2014年广西柳州市中考数学试卷 参考答案与试题解析

合集下载

2014年柳州中考数学说明

2014年柳州中考数学说明

2014年柳州中考数学说明2014年柳州市初中毕业升学考试学科说明数学一、考试目的初中毕业升学考试是义务教育阶段的终结性考试,目的是全面、准确地反映初中毕业生在学科学习方面所达到的水平。

考试结果既是衡量学生是否达到初中毕业标准的重要依据,也是普通高中招生录取的重要依据之一。

二、命题指导思想认真贯彻党的十八大精神,以科学发展观为指导,全面贯彻党的教育方针,贯彻落实国家和广西教育规划纲要精神。

考试应有利于贯彻新课改理念,全面推进素质教育;有利于检查初中教学质量,促进义务教育均衡发展,全面提高教育教学质量;有利于推动课程改革,减轻学生的过重学业负担,促使教师转变教学方式、学生转变学习方式,培养学生的创新精神和实践能力;有利于考试评价制度改革和高一级学校选拔合格的具有学习潜能的新生。

三、命题基本原则(一)导向性原则。

有利于全面实施素质教育,推进城乡公平教育,促进教育均衡发展;有利于继续推进基础教育课程改革,促进教师转变教学方式和学生转变学习方式;有利于培养学生正确的人生观和价值观;有利于初高中教学的衔接,为学生在高中阶段的学习打好基础。

(二)基础性原则。

以学科课程标准为依据,认真达到学习目标的要求;内容要以课程教材作为基础材料,符合学生的实际,加强对学生必备的基础知识、基本方法和基本技能的考查,体现基础性、教育公平和均衡发展要求。

(三)科学性原则。

严格按照规定的程序和要求组织命题,试题内容科学,符合考生的认知水平,难易适当;试卷结构科学、合理,形式规范,具有较高信度、效度和良好的区分度。

(四)注重能力立意。

要在考查学生掌握必要知识的基础上,加强考查学生对知识与技能、过程与方法的理解和掌握情况,联系学生的社会生活实际和科技发展需要的数学知识,考查学生灵活运用基础知识、方法和技能分析问题、解决实际问题的能力,尤其注重考查学生的探究能力和实践能力。

(五)教育性原则。

发挥试题的教育功能,坚持立德树人,加强社会主义核心价值体系教育导向,增强学生社会责任感,关注人与自然、社会的和谐发展。

2014年中考广西柳州市柳北区区一模试题

2014年中考广西柳州市柳北区区一模试题

2014年九年级第一次教学质量检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写在试卷及答题卡指定位置,将条形码准确粘贴在答题卡的条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3.请按照题号顺序在各题目的答题卡区域内作答,超出答题区域书写的答案无效。

4.在草稿纸、试卷上答题无效。

第I 卷(选择题,共36分)一、(本大题共12小题,每小题3分,共36分;下面各题均有四个选项,其中只有一项是符合题意的,请将正确选项填在题后的括号内.) 1 21-的倒数为( ) A. 21 B. 21- C. 2- D. 2 2.四个数﹣1,0,31, 中为无理数的是( ) A. ﹣1 B. C. 31 D. 0 3. 下面四个几何体中,主视图是圆的几何体是( )A. B. C. D.4.如图1,已知∠1=∠2,∠B=40°,则∠3度数为( )A.30°B. 400C. 500D.6005.下列运算中,结果正确的是( )A.4333=1-B.23=5+ 图1C.12=22D.()()9494  -⨯-=-⨯-图16.一个正多边形的每个外角都是36°,这个正多边形的边数是()A. 9B. 10C. 11D. 127.样本数据1,2,7,a,3的平均数是3,则这组数据中的众数是()A. 1B. 2C. 7D. 38.用一个半径为6cm,圆心角为1200的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为()A.2cm B.3cm C.4cm D.6cm9.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>010.方程242xx--=0的解为()A. -2B. 2C. ±2D.无解11.如图2,已知EF是梯形ABCD的中位线,△DEF的面积为4,则梯形ABCD的面积为().A. 12B. 16C. 20D. 2412.如图3,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()图2 图3A.B.C.D.第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分;只要求填写最后结果.)13.在关乎环境的话题中,“雾霾”成为搜索热度最高的关键词,用“Google ”搜索引擎能搜索到与之相关的结果个数约为 84800000 ,这个数用科学记数法表示为 14.分解因式:ax 2﹣9a=15. 如图4,在Rt △ABC 中,∠ACB=90°,AB=10,CD 是AB 边上的中线,则CD 的长是图4 图516.如图5,以平行四边形ABCD 的一边AB 为直径作⊙O ,若⊙O 过点C ,且∠AOC=80°,则∠D 等于17.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图6所示,按此规律排列下去,第n 个图形中有 个实心圆.图618.在Rt △POQ 中,OP=OQ=6,M 是PQ 中点,把一三角尺的直角顶点放在点M 处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A 、B ,连接AB ,在旋转三角尺的过程中,△AOB 的周长存在最小值,则最小值为……(1) (2) (3)三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、验算步骤或推理过程.)19. (本题满分6分)计算:00)4(660tan -+--π20.(本题满分6分)计算:)2()3(22x x x x x -+-21.(6分)如图,AE=AF ,∠AEF=∠AFE ,BE=CF ,说明AB=AC 。

【真题】广西柳州市中考数学试题含答案解析()

【真题】广西柳州市中考数学试题含答案解析()

广西柳州市中考数学试卷一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60°C.36°D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=°.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式x+1≥0的解集是.16.(3.00分)一元二次方程x2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:12345投实心球序次成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A (3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A 作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B 在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y 轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q 为⊙H上的一个动点,求AQ+EQ的最小值.广西柳州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.【分析】利用概率公式计算即可得.【解答】解:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P (A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60°C.36°D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【分析】根据“实际售价=原售价×”可得答案.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=46°.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是x≥﹣1.【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.00分)一元二次方程x2﹣9=0的解是x1=3,x2=﹣3.【分析】利用直接开平方法解方程得出即可.【解答】解:∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为5.【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD==,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BF=,∴BC=+=5,故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:12345投实心球序次成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.22.(8.00分)解方程=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=2【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A (3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A 作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B 在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y 轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q 为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可;(2)求出直线AH的解析式,根据方程即可解决问题;(3)首先求出⊙H的半径,在HA上取一点K,使得HK=,此时K(﹣,﹣),由HQ2=HK•HA,可得△QHK∽△AHQ,推出==,可得KQ=AQ,推出AQ+QE=KQ+EQ,可得当E、Q、K共线时,AQ+QE的值最小,由此求出点E 坐标,点K坐标即可解决问题;【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,可得△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。

广西柳州市2014年中考数学试卷及答案(word解析版)

广西柳州市2014年中考数学试卷及答案(word解析版)

