数字光纤通信原理
光纤通信的原理和技术
光纤通信的原理和技术随着现代信息的迅速发展,人们对快速高效的通信需求越来越大。
而光纤通信作为一种高速传输技术,已经被广泛运用于现代通信行业中。
本文将介绍光纤通信的原理和技术。
一、光纤通信的原理光纤通信是利用光学原理传输信息,通信信号在光纤中以光信号形式传输。
光纤传输能够最大限度地利用光的不带宽特性,减少损失。
1. 光纤的基本结构和属性光纤是用高纯度的二氧化硅、石英玻璃等材料制作的细长、柔软的玻璃线。
它由纤芯、包层和外护层三个部分构成。
其中纤芯是光信号的传输通道,通常是数百至数千微米宽的玻璃或塑料芯线。
包层是覆盖在纤芯表面的一层低折射率材料,其作用是使光束一致地沿纤芯传播。
外护层是一层透明的保护层,通常是塑料或玻璃。
2. 光信号的传输原理光纤通信的数据传输过程包括信号转换、调制、传输和解调四步。
传输信号时,发射器把电子信号转化为光信号,通过信号调制将数字信号转变为模拟信号,以光在纤芯中传输,然后通过解调将接收到的模拟信号转化为数字信号。
光纤的折射率很高,因此传输过程中,光束会一直沿着纤芯传送。
同时,光的传播速度很快,大约是空气中光速的三分之二。
这就保证了光信号的高速传输性能。
二、光纤通信的技术1. CWDM技术CWDM(Coarse Wavelength Division Multiplexing)技术是一种低成本、使用方便的多波长分复用技术。
使用CWDM技术,可以将多个通道的信号通过同一个光纤线路进行传输,从而实现光纤通信的传输效率和带宽资源的充分利用。
CWDM技术可以在单根光纤上传输多达16个波长,每个波长之间的带宽可达10Gbps。
2. DWDM技术DWDM(Dense Wavelength Division Multiplexing)技术则可以将更多的信道传输到同一条光纤线路中。
DWDM技术可以将光纤的带宽分成40个波长,每个波长的带宽则可达到10Gbps,可直接实现3.2Tbps的传输速率。
简述光纤通信的原理及应用
简述光纤通信的原理及应用一、光纤通信的原理光纤通信是一种利用光学原理传输信息的技术。
其原理基于光的折射与反射特性,即光线在两种介质之间传播时会发生折射或反射。
光纤通信利用光纤作为信息传输的介质,通过将信息转化为光信号,并利用光的折射与反射,将光信号在光纤中传输,并在接收端将光信号转化为电信号,从而实现信息的传输。
光纤通信的原理主要包括以下几个方面:1.1 光的传播特性光在光纤中的传播主要遵循光的折射和反射特性。
当光线从一种介质(如空气)射入到另一种具有不同折射率的介质(如玻璃光纤)中时,光线会发生折射。
而光线在介质表面发生反射时,会沿着入射角等于反射角的方向反射。
基于这些特性,光纤可以将光信号传输到目标位置。
1.2 光的衰减与色散光在光纤中的传播过程中,会受到衰减和色散的影响。
光在光纤中传播时,会发生能量损耗,导致光信号的强度逐渐减弱,这就是光的衰减现象。
而色散是由于光的不同频率成分传播速度不同而引起的,导致光信号在传输过程中发生信号失真。
1.3 光的调制与解调光纤通信中,发送端将电信号转化为光信号进行传输,这个过程叫做光的调制。
而光信号到达接收端后需要将光信号再转化为电信号,这个过程叫做光的解调。
光的调制和解调过程采用的是光电器件,如光电二极管等。
1.4 波分复用技术波分复用技术(Wavelength Division Multiplexing,WDM)是光纤通信的一项重要技术。
它利用不同波长的光信号在光纤中进行并行传输,从而实现光纤通信的高容量传输。
利用波分复用技术,可以实现多个光信号同时传输,大大提高了光纤通信的传输速率和带宽。
二、光纤通信的应用光纤通信作为一种高速、大容量、抗干扰能力强的通信方式,在现代通信领域的应用非常广泛。
下面列举一些光纤通信的主要应用领域:•宽带接入光纤通信作为宽带接入的主要手段,能够提供高速、稳定的网络连接,满足了人们对于宽带网络的需求。
光纤宽带接入常见的应用包括光纤到户(FTTH)、光纤到楼(FTTB)等,广泛用于家庭、办公楼、学校等场所,提供高速互联网接入服务。
数字光纤通信系统的工作原理
数字光纤通信系统的工作原理数字光纤通信系统是一种高速、高带宽的数据传输技术,其工作原理基于光学和电学的相互作用。
数字光纤通信系统主要由三部分组成:发射机、光纤传输线路和接收机。
发射机是数字光纤通信系统中的第一部分,它将电信号转换为光信号并将其发送到光纤传输线路上。
发射机主要由三个部分组成:激光器、调制器和驱动电路。
激光器是发射机的核心部件,它能够产生高强度、单色、相干的激光束。
调制器则是将电信号转换为激光脉冲的设备,它能够对激光束进行调制以便在传输过程中能够正确地识别出每一个二进制位。
驱动电路则是用来控制调制器的工作状态,以便让其按照正确的时间序列进行工作。
光纤传输线路是数字光纤通信系统中的第二部分,它是负责将激光脉冲从发射机传输到接收机的媒介。
在传输过程中,激光脉冲会在光纤中不断地反射和折射,以保证光信号能够稳定地传输到目的地。
光纤传输线路主要由两个部分组成:光纤和连接器。
光纤是数字光纤通信系统中最重要的部件之一,它具有非常高的抗干扰性和传输带宽。
在数字光纤通信系统中,常用的是单模光纤,它能够将激光脉冲通过一个非常小的核心直接传送到接收机中。
连接器则是用来连接不同段光纤的设备,它能够确保激光脉冲在传输过程中不会受到损失或干扰。
接收机是数字光纤通信系统中的第三部分,它负责将从传输线路上接收到的激光脉冲转换为电信号并将其输出。
接收机主要由两个部分组成:探测器和前置放大器。
探测器是接收机中最重要的部件之一,它能够将从传输线路上接收到的激光脉冲转换为电信号。
前置放大器则是用来增强探测器输出信号强度,并将其输出到后续的数字处理器中进行解码和处理。
总之,数字光纤通信系统是一种高速、高带宽的数据传输技术,其工作原理基于光学和电学的相互作用。
