一大批电芯厂会慢慢出局的。
现在这个状态是因为动力电池的需求还没有完全起来,加之电芯的工艺还没有成熟和稳定,且电芯的尺寸和材料体系各式各样。
其实统一到几种电芯用不了多长时间。
这是市场决定的,一旦动力电池放量,竞争就会加剧,成本的要求就会苛刻,市场就会趋于同质化竞争,慢慢把需求不大的类型淘汰掉,因为没有量的支撑就不会有竞争力(一些高性能或特殊领域的小众应用另当别论),这是自然竞争的结果。
不得不说另外一个事,所有的电芯厂,全球任何一家电芯厂,都是研究电化学和材料相关的,绝大部分的人才都是集中在这个领域的,他们对BMS这种对电子和系统要求极高的东西很难有好的理解,也不会有好的建树,更不可能做出有竞争力的BMS产品和电池PACK了。
因此最后电芯厂和PACK厂一定会分化,一定会专业分工,这是自然规律,市场竞争的规律。
针对第二个原因,BMS的复杂和系统要求较高,是PACK竞争的基础。
为什么说BMS比较复杂,因为BMS涉及到的东西很多,不但要求懂电池知识很多,还要对整个系统(电动汽车或储能等)很懂,不但要懂电子,还要懂结构,不仅要会硬件,还要会软件,要做好BMS,要对电子技术、电工技术、微电子及功率器件技术、散热技术、高压技术、通信技术、抗干扰及可靠性技术等很多东西都要专业才行,它是一个负责的系统工程。
动力电池系统(电芯-BMS-PACK)失效模式分析
动力电池系统(电芯/BMS/PACK)失效模式分析研究动力电池系统的失效模式对提高电池寿命、电动车辆的安全性和可靠性、降低电动车使用成本有至关重要的意义。
本文从动力电池系统外在表现失效模式探索和后果进行分析并提出相应处理措施。
在动力电池系统设计时考虑各种失效模式以提高动力电池安全性。
动力电池系统通常由电芯、电池管理系统、Pack系统含功能元器件、线束、结构件等相关组建构成。
动力电池系统失效模式,可以分为三种不同层级的失效模式,即电芯失效模式、电池管理系统失效模式、Pack系统集成失效模式。
电芯失效模式电芯的失效模式又可分为安全性失效模式和非安全性失效模式。
电芯安全性失效主要有以下几点:1、电芯内部正负极短路:电池内短路是由电芯内部引起的,引起电池内短路的原因有很多,可能是由于电芯生产过程中缺陷导致或是因为长期振动外力导致电芯变形所致。
一旦发生严重内短路,无法阻止控制,外部保险不起作用,肯定会发生冒烟或燃烧。
如果遭遇到该情况,我们能做的就是第一时间通知车上人员逃生。
对于电池内部短路问题,目前为止电池厂家没有办法在出厂时100%将有可能发生内短路的电芯筛选出来,只能在后期充分做好检测以将发生内短路的概率降低。
2、电池单体漏液:这是非常危险,也是非常常见的失效模式。
电动汽车着火的事故很多都是因为电池漏液造成的。
电池漏液的有原因有:外力损伤;碰撞、安装不规范造成密封结构被破坏;制造原因:焊接缺陷、封合胶量不足造成密封性能不好等。
电池漏液后整个电池包的绝缘失效,单点绝缘失效问题不大,如果有两点或以上绝缘失效会发生外短路。
从实际应用情况来看,软包和塑壳电芯相比金属壳单体更容易发生漏液情况导致绝缘失效。
3、电池负极析锂:电池使用不当,过充电、低温充电、大电流充电都会导致电池负极析锂。
国内大部分厂家生产的磷酸铁锂或三元电池在0摄氏度以下充电都会发生析锂,0摄氏度以上根据电芯特性只能小电流充电。
发生负极析锂后,锂金属不可还原,导致电池容量不可逆衰减。
BMS电池管理系统综述资料优质PPT课件
BMS综述
2.蓄电池荷电状态(SOC)估计
SOC估算方法
模型法
智能算法
其他方法
安 时 模 型
等 效 电 路 模 型
电 化 学 模 型
卡 尔 曼 滤 波 类
数 据 驱 动 类 算 法
递 推 最 小 二 乘
实 验 测 试 法
阻 抗 谱 分 析 法
动 力 学 解 析 法