2014 年广西柳州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3 分,满分36分)1.(3 分)(2014?柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()解答:解:从正面看,左边是个正方形,右边是个矩形,故选:A .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)(2014?柳州)在所给的,0,﹣1,3 这四个数中,最小的数是()A.B.0C.﹣1 D.3考点:有理数大小比较.分析:要解答本题可根据正数大于0,0 大于负数,可得答案.解答:解:﹣1<0< < 3.故选:C.点评:本题考查了有理数比较大小,正数大于0,0 大于负数是解题关键.3.(3 分)(2014?柳州)下列选项中,属于无理数的是()A.2 B.πC.D.﹣2考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:B .点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014?柳州)如图,直线l∥OB,则∠ 1的度数是(5.(3 分)(2014?柳州)下列计算正确的选项是( )A . ﹣1=B . ( ) 2=5 C . 2a ﹣ b=abD .=:分式的加减法;实数的运算;合并同类项. :计算题.:A 、原式利用平方根定义化简,计算即可得到结果;B 、原式利用平方根定义化简, 计算即可得到结果;C 、原式不能合并,错误;D 、原式利用同分母分式的加法法则计算得到结果,即可做出判断. 解答:解:A 、原式 =2﹣1=1;故选项错误;B 、原式 =5,故选项正确;C 、原式不能合并,故选项错误;D 、原式 = ,故选项错误.故选 B .点评:此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.考点 :平行线的性质.分析: 根 据两直线平行,同位角相等解答. 解答:解 :∵直线 l ∥OB ,∴∠ 1=60°.故选 D .点评:本题考查平行线的性质,熟记性质是解题的关键.A . 120°B . 30C . 40°D .60°6.( 3分)( 2014?柳州)如图,直角坐标系中的五角星关于 y 轴对称的图形在( ) 考点 :轴对称的性质. 分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于 y 轴对称的图形在第一象限.点评:本 题考查了轴对称的性质.此题难度不大,采用了 “数形结合 ”的数学思想.7.(3 分)(2014?柳州)学校 “清洁校园 ”环境爱护志愿者的年龄分布如图,那么这些志愿者 年龄的众数是( )A .12岁B .13 岁C .14岁D .15 岁 考点 :条形统计图;众数. 分析:根据众数的定义,就是出现次数最多的数,据此即可判断. 解答:解:众数是 14 岁.故选 C .点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解 决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.( 3分)( 2014?柳州)如图,当半径分别是 5和 r 的两圆⊙ O 1和⊙O 2 外切时,它们的圆 心距 O 1O 2=8,则⊙ O 2 的半径 r 为( )B . 第二象限C . 第三象限D .第四象限A .第一象限A.12 B.8 C.5 D.3考点 :圆与圆的位置关系.分析:根 据两圆外切时,圆心距 =两圆半径的和求解.解答:解 :根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是 8﹣ 5=3.故选 D .点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和.考点 :多 边形.分析:根据菱形的对角线互相垂直即可判断.解答: 解 :菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相 垂直.故选 C .点评: 本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正 方形的对角线互相垂直.10.(3 分)(2014?柳州)如图,正六边形的每一个内角都相等,则其中一个内角 α的度数考点 :多边形内角与外角.分析:多 边形的内角和可以表示成( n ﹣2)?180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为 x ,故又可表示成 6x ,列方程可求解. 解答:解 :设这个正六边形的每一个内角的度数为 x ,则 6x= ( 6﹣ 2)?180°, 解得 x=120 °.故这个正六边形的每一个内角的度数为 120 °. 故答案选: B .点评:本 题考查根据多边形的内角和计算公式求多边形的内角的度数, 解答时要会根据公式进行正确运算、变形和数据处理.2211.( 3分)( 2014?柳州)小兰画了一个函数 y=x +ax+b 的图象如图,则关于 x 的方程 x +ax+b=0 的解是( )9. B . 120°C .60°D .30°A .考点:抛物线与 x 轴的交点. 考点 :列表法与树状图法. 专题 :计算题.分析:根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数, 即可求出所求的概率. 解答:解 :列表如下:灯泡 1 发光 灯泡 1 不发光A .无解 C .x=﹣4 D . x=﹣ 1 或 x=40.5,当合上开关时,至B . 0.5C .0.75D .0.95B . x A . 0.灯泡2 发光(发光,发光)(不发光,发光)灯泡2 不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4 种,其中至少有一个灯泡发光的情况有 3 种,则P= =0.75 .故选C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共6小题,每小题3分,满分18 分)13.(3分)(2014?柳州)3的相反数是﹣3 .考点:相反数.分析:此题依据相反数的概念求值.相反数的定义:只有符号不同的两个数互为相反数,0 的相反数是0.解答:解:3 的相反数就是﹣3.点评:此题主要考查相反数的概念.14.(3分)(2014?柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x < y(用“> 或“<”填空).考点:不等式的定义.分析:由图知1号同学比2 号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.如图,等腰梯形ABCD 的周长为16,BC=4 ,CD=3 ,则AB= 5考点:等腰梯形的性质.∴ AD=BC ,∵ BC=4 ,∴ AD=4 ,∵ CD=3 ,等腰梯形ABCD 的周长为16,∴ AB=16 ﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.(3 分)(2014?柳州)方程﹣1=0 的解是x= 2考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0 ,解得:x=2 ,经检验x=2 是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3 分)(2014?柳州)将直线y= x 向上平移7 个单位后得到直线y= x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y= x 向上平移7 个单位所得直线的解析式为:= x+7 .故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.(3 分)(2014?柳州)如图,在△ABC 中,分别以AC,BC 为边作等边△ACD 和等边△BCE .设△ ACD 、△BCE、△ABC 的面积分别是S1、S2、S3,现有如下结论:22①S1:S2=AC 2:BC2;②连接AE ,BD ,则△ BCD ≌△ ECA;2③若AC ⊥BC ,则S1?S2= S3 .其中结论正确的序号是①②③ .考点:全等三角形的判定与性质;等边三角形的性质.分析:① 根据相似三角形面积的比等于相似比的平方判断;② 根据SAS 即可求得全等;③ 根据面积公式即可判断.解答:① S1:S2=AC 2:BC2正确,解:∵△ ADC 与△ BCE 是等边三角形,∴△ ADC∽△ BCE,22∴ S1:S2=AC 2:BC2.② △BCD ≌△ ECA 正确,证明:∵△ ADC 与△ BCE 是等边三角形,∴∠ ACD= ∠BCE=60 °∴∠ ACD+ ∠ACB= ∠BCE+∠ACD ,即∠ ACE= ∠DCB,在△ ACE 与△ DCB 中,,∴△ BCD≌△ ECA (SAS).2③ 若AC ⊥BC ,则S1?S2= S3 正确,解:设等边三角形ADC 的边长=a,等边三角形BCE 边长=b,则△ADC 的高= a,S32= a2b2,∴ S1?S2= S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.三、解答题(共8 小题,满分66分)19.(6 分)(2014?柳州)计算:2×(﹣5)+3.考点:有理数的乘法;有理数的加法.分析:根据异号两数相乘得负,并把绝对值相乘,可得积,再根据有理数的加法,可得答案.解答:解:原式=﹣10+3=﹣7.点评:本题考查了有理数的乘法,先算有理数的乘法,再算有理数的加法,注意运算符号.20.(6 分)(2014?柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:)补充完成下面成绩表单的填写:2)求该运动员这10 次射击训练的平均成绩.考点:折线统计图;统计表;算术平均数.分析:根据折线统计图中提供的信息,补全统计表;(2)求出该运动员射击总环数除以10 即可.解答:解:(1)由折线统计图得出第一次射击环数为:8,第二次射击环数为:9,第三次射击环数为:7,故答案为:8,9,7.点评:本题主要考查了折线统计图及统计表和平均数,解题的关键是能从折线统计图中正确找出数据.21.(6 分)(2014?柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?考点 : 二元一次方程组的应用.分析: 设 大苹果的重量为 xg ,小苹果的重量为 yg ,根据图示可得:大苹果的重量 =小苹果 50g ,大苹果 +小苹果 =300g+50g ,据此列方程组求解.解答: 解 :设大苹果的重量为 xg ,小苹果的重量为 yg , 由题意得, ,解得: .答:大苹果的重量为 200g ,小苹果的重量为 150g .