通过发射机将电信号转换为光信号并将其发送到光纤传输线路上,再通过接收机将从传输线路上接收到的激光脉冲转换为电信号并将其输出,从而实现了数字信息在长距离范围内的高速、稳定地传输。
光纤通信的原理和优势是什么
光纤通信的原理和优势是什么在当今信息高速发展的时代,通信技术的不断进步为我们的生活带来了翻天覆地的变化。
其中,光纤通信作为一种先进的通信方式,已经广泛应用于各个领域,从我们日常的互联网连接到全球的电信网络,都离不开它的身影。
那么,光纤通信到底是依据什么原理工作的?它又具有哪些显著的优势呢?光纤通信的原理其实并不复杂。
简单来说,它就像是一种利用光来传递信息的“高速公路”。
我们知道,光是一种电磁波,具有波的特性。
在光纤通信中,信息被转化为光信号进行传输。
这个转化过程是通过一种叫做“光源”的设备来实现的。
常见的光源有发光二极管(LED)和半导体激光器(LD)。
这些光源能够产生特定波长和强度的光,而要传输的信息,比如语音、图像或者数据,会通过电信号的形式对光源进行调制,就像是给光加上了“密码”。
接下来,光信号需要通过一根细细的光纤来进行传输。
光纤通常由玻璃或者塑料制成,其结构分为芯层和包层两部分。
芯层的折射率较高,而包层的折射率较低。
这就使得光信号在芯层中能够沿着光纤不断地反射前进,就像在一个封闭的管道中一样,从而实现长距离的传输。
在接收端,有一个叫做“光检测器”的设备,它可以将光信号重新转化为电信号。
常见的光检测器有光电二极管(PIN)和雪崩光电二极管(APD)。
光检测器接收到光信号后,会将其还原为最初的信息。
光纤通信之所以能够成为现代通信的主流方式,是因为它具有众多显著的优势。
首先,光纤通信具有极大的通信容量。
相比传统的铜缆通信,光纤能够传输更多的信息。
这是因为光的频率非常高,理论上可以利用的带宽非常宽。
一根细细的光纤就可以同时传输成千上万路电话或者大量的高清视频,满足了我们对高速、大容量通信的需求。
其次,光纤通信的传输损耗极低。
信号在传输过程中会逐渐减弱,而光纤对光信号的损耗非常小。
这意味着光信号可以在不经过中继放大的情况下传输很远的距离,减少了信号中继的成本和复杂性,提高了通信的可靠性。
再者,光纤通信具有很强的抗干扰能力。
光纤通信传输的原理是什么
光纤通信传输的原理是什么光纤通信是一种利用光信号进行信息传输的技术。
它的原理是通过将信息转化为光信号并通过光纤传输,最后再将光信号转化为电信号进行接收和解码。
光纤通信的基本原理是利用光的全反射现象来传输信息。
光纤是一种由高折射率的芯层和低折射率的包层组成的细长结构。
当光束从高折射率的芯层射入低折射率的包层时,由于光束与包层的交界面形成一定的夹角,使得光束不会从交界面射出,而是会被全反射回芯层。
这样,光束就可以沿着光纤一直传输,而不会发生明显的损耗。
光纤通信的传输过程中,需要进行光信号调制和解调。
光信号调制是将要传输的信息转换成光信号的过程,而光信号解调则是将光信号转换为与原始信息相对应的电信号的过程。
在光信号调制中,常用的调制方式有强度调制和频率调制。
强度调制是通过改变光信号的强度来表示信息的变化。
频率调制则是通过改变光信号的频率来表示信息的变化。
无论是强度调制还是频率调制,都需要使用调制器来实现,其中常用的调制器有光电调制器和电光调制器。
在光信号解调中,常用的解调方式是利用半导体光探测器。
光探测器能够将光信号转换为与原始信息相对应的电信号,使得信息能够被接收和解码。
光探测器的种类有很多,常见的有光电二极管和光电倍增管等。
在光纤通信中,还需要光纤放大器来增强光信号的强度。
光纤放大器的基本原理是通过在光纤中掺入特定的材料,使光信号在通过被掺杂的区域时产生受激辐射,从而增强光信号的强度。
常用的光纤放大器有掺铒光纤放大器和掺铗光纤放大器等。
光纤通信的优点主要有以下几个方面:传输容量大、传输距离远、传输速度快、抗干扰能力强、安全性高等。
这些优点使得光纤通信成为了现代通信领域的主流技术之一。
总的来说,光纤通信的传输原理是利用光的全反射现象来传输信息。
通过光信号的调制和解调,以及光纤放大器的增强,光信号能够在光纤中快速传输,实现远距离高速通信。
光纤通信的应用已经广泛涉及到电信、互联网、广播电视等多个领域,并在信息化时代起到了举足轻重的作用。
光纤通信的工作原理与优势
光纤通信的工作原理与优势在现代信息社会中,光纤通信已经成为了最常用的数据传输方式之一。
相比传统的电信传输方式,光纤通信具有更快的传输速度、更广的带宽以及更低的信号损耗等诸多优势。
本文将从光纤通信的工作原理和优势两个方面进行论述,以便更好地理解其技术原理以及应用价值。
一、光纤通信的工作原理光纤通信是基于光的传播和调制原理进行数据传输的技术。
其工作原理可以简单概括为光信号的产生、传输、接收和解调四个过程。
1. 光信号的产生光信号的产生通常使用激光器来实现。
激光器产生的光束具有较高的单色性和方向性,能够有效地传输信号。
2. 光信号的传输光信号通过光纤进行传输。
光纤是由具有高折射率的材料制成的细长柔性材料,内部是由纯净的玻璃或者塑料纤维组成。
光信号通过光纤的全反射原理,在光纤内部进行高速传输。
3. 光信号的接收光纤传输的信号在接收端通过光电探测器进行接收。
光电探测器可以将光信号转化为电信号,以方便后续的处理。
4. 光信号的解调接收到的光信号通过解调器进行解调,将其转化为原始数据信号。
二、光纤通信的优势光纤通信相较于传统的电信传输方式,在数据传输的速度、带宽、信号损耗以及安全性等方面具有显著的优势。
1. 高速传输光纤通信采用了光信号的传输,具有极高的传输速度。
其传输速度可以达到光速的30%~40%,远远快于传统的电信传输方式。
2. 大带宽光纤通信的带宽远远大于传统的电信传输方式。
光纤通过多路复用技术可以实现多个信号同时传输,大大增加了数据的传输容量。
3. 低信号损耗光信号在光纤内部的传输过程中,由于光纤的特殊结构和全反射原理,几乎不会出现信号的衰减和损耗。