BMS综述
3.蓄电池健康状态(SOH)估计
常见的 指标参数: 额定电压 ...V 容量 ...Ah, ...mAh 充放电倍率 0.1C, 1C.. 尺寸 18650, 2770120
课题研究背景
除圆柱电芯、棱柱电芯外,还有软包(聚合物)电芯
课题研究背景
BMS发展现状
国外在BMS方面的研究成果相对显著,主要是以集 成化芯片化为特点。典型产品有美国Linear Technology公司产的LTC/LTM系列电池管理芯片, 美国TI公司推出的bq系列电池管理芯片以及美国O2 Micro公司开发的OZ890电池管理芯片等,其主要特 点为体积小,集成度高,具有较强的针对性。
BMS专用芯片主要优势在于多单体高精度信号采集, 以及单体均衡、故障报警等功能的集成,但通用性 差,一般只能应用于特定类型的电池组。
课题研究背景
BMS发展现状
课题研究背景
国内BMS发展
科研方面主要是清华大学、同济大学、北京交通 大学及北京理工大学等几所高校取得成果较多。
产品开发方面,天津的中国汽车技术研究中心以 及力神电池也在合作开发BMS。惠州亿能(专做 BMS)、哈尔滨光宇、BYD、中航锂电,中科院, 德国BOSCH公司,日本TDK集团也正在着手组建 BMS研究中心。
动力电池PACK总成由哪些系统组成?
动力电池PACK总成由哪些系统组成?在讲动力电池PACK制造技术之前,我们可以简单了解下,动力电池PACK总成由哪些系统组成,每个系统又由哪些零件组成?目前,汽车用动力电池基本上由以下5个系统组成:1)动力电池模块;2)结构系统;3)电气系统;4)热管理系统;5) BMS;为了让大家更直观的了解电池PACK,以奥迪A3 Sportback-etron混合动力车的PACK为例。
因为新能源动力电池这个圈子太小,笔者自家的电池PACK就不(害)要(羞)秀了。
因此,在产品开发前期,E-BOM中的零件层级就是按照上述几个系统分类的。
说到E-BOM,笔者简单讲解下E-BOM和M-BOM 两者的区别(很多工程师分不清)。
1)E-BOM :Engineer-Bill of material 工程零件清单,主要是产品设计部门将总成做成爆炸图,且炸到零件的最小层级,然后将子零件进行分类后逐一编制零件号,最后形成的一张清单。
一般公司工程部都有专门的E-BOM工程师,因为产品零件由于各种原因(比如产品质量改进,VAVE等),经常需要更改零件号,维护零件状态,并告知相关部门,因此需要专门的工程师来维护E-BOM。
2)M-BOM:Manufacture-Bill of material 制造零件清单,主要是制造部门根据现场的总成装配情况,确定需要哪些实物零件(参考E-BOM中的零件),然后将实物零件进行汇总,形成的一张清单。
通常M-BOM由工艺工程师来负责编制,维护及更新。
物流部门的物料拉动是根据M-BOM来拉动的。
M-BOM来源于E-BOM,但是不等同于E-BOM。
说到这,估计有的人还是有点懵。
别急,笔者拿模组举个栗子之后,就清楚了。
总而言之,E-BOM关注的是产品设计结构中的零件,而M-BOM 关注的是制造现场的实物。
以上述模块系统为例,在E-BOM中其实是有4个零件,4个零件号,但是如果模块系统全部由模块供应商供应,那么在M-BOM中就只有1个总成零件,1个零件号。
锂电池PACK工艺详解
锂电池PACK工艺详解在当今的能源领域,锂电池凭借其高能量密度、长循环寿命等优势,成为了众多电子设备和电动汽车的动力之源。
而锂电池 PACK 工艺则是将电芯组合成电池包的关键环节,直接影响着电池的性能、安全性和可靠性。
接下来,让我们详细了解一下锂电池 PACK 工艺。