点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列 方程组求解.22.(8分)(2014?柳州)如图,在 △ABC 中, BD ⊥ AC ,AB=6 ,AC=5 ,∠A=30 °.① 求 BD 和 AD 的长;② 求 tan ∠ C 的值.考点 :解直角三角形;勾股定理.专题 : 计算题.分析:(1)由 BD ⊥AC 得到∠ ADB= ∠ADC=90 °,在 Rt △ADB 中,根据含 30 度的直角三 角形三边的关系先得到 BD= AB=3 ,再得到 AD= BD=3 ;( 2)先计算出 CD=2 ,然后在 Rt △ADC 中,利用正切的定义求解. 解答: 解:(1)∵BD ⊥AC ,∴∠ ADB= ∠ ADC=90 °,在 Rt △ADB 中, AB=6 ,∠ A=30 °,∴ BD= AB=3 ,∴ AD= BD=3 ;(2)CD=AC ﹣AD=5 ﹣3 =2 ,在Rt△ADC 中,tan∠C= = = .点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30 度的直角三角形三边的关系.23.(8 分)(2014?柳州)如图,函数y= 的图象过点A(1,2).(1)求该函数的解析式;(2)过点A 分别向x 轴和y 轴作垂线,垂足为B 和C,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x 轴和y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义.分析: (1)将点A 的坐标代入反比例函数解析式,即可求出k 值;(2)由于点A 是反比例函数上一点,矩形ABOC 的面积S=|k| .(3)设图象上任一点的坐标(x ,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y= 的图象过点A (1,2),∴将点A 的坐标代入反比例函数解析式,得2= ,解得:k=2 ,∴反比例函数的解析式为y= ;(2)∵点A 是反比例函数上一点,∴矩形ABO C 的面积S=AC ?AB=|xy|=|k|=2 .(3)设图象上任一点的坐标(x,y),∴过这点分别向x 轴和y 轴作垂线,矩形面积为|xy|=|k|=2 ,∴矩形的面积为定值.点评:点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y= 中k 的几何意义,注意掌握过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.(10分)(2014?柳州)如图,在△ABC 中,∠BAC 的角平分线AD 交BC 于E,交△ABC 的外接圆⊙ O 于D.(1)求证:△ABE ∽△ ADC ;(2)请连接BD ,OB ,OC ,OD ,且OD 交BC于点F,若点F恰好是OD 的中点.求证:四边形OBDC 是菱形.考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:(1)根据圆周角定理求出∠ B=∠D,根据相似三角形的判定推出即可;(2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD ,OC=CD ,根据菱形的判定推出即可.解答:证明:(1)∵∠ BAC 的角平分线AD ,∴∠ BAE= ∠CAD ,∵∠ B=∠ D,∴△ ABE ∽△ ADC ;(2)∵∠ BAD= ∠CAD ,∴弧BD=弧CD,∵ OD 为半径,∴ DO⊥ BC ,∵F为OD 的中点,∴ OB=BD ,OC=CD ,∵ OB=OC ,∴ OB=BD=CD=OC ,∴四边形OBDC 是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.25.(10 分)(2014?柳州)如图,正方形ABCD 的边长为l,AB 边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ ⊥AB 的延长线于点Q.1)求线段PQ 的长;2)问:点P 在何处时,△PFD∽△ BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE ,∠ DPE=90 °,又由正方形ABCD 的边长为l,易证得△ ADP ≌△ QPE ,然后由全等三角形的性质,求得线段PQ 的长;(2)易证得△DAP ∽△ PBF,又由△ PFD∽△ BFP,根据相似三角形的对应边成比例,可得证得PA=PB ,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠ DPE=90°,∴∠ APD+ ∠QPE=90°,∵四边形ABCD 是正方形,∴∠ A=90 °,∴∠ ADP+ ∠ APD=90 °,∴∠ ADP= ∠QPE,∵EQ⊥AB ,∴∠ A= ∠Q=90°,在△ADP 和△QPE 中,,∴△ ADP≌△ QPE(AAS ),∴ PQ=AD=1 ;(2)∵△ PFD ∽△ BFP,∴,∴,∵∠ ADP= ∠EPB,∠CBP=∠A,∴△ DAP∽△ PBF,∴,∴,∴,∴,∴ PA=PB ,∴ PA= AB =∴当PA= 时,△ PFD∽△ BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.(12 分)(2014?柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2 与y 轴相交于点P,与二次函数图象交于不同的两点A (x1,y1),B (x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1< x<3 时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G,使△ABG 的内切圆的圆心落在y 轴上,并求△ GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.2即:设一元二次方程ax +bx+c=0 的两根为x1,x2,则:x1+x2=﹣,x1?x2=能灵活运用这种关系,有时可以使解题更为简单.2例:不解方程,求方程x2﹣3x=15 两根的和与积.2解:原方程变为:x2﹣3x ﹣15=0元二次方程的根与系数有关系:x1+x2=﹣,x1?x2==﹣15.考点:二次函数综合题;完全平方公式;根与系数的关系;待定系数法求一次函数解析式;二次函数的图象;待定系数法求二次函数解析式;三角形的内切圆与内心.专题:压轴题.分析:(1)设二次函数解析式为y=ax2+1,由于点(﹣1,)在二次函数图象上,把该点2的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x= ﹣1,x=0 ,x=3 时y的值,然后结合图象就可得到y 的取值范围.(3)由于△ABG 的内切圆的圆心落在y轴上,因此GP平分∠ AGB .过点A 作GP的对称点A ′,则点A ′必在BG 上.由于点A(x1,y1)、B(x2,y2)在直线y=kx+2 上,从而可以得到点A 的坐标为(x1,kx1+2)、A′的坐标为(﹣x1,kx1+2)、B 的坐标为(x2,kx 2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).由于点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,可用含有k、x1、x2 的代数式表示n.由于A、B 是直线y=kx+2 与抛物线y= x1 2 3 4+1的交点,由根与系数的关系可得:x1+x2=4k,x1?x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.由S△ABG=S△APG+S△BPG,可以得到5△ABG =x 2﹣解答:(1)解:由于二次函数图象的顶点坐标为(0,1),2因此二次函数的解析式可设为y=ax 2+1 .2∵抛物线y=ax 2+1过点(﹣1,),∴ =a+1 .解得:a= .∴二次函数的解析式为:y= x2+1.(2)解:当x=﹣1时,y= ,当x=0 时,y=1 ,当x=3 时,y= ×32+1= ,结合图1可得:当﹣1<x<3 时,y的取值范围是1≤y< .(3)① 证明:∵△ ABG 的内切圆的圆心落在y 轴上,∴ GP 平分∠ AGB .∴直线GP 是∠ AGB 的对称轴.过点A 作GP 的对称点A′,如图2,则点A ′一定在BG 上.∵点A 的坐标为(x1,y1),∴点A ′的坐标为(﹣x1,y1).∵点A (x1,y1)、B (x2,y2)在直线y=kx+2 上,∴ y1=kx1+2,y2=kx 2+2.∴点A′的坐标为(﹣x1,kx1+2)、点B 的坐标为(x2,kx2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).∵点A ′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,x1= =4 ,所以当k=0 时,S△ABG 最小,最小值为4.解得:2∵ A(x1,y1),B(x2,y2)是直线y=kx+2 与抛物线y= x2+1 的交点,∴x1、x2是方程kx+2= x2+1即x2﹣4kx﹣4=0 的两个实数根.∴由根与系数的关系可得;x1+x2=4k ,x1?x 2= ﹣4.∴ n= =﹣2+2=0.∴点G 的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.② 解:过点A 作AC ⊥ OP,垂足为C,过点B 作BD ⊥OP,垂足为D,如图2,∵直线y=kx+2 与y 轴相交于点P,∴点P 的坐标为(0,2).∴ PG=2 .∴ S△ABG=S△APG+S△ BPG= PG?AC+ PG?BD= PG?(AC+BD )= ×2 ×(﹣x1+x2)12=x2﹣x1==4 .∴当k=0 时,S△ ABG最小,最小值为4.∴△ GAB 面积的最小值为4.≡1点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的图象、三角形的内切圆、根与系数的关系、完全平方公式等知识,综合性比较强,有一定的难度.分析:关于x 的方程x* 2+ax+b=0 的解是抛物线y=x 2+ax+b 与x 轴交点的横坐标.解答:解:如图,∵函数y=x 2+ax+b的图象与x 轴交点坐标分别是(﹣1,0),(4,0),2∴关于x 的方程x +ax+b=0 的解是x= ﹣1 或x=4.2y=ax +bx+c (a,b,c 是常数,a≠0)2与x 轴的交点坐标,令y=0 ,即ax2+bx+c=0 ,解关于x 的一元二次方程即可求得交点横坐标.12.(3 分)(2014?柳州)如图,每个灯泡能否通电发光的概率都是少有一个灯泡发光的概率是()分析:根据等腰梯形的性质可得出AD=BC ,再由BC=4 ,CD=3 ,得出AB 的长.解答:解:∵四边形ABCD 为等腰梯形,=4 .。