相比之下,传统的电信传输方式会面临信号衰减和干扰的问题,导致传输距离受限。
4. 高安全性光纤通信的传输信号是通过光的方式进行传输的,无法被窃听和干扰。
与传统的电信传输方式相比,光纤通信更加安全可靠,可以保护用户的隐私和数据的安全。
结论光纤通信作为一种高速、大带宽、低损耗的数据传输方式,在现代信息社会中发挥着重要的作用。
光纤通讯的原理
光纤通讯的原理
光纤通信是利用光传输信息的一种信号传输方式。
其基本原理是利用纤维内部的光导纤维,将光信号作为信息的传输介质。
光纤通信主要包括光源、传输介质光纤和接收器三个部分。
光源是产生光信号的装置,一般使用激光器作为光源。
光信号生成后经过调制器对光信号进行模拟或数字信号调制。
调制器可以是电调制器或直接调制器,电调制器通过改变电压变化来调制光强,而直接调制器则根据输入信号的波形直接改变光强。
调制后的光信号通过光纤进行传输。
光纤由一根细而长的玻璃或塑料纤维组成,具有光的全反射特性。
光线在光纤中的传输依靠光的全反射原理,在内部表面发生反射,从而使光信号沿着光纤传输。
由于采用光纤传输,信息的传输距离可以达到数十公里甚至上百公里。
最后,光信号到达接收器后,通过光电转换器将光信号转换为电信号。
光电转换器是一种将光信号转换为电信号的装置。
光电转换器将光信号照射到光电二极管上,产生电流。
电流经过放大、滤波与解调等处理步骤后,得到与原始信号一致的电信号。
光纤通信具有传输速度快、传输容量大、抗干扰能力强等优点,广泛应用于长距离通信、局域网、数据中心等领域。
光纤通信的原理是基于激光光源产生光信号,通过光纤传输,再通过光电转换器将光信号转换为电信号,从而实现信息的传输。
光纤通信工作原理阐述
光纤通信工作原理阐述光纤通信作为现代通信领域的重要技术之一,已经成为人们日常生活中不可或缺的一部分。
它通过光信号的传输,实现了高速、大容量、远距离的通信。
本文将从光纤通信的基本原理、光纤的结构和光信号的传输过程等方面进行阐述。
一、光纤通信的基本原理光纤通信的基本原理是利用光的全反射现象。
当光从光密度较大的介质传输到光密度较小的介质时,光线会被完全反射回来,而不会发生折射。
光纤的核心是由光密度较大的材料构成,而光纤的包层则是由光密度较小的材料构成。
当光线射入光纤时,由于光纤核心的折射率大于光纤包层,光线会在光纤核心内部发生全反射,从而实现光信号的传输。
二、光纤的结构光纤主要由光纤核心、光纤包层和光纤护套组成。
光纤核心是光信号的传输通道,通常由高纯度的二氧化硅等材料制成。
光纤包层则是包裹在光纤核心外部的一层材料,其折射率较低,以保证光信号在光纤核心内部的全反射。
光纤护套则是为了保护光纤而设置的外层,通常由聚合物等材料制成。
三、光信号的传输过程在光纤通信中,光信号的传输过程主要包括光的发射、传输和接收三个环节。
1. 光的发射:光的发射通常采用激光器或发光二极管。
激光器能够产生具有高度聚焦性的光束,而发光二极管则能够产生较为散射的光束。
不同的应用场景可以选择不同的发光源。
2. 光的传输:光信号通过光纤核心内部的全反射进行传输。
在传输过程中,光信号会沿着光纤的轴向传播,并且会不断地发生全反射,以保证光信号的传输距离和质量。
3. 光的接收:光信号到达目标地点后,需要通过光电探测器将光信号转换为电信号。
光电探测器通常由光敏元件和电路模块组成,能够将光信号转换为电压或电流信号,以便进一步的处理和解读。
四、光纤通信的优势相比传统的电信号传输方式,光纤通信具有许多优势。
1. 高速传输:光纤通信能够实现高速的数据传输,传输速度可达到光速的几乎接近。
2. 大容量传输:光纤通信能够同时传输多路信号,具备较大的传输容量。
这使得光纤通信在大数据传输和高清视频传输等方面具备明显的优势。
光纤通信技术的原理与发展历程
光纤通信技术的原理与发展历程光纤通信技术是一种通过光纤传输信号的通信技术,是目前最先进、数据传输速率最快、带宽最宽的通信技术之一。
光纤通信技术的应用不仅在通信网络中,还包括光纤传感技术、光学波导、激光器、光学信号处理技术等方面。
本文将分别从光纤通信技术的原理和发展历程两个方面进行介绍。
一、光纤通信技术的原理所谓光纤,是指由特殊的材料,如石英、硅和玻璃等制成的一种长细细的管道。
而光纤的通信技术,本质上就是通过光的传输,将数字信号、模拟信号等信息传输到目的地。
光纤通信技术的基本构成是光源、光纤、检测器等三部分。
光源产生的电磁波信号,被调制器转换为数字信号、模拟信号等数据,再经过光纤传输到接收端,检测器将光信号转化为电信号,完成信号的接收和处理。
整个过程需要通过双向光纤进行通信,才能实现一来一去的通信。
其中,光纤的传输距离和速度是其最重要的特点。
光纤通信技术原理的核心在于把数字信号通过光电器件转化为光脉冲信号,再将光脉冲信号通过光传输介质(光纤)传输到接收端。
光纤在传输数字信号和模拟信号时最大的难点在于光纤衰减和信号的失真。
为了解决这些问题,人们引入了各种技术,如波分复用技术、光放大器、衰减补偿器、光纤补偿器等等。
二、光纤通信技术的发展历程从目前的技术发展来看,光纤通信这个行业今天的兴奋点要比30年前还大,因为随着数字通信业务的迅速发展,这种通信方式的优越性越来越明显。
而光纤通信的起点,始于20世纪60年代。
20世纪60年代,随着激光器、半导体器件以及新型玻璃材料的出现,科学家们开始了光纤通信技术的研究,探索将信息传输速率提高到百兆、千兆、万兆的新范畴。
在20世纪70年代,光纤通信技术得到了进一步发展,在光电波转换器、高速并行转换器、液晶显示器等领域开展了系统的研究。
在20世纪80年代,光纤通信技术大大提高了传输的速度和效率,逐渐进入了日常生活中。
1990年代中期,光纤通信技术开始飞速发展,被认为是推动全球通信技术快速发展的最重要的驱动力之一,为人们的通信提供了无限可能。
光纤通信的原理及发展