锂电池 PACK 工艺,简单来说,就是将多个单体锂电池通过串并联的方式组合在一起,并配置相应的保护电路、管理系统和外壳等,以满足不同应用场景的需求。
首先是电芯的筛选与配对。
这是确保电池包性能一致性的重要步骤。
电芯在生产过程中,由于工艺和材料的细微差异,其性能参数如容量、内阻、电压等会存在一定的偏差。
在 PACK 工艺中,需要对电芯进行严格的检测和筛选,将性能相近的电芯组合在一起,以减少电池包在使用过程中的不均衡问题。
然后是电池的连接方式。
常见的有焊接和螺栓连接两种。
焊接方式包括激光焊接、电阻焊接等,具有连接牢固、电阻小的优点,但操作难度较大,对工艺要求高。
螺栓连接则相对简单,便于维护和更换,但连接电阻较大,可能会影响电池的性能。
在电池连接完成后,就需要配置保护电路。
保护电路主要包括过充保护、过放保护、过流保护和短路保护等功能。
当电池的电压、电流或温度等参数超出安全范围时,保护电路会及时切断电路,防止电池损坏甚至发生安全事故。
除了保护电路,电池管理系统(BMS)也是锂电池 PACK 工艺中的关键部分。
BMS 可以实时监测电池的电压、电流、温度等参数,并通过算法对电池的状态进行评估和预测。
它可以实现均衡充电,即保证每个电芯都能充满电,提高电池的整体容量和使用寿命。
同时,BMS还能与外部设备进行通信,将电池的信息传递给用户或控制系统。
接下来是散热设计。
锂电池在充放电过程中会产生热量,如果热量不能及时散发,会影响电池的性能和寿命,甚至引发安全问题。
常见的散热方式有风冷、液冷和相变材料散热等。
风冷结构简单,成本低,但散热效果相对较差;液冷散热效率高,但系统复杂,成本较高;相变材料散热则具有体积小、重量轻的优点,但成本也较高。
锂离子电池组管理系统BMS主要功能及关键技术
锂离子电池组管理系统BMS主要功能及关键技术(2019锂离子电池安全国际讨论会(华东)报告稿)锂离子电池优点是能量密度大,使用寿命长,缺点是“娇气”一旦使用不当,轻者会大幅影响寿命和续行距离等使用效率,重者或不当使用积累的结果会燃烧爆炸。
为扬长避短,故使用时必须配能确保安全、高效的使用要求的管理系统BMS。
所以,BMS诸功能中,其与使用安全高效直接相关的主要管理功能,应必不可少。
了解才能管理,而这些主要管理功能所需的测知锂离子电池动态特征参数的技术,国内外目前尚未解决。
故目前的BMS基本没有这些主要管理功能。
这一点可从2018年国标“电动汽车用电池管理系统技术条件”征求意见稿的内容可得到左证。
稿中除“估算SOC”外还有什么?某专家说目前锂离子电池燃烧是“被燃烧”。
我同意这种观点。
我认为造成燃烧的责任主要不在电池,因为知道锂离子电池有可能燃烧这些弱点,才配BMS的。
防止这种事故发生本是BMS首要责任,所以燃烧的起因是BMS该管的事没有管,或没有能力管好而造成的。
下面介绍BMS中几个与安全高效使用直接相关的功能及技术。
1、热管理功能:热管理是BMS安全高效使用的主要管理功能之一,大家也都在做。
但因电芯内无法测温度,所以目前的热管理皆是电芯外的热管理。
因动力锂离子电池热容量较大,故内外热平衡迟后时间较长,则可能在较长时间内,电芯内外温差较大。
所以单做外热管理可能有安全隐患,应以内管理为主。
内管理是测电芯对温度敏感的特征参数为判断依据进行管理,可准确、省时、省电。
在北方使用,若引进内加热技术,可能更省时省电。
2、电芯健康和系统故障检查功能:使用系统的故障检查包括BMS自检皆有成熟技术可用,而电芯健康检查必须有测知电芯特征参数和深入了解这些参数变化因果关系的技术,否则无法对电芯的健康状况进行检查,目前虽也有其专用名词SOH,但很难找到具体电芯健康的检查内容和方法。