2014柳州名校中考试题( 一模)

2014柳州名校中考试题( 一模)

2014年中考数学模拟试卷(三)一、选择题(本大题共有8小题,每小题3分,共24分.请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣3相反数是().B.﹣D2.(3分)下列运算正确的是().B3.下列图形中,不是中心对称图形是()4.(3分)(2012•宁德)已知正n边形的一个内角为135°,则边数n的值是()5.(3分)(2010•眉山)下列说法不正确的是().某种彩票中奖的概率是,买1000张该种彩票一定会中奖6.(3分)(2010•海南)在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()7.(3分)(2013•江都市模拟)如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()8.(3分)(2013•惠山区一模)已知点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上且OA⊥OB,则tanB为().B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025 用科学记数法表示为.10.(3分)(2011•邵阳)函数y=中,自变量x的取值范围是.11.(3分)分解因式:m3﹣4m2+4m=.12.(3分)(2013•江都市模拟)已知⊙O1与⊙O2相交,两圆半径分别为2和m,且圆心距为7,则m的取值范围是13.(3分)(2013•江都市模拟)若点(a,b)在一次函数y=2x﹣3上,则代数式3b﹣6a+1的值是.14.(3分)(2011•枣阳市模拟)方程的解为x=.15.(3分)(2013•江都市模拟)如图,⊙O的直径CD⊥EF,∠OEG=30°,则∠DCF=°.16.(3分)如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是.17.(3分)(2013•江都市模拟)如图,点E、F分别是正方形纸片ABCD的边BC、CD上一点,将正方形纸片ABCD分别沿AE、AF折叠,使得点B、D恰好都落在点G处,且EG=2,FG=3,则正方形纸片ABCD的边长为.18.(3分)(2013•惠山区一模)图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB的长为.三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:2﹣1+cos30°+|﹣5|﹣(π﹣2013)0.(2)化简:(1+)÷.20.(6分)解不等式组,并将解集在数轴上表示.21.(8分)(2011•青岛)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的中位数是℃;(3)计算这8天的日最高气温的平均数.22.(6分)(2012•苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).23.(8分)在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.24.(10分)(2011•莆田)如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A 在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数的图象与边BC交于点F.(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?25.(10分)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.26.(12分)(2013•江都市模拟)已知A、B两地相距630千米,在A、B之间有汽车站C站,如图1所示.客车由A地驶向C站、货车由B地驶向A地,两车同时出发,匀速行驶,货车的速度是客车速度的.图2是客、货车离C站的路程y1、y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求客、货两车的速度;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)求E点坐标,并说明点E的实际意义.27.(12分)如图1,已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.以AQ、PQ为边作平行四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)用含有t的代数式表示AE=.(2)当t为何值时,平行四边形AQPD为矩形.(3)如图2,当t为何值时,平行四边形AQPD为菱形.(14分)(2012•漳州二模)如图,在平面直角坐标系中,O是坐标原点,直线与x 轴,y轴分别交于B,C两点,抛物线经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.(1)求抛物线的解析式及点A的坐标;(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C 运动,动点N从点C出发沿CA以每秒个单位长度的速度向点A运动,运动时间和点P 相同.①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.2014年中考数学模拟试卷(三)一、选择题(本大题共有8小题,每小题3分,共24分.请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣3相反数是().B.﹣D.BD、利用完全平方公式展开得到结果,即可做出判断.解答:解:A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式.某种彩票中奖的概率是,买1000张该种彩票一定会中奖.了解一批电视机的使用寿命适合用抽样调查分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.解答:解:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.点评:用到的知识点为:破坏性较强的调查应采用抽样调查的方式;随机事件可能发生,也可能不6.(3分)(2010•海南)在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()A.﹣1 B. 0 C. 1 D. 2对于函数来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.解答:解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,所以1﹣k<0,解得k>1.故选D.点评:本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式中k的意义不理解,直接认为k<0,错选A.7.(3分)(2013•江都市模拟)如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π的母线长为5,代入公式求得即可.解答:解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B.点评:本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面8.(3分)(2013•惠山区一模)已知点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上且OA⊥OB,则tanB 为().B.C.D.析:首先设出点A和点B的坐标分别为:(x1,)、(x2,﹣),设线段OA所在的直线的解析式为:y=k1x,线段OB所在的直线的解析式为:y=k2x,然后根据OA⊥OB,得到k1k2=•(﹣)=﹣1,然后利用正切的定义进行化简求值即可.答:解:设点A的坐标为(x1,),点B的坐标为(x2,﹣),设线段OA所在的直线的解析式为:y=k1x,线段OB所在的直线的解析式为:y=k2x,则k1=,k2=﹣,∵OA⊥OB,∴k1k2=•(﹣)=﹣1整理得:(x1x2)2=16,∴tanB=======.故选B.本题考查的是反比例函数综合题,解题的关键是设出A、B两点的坐标,然后利用互相垂直的两条直线的比例系二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.10.(3分)(2011•邵阳)函数y=中,自变量x的取值范围是x≥1.11.(3分)分解因式:m3﹣4m2+4m=m(m﹣2)2.12.(3分)(2013•江都市模拟)已知⊙O1与⊙O2相交,两圆半径分别为2和m,且圆心距为7,则m的取值范围是5<m<9.13.(3分)(2013•江都市模拟)若点(a,b)在一次函数y=2x﹣3上,则代数式3b﹣6a+1的值是﹣8.14.(3分)(2011•枣阳市模拟)方程的解为x=9.15.(3分)(2013•江都市模拟)如图,⊙O的直径CD⊥EF,∠OEG=30°,则∠DCF=30°.考点:圆周角定理;垂径定理.3797161分析:由⊙O的直径CD⊥EF,由垂径定理可得=,又由∠OEG=30°,∠EOG的度数,又由圆周角定理,即可求得答案.解答:解:∵⊙O的直径CD⊥EF,∴=,∵∠OEG=30°,∴∠EOG=90°﹣∠OEG=60°,∴∠DCF=∠EOG=30°.故答案为:30°.点评:此题考查了圆周角定理与垂径定理.此题难度不大,注意掌握数形结合思想的应用.16.(3分)如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是﹣1≤x≤2.17.(3分)(2013•江都市模拟)如图,点E、F分别是正方形纸片ABCD的边BC、CD上一点,将正方形纸片ABCD分别沿AE、AF折叠,使得点B、D恰好都落在点G处,且EG=2,FG=3,则正方形纸片ABCD的边长为6.18.(3分)(2013•惠山区一模)图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB的长为+1.专题:几何图形问题;压轴题.分析:根据题中信息可得图2、图3面积相等;图2可分割为一个正方形和四个小三角形;设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a)2,四个小三角形面积和为2a2,解得a=1.AB就知道等于多少了.解答:解:设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a)2,四个小三角形面积和为2a2,列式得(2a+a)2+2a2=8+4,解得a=1,则AB=1+.点评:解此题的关键是抓住图3中的AB在图2中是哪两条线段组成的,再列出方程求出即可.三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:2﹣1+cos30°+|﹣5|﹣(π﹣2013)0.(2)化简:(1+)÷.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=+×+5﹣1,再进行二次根式的乘法运算,然后进行有理数的加减运算;(2)先把括号内通分和把除法化为乘法,然后把分子分解后约分即可.解答:(1)解:原式=+×+5﹣1=++5﹣1=6;(2)原式=•=x.