光纤通信的原理及发展光纤通信是一种利用光纤作为传输介质进行信息传输的通信方式。
它利用光的全反射特性,在光纤内部传输光信号,实现高速、大容量、低损耗的信息传输。
光纤通信的原理主要基于光的折射和全反射原理,下面将详细介绍光纤通信的原理及其发展历程。
一、光纤通信的原理1. 光的折射和全反射原理光纤是一种细长的光导纤维,其内部由两种不同折射率的材料构成。
当光线从折射率较高的材料传播到折射率较低的材料时,会发生折射现象;而当光线从折射率较低的材料传播到折射率较高的材料时,会发生全反射现象。
利用光的折射和全反射原理,光信号可以在光纤内部进行传输,实现远距离的信息传输。
2. 光纤通信系统的组成光纤通信系统主要由光源、调制器、光纤、解调器和接收器等组成。
光源产生光信号,经过调制器调制后输入光纤,通过光纤传输到目的地,再经过解调器解调得到原始信息,最终由接收器接收并处理信息。
光纤通信系统利用光的高速传输特性,实现了信息的快速传输和高效通信。
二、光纤通信的发展1. 光纤通信的起源光纤通信的概念最早可以追溯到19世纪末的光学通信实验。
20世纪60年代,美国学者发明了第一根光纤,并在1970年代初成功实现了光纤通信的原型系统。
随着光纤材料和制造工艺的不断改进,光纤通信技术逐渐成熟并得到广泛应用。
2. 光纤通信的发展历程20世纪70年代至80年代,光纤通信技术逐步商用化,光纤通信网络开始建设。
随着光纤通信技术的不断进步,光纤通信网络的传输速率和容量不断提高,通信质量和稳定性也得到了显著改善。
90年代以后,随着光纤通信技术的快速发展,光纤通信网络已成为现代通信网络的主要形式,为人们的生活和工作提供了便利。
3. 光纤通信的未来发展随着信息社会的不断发展,人们对通信网络的需求也越来越高。
光纤通信作为一种高速、大容量、低损耗的通信方式,具有巨大的发展潜力。
未来,光纤通信技术将继续向着更高速率、更大容量、更低成本的方向发展,为人类社会的信息交流提供更加便捷和高效的通信方式。
光纤通信的原理和应用
光纤通信的原理和应用随着科技的发展和提高生活质量的不断要求,通信技术已经成为一种必备的生活方式。
通信技术的发展带动了电子、信息领域和科技的进步。
而光纤通信作为目前最先进的通信技术,其在大家的日常生活中得到了广泛的应用,具有明显的优势。
一、光纤通信的原理介绍光纤通信是一种利用光纤传输信号的高速通信技术,利用纯净材料制成的线材,可以将几百倍于铜线的信号传输,甚至可以接受地球上的语音或数字信号。
光纤通信传输信号的基本原理是光的反射原理。
利用“全反射”原理,在光纤管内部的光线反复地被反射,从而传输信号。
通信中使用的光纤通常由圆形截面的单根光纤或几根光纤组成,可以承载更广泛的波长范围,信号质量比传统的通信方式高,不受电磁场干扰,与通信的速度没有直接关系。
二、光纤通信的应用1.网络通信如今,这种技术的应用已经不限于电话领域-光纤网络正越来越受欢迎。
光纤通信技术在因特网中的广泛应用,不仅提供了更快的上网速度,更同时提供了丰富的多媒体应用,如在线视频会议,网络游戏,高清电影etc。
它的无损传输特性保证了信息内容的完整性,从而大大增强了数据安全性。
2.医疗领域在医疗领域,光纤通信技术也逐渐得到广泛应用。
例如,使用光纤技术的内窥镜,可以使医生们便捷地诊断胃部内聚集的异物或检查人体内部器官,尤其是在一些夜间或拍摄角度局限且难以接触的情况下,内窥镜可以像一个“天眼”一样快速地定位所需的病灶区域,从而显著提高诊断准确性和操作性。
3.交通运输在交通运输领域,光纤通信技术的应用也非常广泛,如全球定位系统(GPS)。
GPS不需要导航仪的上层系统就可以定位及记录位置信息,由于它的高精度及可靠性,因此被广泛应用于全球船舶、车辆和人员定位。
三、光纤通信技术的发展趋势在未来几年中,传统的铜缆线将被逐渐替代,光纤通信正逐渐成为流行的通信技术。
随着通信需求的不断增长,未来将会有更多的光纤投入使用,以更快速,更优质的方式进行数据传输。
同时,无缝衔接传输和更全面的应用场景也将成为未来重要的发展方向。
光纤通信系统的工作原理与信号调制技术
光纤通信系统的工作原理与信号调制技术光纤通信系统是一种利用光纤传输信号的通信系统,具有高速率、大容量和低衰减等优点,在现代通信领域得到广泛应用。
本文将详细介绍光纤通信系统的工作原理和信号调制技术。
一、光纤通信系统的工作原理光纤通信系统的工作原理可以概括为三个过程:发送端信号调制、光纤传输和接收端信号解调。
下面将对每个过程进行详细说明。
1. 发送端信号调制在光纤通信系统中,发送端将需要传输的信息信号转换为适合光纤传输的光信号。
这一过程包括三个关键步骤:信号采样、模数转换和电光转换。
首先,发送端对信息信号进行采样,将连续的模拟信号转换为离散的数字信号。
然后,通过模数转换器,将数字信号转换为对应的模拟信号。
最后,通过电光转换器,将模拟信号转换为光信号,以便在光纤中进行传输。
2. 光纤传输光纤是一种具有较高折射率的细长光导纤维。
光信号在光纤中传输时,会通过光总反射的原理不断地进行反射,以保持光信号的传输。
光纤传输的核心是通过光信号的全内反射来避免信号衰减。
在光纤中,光信号被束缚在纤芯内,由于纤芯和纤层的折射率不同,光信号会在两者交界面上发生全内反射,从而沿着光纤传输。
3. 接收端信号解调接收端信号解调的过程正好是发送端信号调制的逆过程。
接收端通过光电转换器将光信号转换为对应的模拟电信号,然后通过解调器将模拟电信号转换为数字信号。
接收端信号解调的关键在于光电转换过程,即将光信号转换为电信号。
这一过程中,光电转换器会将光信号转换为光电流,再经过放大和滤波处理,最后输出电信号。
二、光纤通信系统的信号调制技术光纤通信系统中的信号调制技术包括两种主要方式:直接调制和间接调制。
1. 直接调制直接调制是指将数字信号直接调制成光信号的一种方式。
这种调制方式的优点是简单、高效,但也存在一个问题,即频率带宽不足。