我们于2010年前已初步解决了此技术问题,故能进行检查,但还有不满意之处,待后来人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先给初学者一个简单的科普,因为几年前我和人家说起BMS大部分是不知道是什么东
西。
BMS就是Battery Management System,中文就是电池管理系统,一般针对动力电池组,很多电芯串并的情况来说的。
BMS的作用是保护电池安全,延长电池的使用寿命,实时监测电池的状态并把电池的情况告诉给上位机系统。
为什么说BMS才是动力电池PACK厂的核心竞争力,两个方面的原因,第一个原因是电芯最终要成为一个标准品,第二个原因是BMS m复杂,且非常重要。
针对第一个原因,电芯最终要成为一个没有科技含量的标准品,一起来分析一下。
动力电池的电芯最后的发展会像手机电池一样,用不了几年的时间就会达到这种状态。
最后能够在动力电池领域活的很好的电芯厂不会很多的,一大批电芯厂会慢慢出局的。
现在这个状态是因为动力电池的需求还没有完全起来,加之电芯的工艺还没有成熟和稳定,且电芯的尺寸和材料体系各式各样。
其实统一到几种电芯用不了多长时间。
这是市场决定的,一旦动力电池放量,竞争就会加剧,成本的要求就会苛刻,市场就会趋于同质化竞争,慢慢把需求不大的类型淘汰掉,因为没有量的支撑就不会有竞争力(一些高性能或特殊领域的小众应用另当别论),这是自然竞争的结果。
不得不说另外一个事,所有的电芯厂,全球任何一家电芯厂,都是研究电化学和材料相关的,绝大部分的人才都是集中在这个领域的,他们对BMS这种对电子和系统要求极高的东
西很难有好的理解,也不会有好的建树,更不可能做出有竞争力的BMS产品和电池PACK了。
因此最后电芯厂和PACK T 一定会分化,一定会专业分工,这是自然规律,市场竞争的规律。
针对第二个原因,BMS的复杂和系统要求较高,是PACK竞争的基础。
为什么说BMS比较复杂,因为BMS涉及到的东西很多,不但要求懂电池知识很多,还要对整个系统(电动汽车或储能等)很懂,不但要懂电子,还要懂结构,不仅要会硬件,还要会软件,要做好BMS要对电子技术、电工技术、微电子及功率器件技术、散热技术、高压技术、通信技术、抗干扰及可靠性技术等很多东西都要专业才行,它是一个负责的系统工程。
BMS —般会涉及到几个功能:
1、电池保护及安全管理功能;
2、数据采集与分析;
3、S OC/SO堆功能;
4、电量均衡及控制;
5、充放电管理与控制;
6、数据通信与传输;
7、热管理与控制;
8、高压绝缘等检测;
9、异常诊断与分析等。
所有这些功能最终都围绕一个主题,电池与系统的安全。
BMS的核心就是电池状态的检
测与系统安全的控制。
BMS是整车或其他整个系统的核心部件,甚至是中央控制单元,设计之初就要结合整个系统去考虑结构,布线,散热,通信等很多问题。
如果对BMS的认识还停留在消费电池的过充过放过温及过流保护的粗浅认识,那就不要去碰动力电池,也别想做好动力电池。
动力电池的PACK除了要考虑成组时电芯的分容配对等问题,更多的还要设计好BMS系统。
一旦电芯成为标准品,大家的竞争力就在BMS上,因为所有的差异化和能力都会体现在BMS上面。
如果你现在还只看到电芯,我劝你去补补课,否则会死的很难看。
另外其实看看TESLA其实厉害
的是什么,不是电芯而是BMS另外其实BYD的BMS也很不错的。
BMS的人才和团队国内还是稀缺资源(我指的是BMS理解深刻且做的好的,有一定实战
经验的),如果想做动力电池的PACK想做好动力电池的PACK想在动力电池上有一席之的,发现好的BMS团队,赶快去买过来,越快越好,如果还没有这方的资源的也赶快去找,去打听。
电动汽车和储能,新能源汽车最核心的就是动力电池,动力电池最核心的最后可能也会落到BMS上。
最后动力电池的PACK拼的一定是BMS拼是BMS的整个方案的解决实力和服务能力。