点评:本题考查了分式的混合运算:先把分式的分子或分母因式分解,再进行通分或约分,得到最20.(6分)解不等式组,并将解集在数轴上表示.分析:求出每个不等式的解集,找出不等式组的解集即可.解答:解:∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2,在数轴上表示不等式组的解集为.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不21.(8分)(2011•青岛)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的中位数是 2.5℃;(3)计算这8天的日最高气温的平均数.(3)求加权平均数数,8天的温度和÷8就为所求.解答:解:(1)如图所示.(2)∵这8天的气温从高到低排列为:4,3,3,3,2,2,1,1∴中位数应该是第4个数和第5个数的平均数:(2+3)÷2=2.5.(3)(1×2+2×2+3×3+4×1)÷8=2.375℃.8天气温的平均数是2.375.点评:本题考查了折线统计图,条形统计图的特点,以及中位数的概念和加权平均数的知识点.22.(6分)(2012•苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).求出概率.解答:解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).点评:此题主要考查了利用树状图求概率,根据已知正确列举出所有结果,进而得出概率是解题关23.(8分)在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.推出BM=DM,即可求出答案.解答:解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.点评:本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长.24.(10分)(2011•莆田)如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数的图象与边BC交于点F.(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?专题:综合题.分析:(1)设E(x1,),F(x2,),x1>0,x2>0,根据三角形的面积公式得到S1=S2=k,利用S1+S2=2即可求出k;(2)设,,利用S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=﹣+5,根据二次函数的最值问题即可得到当k=4时,四边形OAEF的面积有最大值,S四边形OAEF=5,此时AE=2.解答:解:(1)∵点E、F在函数y=(x>0)的图象上,∴设E(x1,),F(x2,),x1>0,x2>0,∴S1=,S2=,∵S1+S2=2,∴=2,∴k=2;(2)∵四边形OABC为矩形,OA=2,OC=4,设,,∴BE=4﹣,BF=2﹣,∴S△BEF=﹣k+4,∵S△OCF=,S矩形OABC=2×4=8,∴S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=+4,=﹣+5,∴当k=4时,S四边形OAEF=5,∴AE=2.当点E运动到AB的中点时,四边形OAEF的面积最大,最大值是5.点评:本题考查了反比例函数k的几何含义和点在双曲线上,点的横纵坐标满足反比例的解析式.也考查了二次的顶点式及其最值问题.25.(10分)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.由平行得比例列出关系式求出AF的长,根据AF﹣AC即可求出CF的长.解答:解:(1)作OH⊥AC于H,则AH=AC=4,在Rt△AOH中,AH=4,tanA=tan∠BDC=,∴OH=3,∴半径OA==5;(2)∵AB⊥CD,∴E为CD的中点,即CE=DE,在Rt△AEC中,AC=8,tanA=,设CE=3k,则AE=4k,解得:k=,则CE=DE=,AE=,∵BF为圆O的切线,∴FB⊥AB,又∵AE⊥CD,∴CE∥FB,∴=,即=,解得:AF=,则CF=AF﹣AC=.点评:此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟26.(12分)(2013•江都市模拟)已知A、B两地相距630千米,在A、B之间有汽车站C站,如图1所示.客车由A地驶向C站、货车由B地驶向A地,两车同时出发,匀速行驶,货车的速度是客车速度的.图2是客、货车离C站的路程y1、y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求客、货两车的速度;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)求E点坐标,并说明点E的实际意义.考点:一次函数的应用.3797161分析:(1)设客车的速度为a km/h,则货车的速度为km/h,根据题意列出有关v的一元一次方程解得即可;(2)根据货车两小时到达C站,可以设x小时到达C站,列出关系式即可;(3)两函数的图象相交,说明两辆车相遇,即客车追上了货车.解答:解:(1)设客车的速度为a km/h,则货车的速度为km/h,由题意列方程得:9a+×2=630,解之,a=60,∴=45,答:客车的速度为60 km/h,货车的速度为45km/h(2)方法一:由(1)可知P(14,540),∵D (2,0),∴y2=45x﹣90;方法二:由(1)知,货车的速度为45km/h,两小时后货车的行驶时间为(x﹣2),∴y2=45(x﹣2)=45x﹣90,(3)方法一:∵F(9,0)M(0,540),∴y1=﹣60x+540,由,解之,∴E (6,180)点E的实际意义:行驶6小时时,两车相遇,此时距离C站180km;方法二:点E表示两车离C站路程相同,结合题意,两车相遇,可列方程:45x+60x=630,x=6,∴540﹣60x=180,∴E (6,180),点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其27.(12分)如图1,已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.点P由B出发沿BA方向向点A匀速运动,同时点Q 由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.以AQ、PQ为边作平行四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)用含有t的代数式表示AE=5﹣t.(2)当t为何值时,平行四边形AQPD为矩形.(3)如图2,当t为何值时,平行四边形AQPD为菱形.(3)利用菱形的性质得到.解答:解:(1)∵Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.∴由勾股定理得:AB=10cm,∵点P由B出发沿BA方向向点A匀速运动,速度均为2cm/s,∴BP=2tcm,∴AP=AB﹣BP=10﹣2t,∵四边形AQPD为平行四边形,∴AE==5﹣t;(2)当▱AQPD是矩形时,PQ⊥AC,∴PQ∥BC,∴△APQ∽△ABC∴即解之t=∴当t=时,▱AQPD是矩形;(3)当▱AQPD是菱形时,DQ⊥AP,则COS∠BAC==即解之t=∴当t=时,□AQPD是菱形.点评:本题考查了相似形的综合知识,正确的利用平行四边形、矩形、菱形的性质得到正方形是解28.(14分)(2012•漳州二模)如图,在平面直角坐标系中,O是坐标原点,直线与x轴,y轴分别交于B,C两点,抛物线经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.(1)求抛物线的解析式及点A的坐标;(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒个单位长度的速度向点A运动,运动时间和点P相同.①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.专题:代数几何综合题;压轴题;动点型.分析:(1)由直线与x轴,y轴分别交于B,C两点,分别令x=0和y=0求出B与C的坐标,又抛物线经过B,C两点,把求出的B与C的坐标代入到二次函数的表达式里得到关于b,c的方程,联立解出b和c即可求出二次函数的解析式.又因A点是二次函数与x轴的另一交点令y=0即可求出点A的坐标.(2)连接OM,PM与⊙O′相切作为题中的已知条件来做.由直径所对的圆周角为直角可得∠OMC=90°从而得∠OMB=90°.又因为O′O是⊙O′的半径,O′O⊥OP得到OP为⊙O′的切线,然后根据从圆外一点引圆的两条切线,切线长相等可得OP=PM,根据等边对等角得∠POM=∠PMO,然后根据等角的余角相等可得∠PMB=∠OBM,再根据等角对等边得PM=PB,然后等量代换即可求出OP的长,加上OA的长即为点P运动过的路程AP,最后根据时间等于路程除以速度即可求出时间t的值.(3)①由路程等于速度乘以时间可知点P走过的路程AP=3t,则BP=15﹣3t,点Q走过的路程为BQ=3t,然后过点Q作QD⊥OB于点D,证△BQD∽△BCO,由相似得比列即可表示出QD的长,然后根据三角形的面积公式即可得到S关于t的二次函数关系式,然后利用t=﹣时对应的S的值即可求出此时的最大值.②要使△NCQ为直角三角形,必须满足三角形中有一个直角,由BA=BC可知∠BCA=∠BAC,所以角NCQ不可能为直角,所以分两种情况来讨论:第一种,当角NQC为直角时,利用两组对应角的相等可证△NCQ∽△CAO,由相似得比例即可求出t的值;第二种当∠QNC=90°时,也是证三角形的相似,由相似得比例求出t的值.解答:解:(1)在y=﹣x+9中,令x=0,得y=9;令y=0,得x=12.∴C(0,9),B(12,0).又抛物线经过B,C两点,∴,解得∴y=﹣x2+x+9.于是令y=0,得﹣x2+x+9=0,解得x1=﹣3,x2=12.∴A(﹣3,0).(2)当t=3秒时,PM与⊙O′相切.连接OM.∵OC是⊙O′的直径,∴∠OMC=90°.∴∠OMB=90°.∵O′O是⊙O′的半径,O′O⊥OP,∴OP是⊙O′的切线.而PM是⊙O′的切线,∴PM=PO.∴∠POM=∠PMO.又∵∠POM+∠OBM=90°,∠PMO+∠PMB=90°,∴∠PMB=∠OBM.∴PM=PB.∴PO=PB=OB=6.∴PA=OA+PO=3+6=9.此时t=3(秒).∴当t=3秒,PM与⊙O′相切.(3)①过点Q作QD⊥OB于点D.∵OC⊥OB,∴QD∥OC.∴△BQD∽△BCO.∴=.又∵OC=9,BQ=3t,BC=15,∴=,解得QD=t.∴S△BPQ=BP•QD=.即S=.S=.故当时,S最大,最大值为.②存在△NCQ为直角三角形的情形.∵BC=BA=15,∴∠BCA=∠BAC,即∠NCM=∠CAO.∴△NCQ欲为直角三角形,∠NCQ≠90°,只存在∠NQC=90°和∠QNC=90°两种情况.当∠NQC=90°时,∠NQC=∠COA=90°,∠NCQ=∠CAO,∴△NCQ∽△CAO.∴=.∴=,解得t=.当∠QNC=90°时,∠QNC=∠COA=90°,∠QCN=∠CAO,∴△QCN∽△CAO.∴=.∴=,解得.综上,存在△NCQ为直角三角形的情形,t的值为和.点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法,7. 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?。