在直接调制中,发送端通过直接控制激光器的电流或电压来实现信号的调制。
电流/电压的变化导致激光器输出光的功率变化,从而将数字信号转换为光信号。
光纤通信系统原理与设计
光纤通信系统原理与设计光纤通信系统是一种利用光纤作为传输介质进行信息传输的通信系统。
它利用光的全反射特性,并通过光信号的调制与解调实现传输数据。
在现代通信领域中,光纤通信系统已经成为主流的通信方式之一。
本文将介绍光纤通信系统的原理与设计。
一、光纤通信系统的工作原理光纤通信系统的工作原理可以简单分为三个步骤:光信号的发射、传输和接收。
1. 光信号的发射光信号的发射是指将电信号转换为光信号的过程。
在光纤通信系统中,通常采用光电转换器将电信号转换为光信号。
光电转换器由激光器和调制器组成。
激光器产生一束强度和频率稳定的光,而调制器则根据输入的电信号对光信号进行调制。
2. 光信号的传输光信号的传输是指将调制后的光信号通过光纤传输至目标地点的过程。
光纤是一种由高纯度的玻璃或塑料材料制成的细长棒状结构。
它具有很好的光导性能,可以将光信号以全内反射的方式沿光纤传输。
在传输过程中,光信号会经过多次全内反射,几乎不受损失。
3. 光信号的接收光信号的接收是指将传输过来的光信号转换为电信号的过程。
光纤通信系统中,接收端通常采用光电转换器将光信号转换为电信号。
光电转换器由光探测器和解调器组成。
光探测器将光信号转换为电信号,解调器则对电信号进行解调得到原始信号。
二、光纤通信系统的设计要点在进行光纤通信系统的设计时,需要考虑以下几个关键要点。
1. 光纤的选择光纤的选择是设计光纤通信系统时的关键因素之一。
根据通信距离的不同,可选择不同类型的光纤,如单模光纤或多模光纤。
同时还需要考虑光纤的直径、材料和信号传输损耗等因素。
2. 光源的选择光源是指光信号的发射装置,激光器是光纤通信系统中常用的光源。
在选择光源时,需要考虑发射功率、频率稳定性和调制性能等因素。
3. 光电转换器的设计光电转换器是光信号的发射和接收装置。
设计光电转换器时,需要考虑调制方式、频率响应和转换效率等因素。
4. 解调器的设计解调器是光信号接收后将其转换为原始信号的装置。
光纤通信原理
光纤通信原理光纤通信是一种利用光信号进行信息传输的技术,它以光纤作为传输介质,通过光的反射和折射原理将信息从发送端传输到接收端。
光纤通信技术被广泛应用于电话通信、宽带网络、有线电视等领域,其高速、高容量、低损耗的特点使其成为现代通信的重要组成部分。
一、光纤通信的基本原理光纤通信的基本原理建立在光的传播和反射、折射的基础上。
光信号是以光波的形式传输的,通过光的全反射原理在光纤中进行传输。
光波在光纤中沿着轴线传播,遵循入射角等于反射角的定律,确保光波能够完全反射在光纤的界面上。
通过不断地反射和折射,光信号可以在光纤中长距离传输,并最终到达接收端。
二、光纤通信的组成结构光纤通信系统由发送端和接收端组成,其中包括光源、调制器、传输介质、光纤、解调器和接收器等组成部分。
光源产生光信号,调制器将电信号转换为光信号进行传输,传输介质即光纤在其中完成光信号的传输,解调器将光信号转换为电信号,并通过接收器将信号在接收端恢复为原始信息。
这样的组成结构保证了信号从发送端到接收端的完整传输。
三、光纤通信的工作原理光纤通信的工作原理是基于光的干涉和色散效应。
光在光纤中的传播速度取决于光的折射率以及光波的波长。
利用这一原理,光纤通信可以在光纤中传输多路信号,即光的多路复用技术。
光通信还可以通过不同的调制技术,将不同类型的信息转化为光信号进行传输,如调幅、调频、调相等。
四、光纤通信的优势和应用光纤通信相比传统的电信号传输具有许多明显的优势。
首先,光纤通信的传输速度较快,可以达到高速率的传输,满足了现代通信对高速传输的需求。
其次,光纤通信的传输容量大,能够同时传输大量的信息,在宽带网络和有线电视等领域有着广泛应用。
此外,光纤通信还具有低损耗、抗干扰、安全可靠等特点,使其成为现代通信领域不可或缺的技术。
五、光纤通信的发展前景随着信息社会的发展,对通信速度和容量的需求不断增加,光纤通信技术的应用前景非常广阔。
未来,光纤通信技术将继续推动通信行业的发展,实现更高速率、更大容量的传输。
光纤通信的工作原理
光纤通信的工作原理
光纤通信是一种通过光信号传输数据的通信方式,其工作原理主要包括光信号的发射、传输和接收三个过程。
首先是光信号的发射。
在光纤通信系统中,一般使用激光器或发光二极管作为光源。
这些光源会产生一束具有特定波长(通常是可见光或红外线)的光。
光信号经过调制,将所要传输的信息转化为光强的变化。
接下来是光信号的传输。
发射的光信号通过光纤传输。
光纤是由非常纯净的玻璃或塑料材料制成,具有较高的折射率。
这样,光信号在光纤内部能够一直沿着纤芯内壁发生全内反射,即光信号不会从纤芯中发散出去。
为了保证光信号能够持续传输,光纤的两端通常需要进行适当的处理。
在传输过程中,一端的光纤会被连接到光源,另一端的光纤会被连接到接收器。
两端连接处会采用特殊的光纤接口来确保光信号的有效传输。
最后是光信号的接收。
接收器中通常包含一个光电转换器,其功能是将接收到的光信号转换为电信号,并进行相应的解调和放大。
电信号经过处理后,便可以得到所要传输的信息。
总体而言,光纤通信通过光信号的发射、传输和接收,将信息转换为光信号并在光纤中传输,再将光信号转换为电信号提取信息。
这样的工作原理保证了光纤通信的高速、大容量和抗干扰能力,广泛应用于现代通信系统中。
光纤通信原理
光纤通信原理
光纤通信是一种利用光纤作为传输介质进行信息传输的通信方式。
它利用光的
全反射特性,将光信号传输到远距离,具有传输速度快、带宽大、抗干扰能力强等优点,因此在现代通信领域得到了广泛的应用。
首先,光纤通信的原理是基于光的全反射。
光纤是由两种不同折射率的材料构
成的,当光线从折射率较高的材料传输到折射率较低的材料时,光线会发生全反射,从而可以在光纤内部进行长距离的传输。
这种全反射的原理保证了光信号可以在光纤中传输而不会损失太多能量,从而实现了高效的信息传输。
其次,光纤通信利用光的波长多路复用技术,可以在一根光纤中传输多个不同
波长的光信号。
这种技术使得光纤通信具有了更大的传输带宽,可以同时传输多个信道的信息,从而满足了不同用户对于通信带宽的需求。
另外,光纤通信还利用光的数字调制技术,将数字信号转换为光信号进行传输。
在发送端,数字信号会经过调制器转换为光信号,然后经过光纤传输到接收端,在接收端经过解调器将光信号转换为数字信号。
这种数字调制技术保证了信息的准确传输,同时也提高了通信的安全性。
此外,光纤通信还利用了光放大器技术,可以在光纤传输过程中对信号进行放大,从而延长了光信号在光纤中的传输距离。
光放大器技术保证了光信号可以在长距离内进行传输而不会出现过大的衰减,从而满足了远距离通信的需求。
总的来说,光纤通信的原理是基于光的全反射特性,利用了波长多路复用、数
字调制和光放大器等技术,实现了高速、大带宽、抗干扰的信息传输。
随着科技的不断发展,光纤通信将会在未来的通信领域发挥越来越重要的作用。
光纤通信的原理及其应用
光纤通信的原理及其应用光纤通信是目前世界上最为先进和主要的通信方式之一。
它利用光纤将信息转换为光信号,通过光缆传输到接收端,再转换为电信号恢复成原始信息。
光纤通信技术具有信号传输速度快、传输距离远、抗干扰能力强、安全可靠等优点,在现代通信和信息技术中得到了广泛的应用。
一、光纤通信的原理1. 光纤的结构光纤是由内核和包层两部分组成。
内核是一种高折射率的物质,包层则是一种低折射率的物质,两者的折射率之差很大。
光信号在内核中传输,由于包层的作用避免了光信号向外泄漏,从而实现了信号的传输和隔离。
2. 光纤的工作原理当光线从空气或真空中进入光纤内核时,受到不同介质物质折射率的影响,光线会被弯曲并在光纤中沿指定路径传输。
光纤内核本身是一系列光束的介质,其中每个光束都应该是沿核心轴线的。
由于光速恒定,因此光纤的传输速度极快。
而且光纤内核与包层之间的介质是稳定的,因此光信号的传输时稳定、可靠的,并且能够抵御干扰和噪声的干扰影响。
二、光纤通信的应用光纤通信目前在许多领域具有广泛的应用。
以下是一些值得关注的领域。
1. 通信光纤通信已经是当前通信网络的主要基础设施之一。
基于光纤通信的高速宽带网络已经普及到城市、农村、机场、火车站和一些其他区域。
相比传统的通信方式,光纤通信有更高的传输速度和传输距离,不仅传输质量更高,而且延迟更小、更安全和更可靠。
光纤通信在医疗应用中也具有重要作用,如内窥镜。
采用光纤技术结合医疗设备能够为医生提供高清晰度图像,从而更好地分析病情。
3. 工业工业应用需要传输大量的数据和快速响应,使用光纤通信可以提供更高的数据传输速度,更准确的控制和更稳定的应用程序性能。
例如,重要的机器人应用需要更高的数据带宽和更快的反应时间,这可以通过使用光纤通信实现。
4. 军事光纤通信在军事通信领域几乎已经是标配,因为它在安全性和可靠性方面都比传统的通信技术更高。
光纤通信能够将传输数据和声音信号更加安全地传输到重要位置,同时还能预防干扰和故障,因此在现代战争中得到了广泛的应用。
简述光纤通信的原理与应用
简述光纤通信的原理与应用原理光纤通信是一种通过光纤传输光信号进行通信的技术。
光纤通信的原理基于光的全反射和光的波导特性。
主要包括以下几个关键步骤:1.光的发射:光的发射是通过激光器或发光二极管等光源产生的。
光源产生的光信号经过调制电路进行调制,以便传输数据。
2.光的传输:光信号通过光纤进行传输。
光纤是由高纯度的二氧化硅或塑料等材料制成的细长柔韧物体,具有高折射率。
光信号沿光纤的中心轴传播,通过光的全反射和衍射等现象,保持信号的传输。
3.光的接收:接收端利用光电转换器将光信号转换成电信号。
光电转换器通常由光敏材料和电子器件组成,能将光信号转化为电压或电流信号。
4.信号处理:电信号经过放大、滤波、解调等处理,得到原始的数据信号。
以上这些步骤共同构成了光纤通信的原理。
应用光纤通信具有广泛的应用领域,其主要应用在以下几个方面:1.通信网络:光纤通信被广泛应用于长距离和高带宽的通信网络中。
相比传统的铜线传输方式,光纤通信具有更高的传输速度和更大的传输容量,能够满足互联网、电话通信、视频传输等大容量数据的传输需求。
2.数据中心:随着云计算和大数据的快速发展,数据中心对于高速、高容量的数据传输需求越来越大。
光纤通信在数据中心中得到广泛应用,可以实现数据中心之间高速可靠的连接,提高数据的传输效率和稳定性。
3.广播电视:光纤通信在广播电视行业中也得到了广泛应用。
光纤传输能够提供优质的视频和音频传输效果,保证了高清晰度、高保真度、无干扰的信号传输,满足了用户对高质量视听体验的需求。
4.医疗领域:光纤通信在医疗领域的应用越来越广泛。
例如,光纤传感器可以实现对体内器官或组织的监测,通过光传感技术可以实时获取生物体的相关参数,帮助医生进行诊断和治疗。
5.工业自动化:光纤通信在工业自动化领域也有广泛应用。
光纤传输可以提供高速、高精度的信号传输,满足工业控制系统对传感器数据和控制信号的要求,提高生产效率和自动化程度。
综上所述,光纤通信的原理和应用涉及多个领域,其高速、高容量、低延迟的特性使其成为现代通信系统中不可或缺的重要组成部分。
光纤通信的原理
光纤通信的原理
光纤通信是一种利用光纤作为传输介质的通信方式。
它的原理基于光的传输和调制技术。
光纤通信系统主要分为三个部分:发送端、传输介质和接收端。
在发送端,数据被转换成光信号,并通过光源(例如激光器)产生一束光。
这束光经过调制器调制成与数据相对应的光信号,也被称为光脉冲。
调制技术通常有直调和外调两种方式,其中外调技术常用的有振幅调制和频率调制。
光脉冲进入光纤后,会通过全反射的原理沿着光纤内部不断传播。