广西柳州市中考数学试卷(含答案解析)

广西柳州市中考数学试卷(含答案解析)

广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的.每小题选对得3分,选错,不选或多选均得0分)1.(3分)(2015•柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()考点:简单几何体的三视图.分析:根据几何体的俯视图的概念:俯视图是从上向下看得到的图形进行解答即可得到答案.解答:解:根据俯视图的概念可知,几何体的俯视图是A图形,故选:A.点评:本题考查的是几何体的三视图,掌握主视图、左视图和俯视图分别是从前向后、从左向右和从上向下看所得的图形是解题的关键,2.(3分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元考点:有理数的加减混合运算;有理数大小比较.专题:应用题.分析:根据存折中的数据进行解答.解答:解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.点评:本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.3.(3分)(2015•柳州)某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是()A.147 B.151 C.152 D.156考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:由于此数据已经按照从小到大的顺序排列了,发现152处在第3位.所以这组数据的中位数是152,故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.(3分)(2015•柳州)如图,图中∠α的度数等于()A.135°B.125°C.115°D.105°考点:对顶角、邻补角.分析:根据邻补角互补解答即可.解答:解:∠α的度数=180°﹣45°=135°.故选A.点评:此题考查邻补角定义,关键是根据邻补角互补分析.5.(3分)(2015•柳州)下列图象中是反比例函数y=﹣图象的是()考点:反比例函数的图象.分析:利用反比例函数图象是双曲线进而判断得出即可.解答:解:反比例函数y=﹣图象的是C.故选:C.点评:此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.6.(3分)(2015•柳州)如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A.60°B.70°C.80°D.90°考点:圆周角定理.专题:计算题.分析:利用直径所对的圆周角为直角判断即可.解答:解:∵BC是⊙O的直径,∴∠A=90°.故选D.点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.7.(3分)(2015•柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25% B.50% C.75% D.85%考点:可能性的大小.分析:抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案.解答:解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=.故选:B.点评:本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2015•柳州)如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1C.2D.考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选C.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.9.(3分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.x y D.4x考点:同类项.分析:根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.解答:解:与2xy是同类项的是xy.故选C.点评:此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.10.(3分)(2015•柳州)如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.11.(3分)(2015•柳州)如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0D.x>4考点:抛物线与x轴的交点.分析:利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.解答:解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.点评:此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.12.(3分)(2015•柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.解答:解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.点评:本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2015•柳州)计算:a×a=a2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:a×a=a2.故答案为:a2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.14.(3分)(2015•柳州)如图,△ABC≌△DEF,则EF=5.考点:全等三角形的性质.分析:利用全等三角形的性质得出BC=EF,进而求出即可.解答:解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.点评:此题主要考查了全等三角形的性质,得出对应边是解题关键.15.(3分)(2015•柳州)直线y=2x+1经过点(0,a),则a=1.考点:一次函数图象上点的坐标特征.分析:根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.解答:解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.点评:本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.16.(3分)(2015•柳州)如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=.考点:锐角三角函数的定义;勾股定理.分析:根据锐角三角函数定义直接进行解答.解答:解:∵在Rt△ABC中,∠C=90°,AB=13,AC=7,∴sinB==.故答案是:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.17.(3分)(2015•柳州)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.考点:一元二次方程的解.分析:将x=1代入方程得到关于m的方程,从而可求得m的值.解答:解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.点评:本题主要考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m的方程是解题的关键.18.(3分)(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.考点:相似三角形的判定与性质;矩形的性质.专题:应用题.分析:设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解答:解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴=,解得:x=,则EH=.故答案为:.点评:此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.三、解答题(本大题共8小题,满分66分)19.(6分)(2015•柳州)计算:+.考点:分式的加减法.分析:根据分式的加法计算即可.解答:解:+==1.点评:此题考查分式的加减法,关键是根据同分母的分式相加减的运算分析.20.(6分)(2015•柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?考点:一元一次方程的应用;数轴.分析:设蜗牛还需要x分钟到达B点.根据路程=速度×时间列出方程并解答.解答:解:设蜗牛还需要x分钟到达B点.则(6+x)×=5,解得x=4.答:蜗牛还需要4分钟到达B点.点评:本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(6分)(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:勾股定理;三角形中位线定理.分析:(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.解答:解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.点评:此题主要考查了勾股定理以及平行线分线段成比例定理,得出BD=AE是解题关键.22.(8分)(2015•柳州)如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人生.(1)请你求出图中的x值;(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?考点:扇形统计图;用样本估计总体.分析:(1)根据有理数的减法,可得答案;(2)根据喜爱跳绳的同学除以跳绳的圆心角所占的比例,可得答案.解答:解:(1)x=360°﹣70°﹣65°﹣50°﹣96°=79°;(2)这个年级共有144÷=570人.点评:本题考查的是扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)(2015•柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;二次函数的最值.分析:(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.解答:解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+当k=3时,S有最大值.S最大值=.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.24.(10分)(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C 出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形.专题:动点型.分析:(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.解答:解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8.FC=BC﹣AD=18﹣12=6.①当P Q⊥BC,则BE+CE=18.即:2t+t=18,∴t=6;②当QP⊥PC,∴PE=4,CE=3+t,QE=12﹣2t﹣(3+t)=9﹣3t,∴16=(3+t)(9﹣3t),解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=3或时,△PQC是直角三角形.点评:此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.25.(10分)(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.考点:切线的性质;平行四边形的性质.分析:(1)根据弦切角定理和圆周角定理证明∠ABC=∠ACB,得到答案;(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.解答:证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,∴∠ABE=∠DAE,又∠EAC=∠EBC,∴∠DAC=∠ABC,∵AD∥BC,∴∠DAC=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)作AF⊥CD于F,∵四边形ABCE是圆内接四边形,∴∠ABC=∠AEF,又∠ABC=∠ACB,∴∠AEF=∠ACB,又∠AEB=∠ACB,∴∠AEH=∠AEF,在△AEH和△AEF中,,∴△AEH≌△AEF,∴EH=EF,∴CE+EH=CF,在△ABH和△ACF中,,∴△ABH≌△ACF,∴BH=CF=CE+EH.点评:本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.26.(12分)(2015•柳州)如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.考点:二次函数综合题.专题:综合题.分析:(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,﹣x2+x﹣3).根据NP=AB=列出方程(x﹣)2+(﹣x2+x﹣3)2=()2,解方程得到点P坐标,再计算得出PM2+PN2=MN2,根据勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.解答:(1)解:∵y=﹣(x2﹣7x+6)=﹣(x2﹣7x)﹣3=﹣(x﹣)2+,∴抛物线的解析式化为顶点式为:y=﹣(x﹣)2+,顶点M的坐标是(,);(2)解:∵y=﹣(x2﹣7x+6),∴当y=0时,﹣(x2﹣7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==3.设直线BC的解析式为y=kx+b,∵B(6,0),C(0,﹣3),∴,解得,∴直线BC的解析式为:y=x﹣3,令x=,得y=×﹣3=﹣,∴R点坐标为(,﹣);(3)证明:设点P坐标为(x,﹣x2+x﹣3).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即(x﹣)2+(﹣x2+x﹣3)2=()2,化简整理得,x4﹣14x3+65x2﹣112x+60=0,(x﹣1)(x﹣2)(x﹣5)(x﹣6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴PM2=(2﹣)2+(2﹣)2=,PN2=(2﹣)2+22==,MN2=()2=,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.点评:本题是二次函数的综合题,其中涉及到二次函数的图象与性质、待定系数法求一次函数的解析式、轴对称﹣最短路线问题以及切线的判定等知识,综合性较强,难度适中.第(3)问求出点P 的坐标是解题的关键.。

柳州数学中考试题及答案

柳州数学中考试题及答案

柳州数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...答案:B2. 一个二次函数的图像开口向上,且顶点坐标为(1, -2),下列哪个选项是该函数的解析式?A. y = (x-1)^2 - 2B. y = (x+1)^2 - 2C. y = (x-1)^2 + 2D. y = (x+1)^2 + 2答案:A3. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 8B. 11C. 13D. 16答案:C4. 一个圆的半径为2,那么这个圆的面积是多少?A. 4πB. 8πC. 12πD. 16π答案:B5. 一个数列的前三项为1, 4, 9,那么这个数列的第四项是多少?A. 16B. 25C. 36D. 49答案:B6. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 8答案:A7. 一个等差数列的前三项为2, 5, 8,那么这个数列的第五项是多少?A. 11B. 12C. 13D. 148. 一个圆的直径为10,那么这个圆的周长是多少?A. 10πB. 20πC. 30πD. 40π答案:B9. 一个三角形的内角和是多少?A. 90°B. 180°C. 270°D. 360°答案:B10. 一个数的平方根是它本身,那么这个数是多少?A. 0B. 1C. -1D. 以上都不是答案:A二、填空题(每题3分,共15分)11. 一个数的立方等于8,那么这个数是____。