光纤是由一种称为光导芯的细长玻璃或塑料材料制成的。
光导芯的外部包覆着一层称为光纤包层的折射率较低的材料。
由于光纤包层的存在,光在光纤中的传播会发生全反射,从而减少光能的损失。
光信号在光纤中既可以是单模光(只有一束光线从中心传播)也可以是多模光(有多束光线从光纤中心传播),其中单模光具有较小的传输损耗和更大的信息容量。
在接收端,光信号经过一系列光电转换器(例如光探测器)转换为电信号。
光探测器通常由光电二极管或光电倍增管等器件构成,能够将接收到的光信号转换为电流或电压信号。
最后,接收端将电信号经过解调和处理,还原成原始的数据信息。
这些数据可以通过数字化、编码等方式进行再处理或传输给其他设备。
总的来说,光纤通信的原理是将数据通过光源转换为光脉冲信号,利用光纤的全反射现象进行传输,最后在接收端通过光电转换器将光信号转换为电信号,并经过解调处理还原为原始数据信息。
这种原理使得光纤通信具有高速传输、大容量和抗干扰能力强等优势。
光纤通信的基本原理及应用
光纤通信的基本原理及应用光纤通信是一种通过光信号传输信息的技术,它基于光的传播特性和光纤的材料特性,实现了高速、大容量、低损耗的信息传输。
在现代信息社会中,光纤通信已经成为了主流的通信方式,广泛应用于电信、互联网、电视广播等领域。
光纤通信的基本原理是利用光的全反射特性,将光信号在光纤中进行传输。
光纤是一种由高折射率的纤维芯和低折射率的包层组成的细长结构。
当光信号从纤维芯中传输时,由于纤维芯和包层之间的折射率差异,光信号会发生全反射,从而沿着光纤的轴向传输。
这种全反射的现象使得光信号几乎不会发生能量损失,保证了光纤通信的高效率和低损耗。
在光纤通信系统中,光信号的产生和调制是至关重要的环节。
光信号的产生通常使用激光器,激光器能够产生具有高度一致性和单色性的光信号。
而光信号的调制则是将要传输的信息转化为光信号的强度或频率的变化。
常见的调制方式有强度调制和相位调制,它们能够实现数字信号的传输和调制。
光纤通信的应用非常广泛。
首先,光纤通信在电信领域中起到了至关重要的作用。
传统的电话通信系统已经逐渐被光纤通信取代,光纤通信能够实现高质量的语音传输和大容量的数据传输。
此外,光纤通信也被广泛应用于互联网领域,支撑着互联网的高速传输和大容量数据的传输需求。
光纤通信还在电视广播领域有着重要的应用。
传统的有线电视和卫星电视信号的传输效果受到了很多限制,而光纤通信能够提供高质量的视频和音频信号传输,满足了用户对高清晰度、高保真度的需求。
此外,光纤通信还被广泛用于医疗领域,例如医院内部的图像传输、远程手术等。
光纤通信的发展也带来了一系列的技术创新和应用拓展。
近年来,光纤通信技术已经实现了更高的传输速率和更大的传输容量。
光纤通信的技术进步也推动了云计算、物联网等新兴技术的发展。
同时,光纤通信也在军事、航天等领域发挥着重要的作用,为国家安全和国防建设提供了支持。
尽管光纤通信在各个领域都有着广泛的应用,但仍然存在一些挑战和问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字光纤通信
1、概述
八十年代dB/km
2.0低衰减光纤的出现光纤带宽的提高以及InGaAsP长波长激光器 PIN管和APD管的研制成功推动了光纤通信的快速发展。
近几年来数字光纤通信向越来越广泛的应用领域和更高级阶段发展。
大容量,长距离的数字光纤通信传输系统正在逐步取代传统的电缆传输通信系统。
这是因为数字光纤通信具有明显的优势:如传输带宽很宽,通信容量大,不受电磁场干扰,抗腐蚀和抗辐射能力强,重量轻等。
数字光纤通信的基本原理是将数字通信中的数据传输信号首先经过电/光转换变换成光脉冲数字信号,然后通过光纤光缆传输到数字通信的接收端,最后再经过光/电转换、放大、均衡与定时判决再生成传输的数据信号。
这一变换过程如图1所示,光发送机中的光源器件接收数字信号的调制(激光器LD 或发光二极管LED)发射光脉冲信号。
光接收机完成光/电变换,即由光检测器(PIN光电二极管或雪崩光电二极管APD)把光信号变成电信号,经光接收器放大、均衡再生成数字信号。
图1 数字基本光纤传输系统
2、数字光发送机
光发送机是数字光纤通信系统的三大组成部分(光发送机、光纤光缆、光接收机)之一。
其功能是将电脉冲信号变换成光脉冲信号,并以数字光纤通信系统传输性能所要求的光脉冲信号波形从光源器件组件发射出去。
光发送机原理方框图见图2所示,主要由整形或码型变换电路、光源驱动电路和发射光源电路组成,图中的其它部分电路,如光检测放大、比较放大、功控与保护及温度控制电路,是为了实现光发射机的各项技术指标结合光源器件的应用特性而采取的相应补偿措施。
图2 数字光发送机原理框图
光源是光发射机的核心,光发射机的性能基本上取决于光源的特性。
在光纤通信中对光源的选择要求如下:
(1) 发光波长应与光纤的低损耗窗口相符。
已知石英光纤的3个低损耗窗口分别是m μ85.0、m μ31.1、m μ55.1左右,光源的发光波长应在上述之一的范围内。
(2) 光源输出的光功率要足够大,且稳定度要高。
一般要求有数十微瓦到数毫瓦才能使光中继距离满足系统要求。
(3) 可靠性高、寿命长。
(4) 发光谱线宽度要窄。
即单色性要好,以减少光纤的色散,使较高速率的信号能传输较长的距离。
(5) 调制性能要好,主要是要有较高的调制效率和较高的调制速率(即响应速度要快),以满足大容量高速光纤通信系统的需要。
如果调制效率不高,不仅能量消耗大,而且会因发热严重而缩短寿命。
(6) 与光纤的耦合效率要高。
当光纤的数值孔径一定时,光源的发射角要小,这样才能有较强的方向性,使能量集中注入光纤。
(7) 光源要体积小、重量轻,便于安装。
目前,在光纤通信系统中可供选择的光源有激光二极管(LD )和发光二极管(LED)两种。
发光二极管的基本结构是一个半导体 PN 结,在外部加上驱动电流后就会发光,产生的波长为m μ9.0~8.0,其制作简单,价格便宜,受温度影响小,但输出光发散较大,功率有限,调制速率不高,只能注入多模光纤,一般用于低成本光通信系统。
激光二极管也是一种半导体 PN 结器件,含有刻蚀或解理衬底作为反射面以增强 PN 结上的光场。
因此,激光二极管结合了 LED 和光谐振腔反射的特点,输出的激光功率比较高,发散角度小,调制率高,可以注入多模和单模光纤。
光源驱动电路是光发送机的主干电路 它将电脉冲信号通过电流强度调制的方式调制半导体激光器或发光二极管发射出光脉冲信号。
在数字光纤通信系统中
光源发出的光可以看作是光频载波,数字电信号对其进行调制,一般采用直接强度调制。
图3示出激光器直接光强数字调制原理,对LD施加了偏置电流
I。
由
b
图可见,当激光器的驱动电流大于阀值电流
I时,输出光功率P和驱动电流I基
th
本上是线性关系,输出光功率和输入电流成正比,输出光信号反映输入电信号。
P
图3 直接数字调制LD原理
在一般情况下,光发送机的输入信号都是数字光纤通信系统的线路码型数字脉冲信号。
在数字光纤通信系统设备的设计中,为了方便发送机对其输入脉冲信号码型的选择,简化电路结构,这些线路码型数字脉冲信号都是 NRZ 码。
光发送机的输入数字脉冲信号是采用NRZ码型还是RZ码,这与整个数字光纤通信系统的设计有关。
一般来说RZ码对数字光纤通信系统中的光接收机有利,而NRZ 码就相应增加了数字光接收机对信号波形均衡的难度。
目前在中等速率的数字光纤通信系统中一般采用RZ码,而在高速或超高速的数字光纤通信系统中则采用NRZ码型。
光发送器中的整型/码型变换电路的功能就是对输入的数字信号进行波型变换后以十分标准的或经过某些预处理的电脉冲信号去调制光源器件而发出符合数字光纤通信系统传输性能要求的光脉冲波形信号。
光发送机中的光功率控制电路自动补偿LD由于环境温度变化和老化效应而引起的输出光功率的变化,保持其输出光功率不变,或其变化幅度不超过数字光纤通信设计要求的指标范围;自动控制光发送机输入信号码流中长连“0”序列或无信号输入时使 LD 不发光。
一个性能完善的光发送机,一方面是需要能够适应数字光纤通信特点的光源器件,另一方面是根据光源器件的应用特性采用先进的电子线路技术进行恰到好处的控制和防范。
这就是光发送机除了要有整形/码型变换电路、光源驱动电路和发射光源以外,还需要有自动光功率控制(APC)、自动温度控制(ATC)和各种保护电路的原因。
光发送机的本质含义就是根据光源器件的应用特性采用有针对性
的电子线路技术而使光源器件能有效和可靠的应用在数字光纤通信系统中。
3、数字光接收机
数字光接收机在数字光纤通信系统中的作用是将经光纤光缆传输后衰减变形的微弱光脉冲信号通过光/电转换成为电脉冲信号,并给予足够的放大、均衡与定时再生还原成为标准的数字脉冲信号。
数字光接收机的原理方框图如图4所示。
它由光检测器(包括其偏压电路)、前置放大器、主放大器、自动增益控制电路(AGC)、均衡与时钟提取及判决电路组成。
图4 数字光接收机原理框图
光检测器是把光信号变为电信号的器件,对光接收机的响应速度、灵敏度等特性都有很大的影响。
光纤通信系统对光检测器的主要要求如下:
(1) 在系统所用的波长内有足够高的灵敏度,能把极其微弱的光信号转换为电信号输出。
也就是说,光检测器把光能转换成电能的转换效率要高,对应于工作波长内的入射信号能有较大的输出电流。
(2) 有足够高的响应速度,对光信号有快速的响应能力,也就是要求光检测器有足够的工作带宽。
(3) 产生的噪声要小。
光检测器的入射信号是相当微弱的,因此在光电变换(解调)的过程中引入的噪声应尽量小。
否则,将严重影响信噪比,甚至无法接收。
(4) 工作稳定可靠。
光检测器要有较好的温度特性和较长的工作寿命。
(5) 体积小,使用简便。
半导体光检测器能较好的满足上述要求,目前在光纤通信系统中应用广泛。
用于光纤通信系统的半导体光检测器有PIN光电二极管和雪崩光电二极管(APD)两种。
PIN光电二极管没有倍增,使用简单,工作偏压低,而且可以固定不变,不需要任何控制。
APD 具有很高的内部倍增因子,它与合理的电子放大器结合,可以使 APD 工作在最佳倍增工作状态。
这样的数字光接收机能够得到比采用 PIN 光检测器的数字光接收机高的接收灵敏度。
但是由于APD需要较高的工作偏压(几十伏至百伏)以及其倍增特性受温度的影响较严重,因此使用起来也比较复
杂。
前置放大器是数字光纤接收机的关键部件,它与光检测器的合理匹配,要求能够得到从理论上可以得到的尽可能大的输出信噪比信号,并将这样的信号放大输出到有一定数量级的脉冲信号电压,一般为毫伏数量级。
主放大器是一个高增益的宽带放大器,它放大来自前置放大器输出的小信号电压。
一般来说,通过主放大器放大的信号基本是无失真的前置放大器的输出信号。
为了判决电平的需要,主放大器的输出电压为1~3V(P-P)值.对于不同输入光功率信号,其放大增益可以通过 AGC 调整得到不同大小的数值,从而保证其输出电平幅度不变。
AGC电路能根据输入光功率的大小产生相应的控制电压,控制主放的增益作相应调整。
当检测出无信号时,告警电路将发出无光告警信号。
均衡电路一方面是为了得到有利于判决的信号输出波形,即信号波形引起的码间干扰小,按均衡的要求,具体的输出为升余旋频谱波形。
另一方面是通过均衡可以合理压缩主放大器过宽的带宽,减少数字光接收机放大器的噪声,提高其输出信噪比。
这样均衡后输出信号波形送到判决电路可以得到最佳判决,从而得到理想的接收灵敏度。
经过上述放大、处理后,可对信号定时再生,恢复出原数字信号。
定时再生电路由定时判决和时钟提取电路组成。
时钟提取电路从信号码流中提取与发送端相一致的时钟信号。
为了提取时钟信号,要求码流中的“1”、“0”分布均匀,避免出现长的连“1”或连“0”码流。
在时钟信号控制下对接收到的信号再生判决,输出“1”或“0”码,得到从发送端传来的数字信号。