答案:212. 一个数的倒数等于它本身,那么这个数是____。

13. 一个等腰直角三角形的斜边长为5,那么这个三角形的直角边长是____。

答案:5/√214. 一个圆的周长为6π,那么这个圆的半径是____。

答案:315. 一个数的绝对值等于它本身,那么这个数是____。

中考数学总复习专题05 平面直角坐标系知识要点及考点典型题型和解题思路

中考数学总复习专题05 平面直角坐标系知识要点及考点典型题型和解题思路

专题05 平面直角坐标系【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。

【注意】a、b的先后顺序对位置的影响。

平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。

两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。

平面直角坐标系原点:两坐标轴交点为其原点。

坐标平面:坐标系所在的平面叫坐标平面。

象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。

按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。

【注意】坐标轴上的点不属于任何象限。

点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。

知识点二点的坐标的有关性质(考点)性质一各象限内点的坐标的符号特征象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负性质二坐标轴上的点的坐标特征1.x轴上的点,纵坐标等于0;2.y轴上的点,横坐标等于0;3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a +XXX性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结:坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴Y 轴原平行X 轴平行Y 轴第一第二第三第四第一、第二、XyP2P mm -nOXy P3Pnm -nOn -XyP1Pnn -mO【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可. 【详解】解:A. 小李现在位置为第1排第4列,故A 选项错误; B. 小张现在位置为第3排第2列,故B 选项正确; C. 小王现在位置为第2排第3列,故C 选项错误; D. 小谢现在位置为第4排第4列,故D 选项错误. 故选:B .变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )点象限 象限 象限 象限 三象限 四象限 (x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)A .(6,3)B .(6,4)C .(7,4)D .(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话: 小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6, 故选:D .变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( ) A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5, ∴5x =, ∴5x =±,∵点M 在第四象限内, ∴x=5,y=-4,即点M 的坐标为(5,-4) 故选:D.变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为( )A .(4,2)B .(2,8)C .(8,4)D .(8,2)【答案】D【分析】根据菱形的性质得出D 的坐标(0,2),进而得出点B 的坐标即可. 【详解】连接AC ,BD ,AC 、BD 交于点E ,∵四边形ABCD 是菱形,OA =4,AC =4, ∴ED =OA =EB =4,AC =2EA =4, ∴BD =8,OD =EA =2 ∴点B 坐标为(8,2), 故选:D .变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是( ) A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=,∴2m=;∴2224m+=+=,∴点P为:(4,0);故选:A.变式2-4.(2021·广西一模)点M(3,1)关于y轴的对称点的坐标为()A.(﹣3,1)B.(3,﹣1)C.(﹣3.﹣1)D.(1,3)【答案】A【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点M(3,1)关于y轴的对称点的坐标为(﹣3,1),故选:A.考查题型三点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2021的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2021÷4=504…3,A2021在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2021÷4=504 (3)∴A2021在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2021的横坐标为﹣(2021﹣3)×12=﹣1008.∴A 2021的坐标为(﹣1008,0). 故选A .变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+, 则2019A 的坐标是()1009,0, 故选C .变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0【答案】B【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3), ∴OA=4,OB=3,∴,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0). 故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1 B .32-C .43D .4或-4【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断. 【详解】解:∵点(,2)A a 是第二象限内的点, ∴0a <,四个选项中符合题意的数是32-, 故选:B变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D .变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为()A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选:A .4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)【答案】A【详解】解:∵点P (m+2,2m ﹣4)在x 轴上,∴2m ﹣4=0,解得:m =2,∴m+2=4,则点P 的坐标是:(4,0).故选:A .5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =() A .﹣1 B .﹣3 C .﹣2 D .0【答案】A【详解】由P (m +3,m +1)在平面直角坐标系的x 轴上,得m +1=0.解得:m =﹣1,故选:A .2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M 在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2021·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2021·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 【答案】C【解析】由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( ) A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C .4.(2012·江苏中考模拟)在平面直角坐标系中,点P (-3,4)到x 轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.5.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5) C.(1,-3) D.(-5,5)【答案】B【详解】将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.2.(2021·山东中考模拟)已知点P(a+1,2a﹣3)关于x轴的对称点在第二象限,则a的取值范围是()A.﹣1<a<B.﹣<a<1 C.a<﹣1 D.a>【答案】C【详解】依题意得P点在第三象限,∴,解得:a <﹣1.故选C .3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( ) A .﹣1B .1C .2D .3 【答案】B【解析】关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=1 4.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 【答案】B【解析】∵点P (a +1,2a -3)关于x 轴的对称点在第一象限,∴点P 在第四象限。

中考柳州数学试卷真题答案

中考柳州数学试卷真题答案

中考柳州数学试卷真题答案题目:中考柳州数学试卷真题答案【正文开始】2.(10分)已知等差数列的首项是8,公差是3,求这个等差数列的前10项的和。

解析:根据等差数列的性质,第n项可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

已知a1 = 8,d = 3,代入公式可得:a10 = 8 + (10-1)3 = 8 + 27 = 35在等差数列中,前n项和可以表示为:Sn = (n/2)(a1 + an)。

已知a1 = 8,a10 = 35,代入公式可得:S10 = (10/2)(8 + 35) = 5(43) = 215所以,这个等差数列的前10项的和为215。

3.(10分)已知等差数列的前6项的和为30,且首项与公差的乘积为4,求这个等差数列的公差和首项。

设等差数列的首项为a1,公差为d。

已知公式:Sn = (n/2)(a1 + an),表示等差数列的前n项和。

由题意可知,已知的条件是前6项和为30,即S6 = 30。

代入公式可得:S6 = (6/2)(a1 + a6) = 3(a1 + a1+5d) = 6a1 + 15d又已知条件是首项与公差的乘积为4,即a1d = 4。

将此条件代入前面的等式中,得到:6a1 + 15d = 6a1 + 15(a1d/ a1) = 6a1 + 15(a1*4/a1) = 6a1 + 60 = 6(a1 + 10)由此可得:S6 = 6(a1 + 10) = 30解得:a1 + 10 = 5,即a1 = -5又已知a1d = 4,代入a1 = -5可得:-5d = 4,解得d = -4/5所以,这个等差数列的首项为-5,公差为-4/5。

5.(10分)已知等差数列的前n项和Sn = 300,公差d = 7,求n的值。

已知等差数列的前n项和可以表示为:Sn = (n/2)(a1 + an)。

由等差数列的求和公式可得:Sn = (n/2)(a1 + a1 + (n-1)d) = (n/2)(2a1 + (n-1)d) = n(a1 + (n-1)d/2)代入已知条件:Sn = 300,d = 7,得到:n(a1 + (n-1)d/2) = 300由题目未给出首项a1的具体数值,所以无法直接求解n的值。

柳州市中考数学试题及答案

柳州市中考数学试题及答案

柳州市中考数学试题及答案1. 单项选择题:1) 在平行四边形ABCD中,若∠ACD和∠ABC的度数之和等于130°,则∠DAC的度数为()。

A. 50°B. 60°C. 70°D. 80°2) 已知等差数列{a_n}的通项公式为an=3n-1,若a_m=35,则a_n=8时,n-m=()。

A. 3B. 4C. 5D. 63) 某商品原价为130元,现在打8.5折出售,则现价为()。

A. 80元B. 100元C. 110.5元D. 112.5元4) 若a.b表示将实数a和b连接成的数字,则2.75×6=()。

A. 134.5B. 16.5C. 225D. 24505) 若正方形的周长为40cm,则其面积为()。

A. 10 cm²B. 100 cm²C. 160 cm²D. 400 cm²2. 解答题:1) 某数的150%等于120,该数是多少?解:设该数为x,根据题意得方程1.5x=120,解得x=80,因此该数为80。

2) 已知等差数列{a_n}的前4项依次为-3,0,3,6,求数列的通项公式。

解:设该等差数列的首项为a,公差为d,根据题意可得方程组: a+d=-3a+2d=0a+3d=3解以上方程组可得a=3,d=3,因此该等差数列的通项公式为a_n=3n-6。

3. 计算题:1) 一块长方形地块,长为75m,宽为60m,面积是多少平方米?解:该长方形地块的面积为75m×60m=4500m²。

2) 小明去商场购买一件原价为200元的商品,打折后需要支付的价格是多少?解:打折后的价格为200元×0.85=170元。

4. 应用题:某校有2000名学生,其中男生占总人数的40%,女生占剩下的人数的60%。

已知男生中目前学习音乐的学生占男生的25%。

现在将一部分男生和一部分女生组成合唱团,为了增加女生的比例,计划从学习音乐的男生中选出60人,再从女生中选出n人,使合唱团男生和女生人数相等。

2014年柳州市中考数学真题试卷(附详细解析)

2014年柳州市中考数学真题试卷(附详细解析)

2014年柳州市中考数学真题试卷(附详细解析)2014年柳州市中考数学真题试卷(附详细解析)一、选择题(共12小题,每小题3分,满分36分)1.如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()【考点】简单几何体的三视图.2.在所给的,0,-1,3这四个数中,最小的数是()A.B.0C.-1D.3【答案】C.【解析】试题分析:-1<0<<3.故选C.【考点】有理数大小比较.3.下列选项中,属于无理数的是()A.2B.πC.D.-2【答案】B.【解析】试题分析:π是无限不循环小数,故选B.【考点】无理数.4.如图,直线l∥OB,则∠1的度数是()A.120°B.30°C.40°D.60°5.下列计算正确的选项是()A.-1=B.()2=5C.2a-b=abD.【考点】1.分式的加减法;2.实数的运算;3.合并同类项.6.如图,直角坐标系中的五角星关于y轴对称的图形在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】【考点】轴对称的性质.7.学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁B.13岁C.14岁D.15岁8.如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为()A.12B.8C.5D.3【答案】D.【解析】【考点】多边形.10.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°【考点】多边形内角与外角.11.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解B.x=1C.x=-4D.x=-1或x=4【考点】抛物线与x轴的交点.12.如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25B.0.5C.0.75D.0.95【考点】列表法与树状图法.二、填空题(共6小题,每小题3分,满分18分)13.3的相反数是【考点】相反数.14.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成xy (用“>”或“<”填空).【考点】不等式的定义.15.如图,等腰梯形ABCD的周长为16,BC=4,CD=3,则AB=.∴AB=16-3-4-4=5.【考点】等腰梯形的性质.16.方程的解是x=【考点】一次函数图象与几何变换.18.如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:①S1:S2=AC2:BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1•S2=S32.其中结论正确的序号是.【答案】①②③.【解析】∴△BCD≌△ECA(SAS).③若AC⊥BC,则S1•S2=S32正确,解:设等边三角形ADC的边长=a,等边三角形BCE边长=b,则△ADC 的高=a,△BCE的高=b,∴S1=,S2=,∴S1•S2=,∵S3=ab,∴S32=a2b2,∴S1•S2=S32.故正确的有①②③.【考点】1.全等三角形的判定与性质;2.等边三角形的性质.三、解答题(共8小题,满分66分)19.计算:2×(-5)+3.【考点】1.有理数的乘法;2.有理数的加法.20.一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:(1)补充完成下面成绩表单的填写:射击序次12345678910成绩/环8107910710(2)求该运动员这10次射击训练的平均成绩.【考点】1.折线统计图;2.统计表;3.算术平均数.21.小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?【考点】二元一次方程组的应用.22.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.【考点】1.解直角三角形;2.勾股定理.23.如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.【答案】(1)y=;(2)2;(3)证明见解析.【解析】【考点】1.待定系数法求反比例函数解析式;2.反比例函数系数k的几何意义.24.如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC的外接圆⊙O于D.(1)求证:△ABE∽△ADC;(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.(2)∵∠BAD=∠CAD,【考点】1.相似三角形的判定与性质;2.菱形的判定;3.圆周角定理.25.如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.【答案】(1)1;(2).【解析】∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,【考点】1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.正方形的性质.26.已知二次函数图象的顶点坐标为(0,1),且过点(-1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在-1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG 的内切圆的圆心落在y轴上,并求△GAB面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:x1+x2=-,x1•x2=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2-3x=15两根的和与积.解:原方程变为:x2-3x-15=0∵一元二次方程的根与系数有关系:x1+x2=-,x1•x2=∴原方程两根之和=-=3,两根之积==-15.【答案】(1)y=x2+1.(2)1≤y<.(3)证明见解析,4.【解析】为4.试题解析:(1)解:由于二次函数图象的顶点坐标为(0,1),因此二次函数的解析式可设为y=ax2+1.∵抛物线y=ax2+1过点(-1,),∴=a+1.(3)①证明:∵△ABG的内切圆的圆心落在y轴上,∴GP平分∠AGB.∴直线GP是∠AGB的对称轴.过点A作GP的对称点A′,如图2,则点A′一定在BG上.∵点A的坐标为(x1,y1),∴点A′的坐标为(-x1,y1).∵点A(x1,y1)、B(x2,y2)在直线y=kx+2上,∴y1=kx1+2,y2=kx2+2.∴点G的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.②解:过点A作AC⊥OP,垂足为C,过点B作BD⊥OP,垂足为D,如图2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广西柳州市中考数学试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)(2014•柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()
...
2.(3分)(2014•柳州)在所给的,0,﹣1,3这四个数中,最小的数是()

D
4.(3分)(2014•柳州)如图,直线l∥OB,则∠1的度数是()
﹣1=(
=、原式利用平方根定义化简,
,故选项错误.
6.(3分)(2014•柳州)如图,直角坐标系中的五角星关于y轴对称的图形在()
7.(3分)(2014•柳州)学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()
8.(3分)(2014•柳州)如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为()
C D
10.
(3分)(2014•柳州)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是( )
11.(3分)(2014•柳州)小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2
+ax+b=0的解是( )
12.(3分)(2014•柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()
P=
二、填空题(共6小题,每小题3分,满分18分)
13.(3分)(2014•柳州)3的相反数是﹣3.
14.(3分)(2014•柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).
15.(3分)(2014•柳州)如图,等腰梯形ABCD的周长为16,BC=4,CD=3,则AB=5.
16.(3分)(2014•柳州)方程﹣1=0的解是x=2.
17.(3分)(2014•柳州)将直线y=x向上平移7个单位后得到直线y=x+7.
x
x+7
18.(3分)(2014•柳州)如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:
①S1:S2=AC2:BC2;
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S1•S2=S32.
其中结论正确的序号是①②③.
=
a =b
a a
b b=
2=
ab
a
三、解答题(共8小题,满分66分)
19.(6分)(2014•柳州)计算:2×(﹣5)+3.
20.(6分)(2014•柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.
请你根据图表,完成下列问题:
21.(6分)(2014•柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?
由题意得,,
解得:
22.(8分)(2014•柳州)如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.
①求BD和AD的长;
②求tan∠C的值.
AB=3AD=BD=3
CD=2
AB=3
BD=3;
AD=5=2,
C==
23.(8分)(2014•柳州)如图,函数y=的图象过点A(1,2).
(1)求该函数的解析式;
(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;
(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.
,,根据矩形的面积公式,可得出结论.
y=
2=
y=
C
y=
24.(10分)(2014•柳州)如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC 的外接圆⊙O于D.
(1)求证:△ABE∽△ADC;
(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.
25.(10分)(2014•柳州)如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.
(1)求线段PQ的长;
(2)问:点P在何处时,△PFD∽△BFP,并说明理由.
∠A=90



AB=
PA=
题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性
26.(12分)(2014•柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直
线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(1)求该二次函数的解析式.
(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)
(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.
(注:在解题过程中,你也可以阅读后面的材料)
附:阅读材料
任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.
即:设一元二次方程ax2+bx+c=0的两根为x1,x2,
则:x1+x2=﹣,x1•x2=
能灵活运用这种关系,有时可以使解题更为简单.
例:不解方程,求方程x2﹣3x=15两根的和与积.
解:原方程变为:x2﹣3x﹣15=0
∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2=
∴原方程两根之和=﹣=3,两根之积==﹣15.
)在二次函数图象上,把该点

x
1+x
=4

∴=a+1
y=
y=
×+1=

解得:
x
kx+2=
=
PG PG
PG
×。

相关文档
最新文档