黄金分割练习题
人教版九年级下册数黄金分割同步练习
27.1.2 黄金分割基础训练知识点1 比例中项1.若x是2,18的比例中项,则x=___________.2.若线段a=6 cm,b=3 cm,且c是a,b的比例中项,则线段c的长度为( )A.3错误!未找到引用源。
cmB.±3错误!未找到引用源。
cmC.±18 cmD.18 cm3.如果a∶b=3∶2,且b是a,c的比例中项,那么b∶c等于( )A.4∶3B.3∶2C.2∶3D.3∶44.如图,有三个直角三角形,其中OA=AB=BC=CD=1,则线段OA,OD的比例中项线段的长度为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.±错误!未找到引用源。
D.错误!未找到引用源。
知识点2 黄金分割5.如果点C是线段AB的黄金分割点(AC>BC),则下列比例式正确的是( )A.AB∶AC=AC∶BCB.AB∶BC=BC∶ACC.AC∶BC=BC∶ABD.AC∶AB=AB∶BC6.若点C为线段AB的黄金分割点,且AC>BC,则①AB=错误!未找到引用源。
AC;②AC=错误!未找到引用源。
AB;③AB∶AC=AC∶CB;④AC≈0.618AB.其中正确的有( )A.1个B.2个C.3个D.4个7.从美学角度来说,人的上身长与下身长之比为黄金比例,可以给人一种协调的美感.某女老师上身长约61.80 cm,下身长约93.00 cm,她要穿约___________cm的高跟鞋才能达到黄金比的美感效果(精确到1 cm).提升训练考查角度1 利用比例性质求解比例中项问题8.已知线段a,b,c满足错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
,且a+2b+c=26.(1)求a,b,c的值;(2)若线段x是线段a,b的比例中项,求x.考查角度2 利用黄金分割的定义找黄金分割点(计算法、定义法)9.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求MA,DM的长;(2)求证:AM2=AD·DM.(3)根据(2)的结论你能找出图中的一个黄金分割点吗?考查角度3 利用黄金分割的定义证明黄金矩形(计算法、定义法)10.宽与长的比是错误!未找到引用源。
黄金分割练习题
1、 若点C 是线段AB 的黄金分割点,AB=8 cm ,AC>BC,求AC 的值。
2、 已知点P 是线段MN 的黄金分割点,MP>NP,且MP=)15(-cm,求MN 的值。
3、 点C 是线段AB 的黄金分割点,AC>BC,求ABBC 的值 。
4、 若把长为10cm 的线段黄金分割后,求其中较短的线段长度是多少?5、 已知线段AB=6,点C 为线段AB 的黄金分割点,(AC>BC),求下列各式的值:(1)AC -BC; (2)BC AC ⋅6、 已知线段AB ,请利用尺规作图画出线段的黄金分割点。
(只画出一个即可)A CB M PNA B7、如图:在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且EC AE BD AD =, (1)你能说明ACEC AB BD =吗? (2)若AB=12,AE=6,EC=4,求出AD 的长。
(3)若3===DE AE AD ,且ABC ∆的周长为30,求出ADE ∆的周长。
7、 已知:如图,ABC ∆中,D 是BC 上的一点,DC BD AC AB =,且AB=7cm,AC=5cm,BC=8cm, 求BD , DC 的长。
5、(2007山东青岛)某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?B D C。
黄金分割练习题
一、填空题1.若点C 是线段AB 的黄金分割点(BC AC >),则AC:AB=_____,BC:AB___________:=BC AC .如果AB=10cm,则AC=______,BC=_________.若C 是线段AB 的黄金分割点,则____:=BC AC2.若Q P ,是线段AB 上的两个黄金分割点,且452-=PQ ,则____=AB3.若点C 是线段AB 的黄金分割点且AC>BC ,则______,AB BC AC AB==_______. 4.若点C 是线段AB 的黄金分割点(BC AC >),则AB 与AC 的比值是__________,BC 与AC 的比值是_________.5.在线段AB 上取一点P ,使AP :PB=1:3,则AP :AB=______,6.如图,已知3,(1)2ABACBCCEAD AE DE AE ===则:=______,(2)若BD=10cm ,则AD=______;(3)若△ADE 的周长为16cm ,则△ABC 的周长为_______ .二、认真选一选 7.已知y x 23=,那么下列式子成立的是( )A.3x=2yB.xy=6C.32=y xD.32=x y8.把ab=21cd 写成比例式,不正确的写法是( ) A.b d c a 2= B.b d c a =2C.bd c a =2 D.d a b c 2= 9已知线段x,y 满足(x+y )∶(x -y )=3∶1,那么x ∶y 等于( )A.3∶1B.2∶3C.2∶1D.3∶210.若3a=4b ,则(a-b ):(a+b )的值是( ).A .17B .7C .-17D .-710.已知P 是线段AB 上一点,且AP :PB=2:5,则AB :PB 等于( ). A .7:5 B .5:2 C .2:7 D .5:711有以下命题:①如果线段d 是线段a,b,c 的第四比例项,则有d c b a =②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项 ③如果点C 是线段AB 的黄金分割点,且AC>BC ,那么AC 是AB 与BC 的比例中项 ④如果点C 是线段AB 的黄金分割点,AC>BC ,且AB=2,则 AC=5-1其中正确的判断有( )A.1个B.2个C.3个D.4个A .7:5B .5:2C .2:7D .5:7。
黄金分割(练习)
C B A “黄金分割”练习题单一、选择题:1.如图,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC=,那么下列说法错误的是 ( ) A.线段AB 被点C 黄金分割 B.点C 叫做线段AB 的黄金分割点C.AB 与AC 的比叫做黄金比D.AC 与AB 的比叫做黄金比2.若P 为线段AB 的黄金分割点且AP>PB,则下列各式成立的是( )A. AB 2=AP·BPB. BP 2=AP· ABC. PA 2=2BA·BPD. AP 2=AB·BP3. 已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为( ) A.2 5 –2)cm B.(6-2 5 )cm C.( 5 –1)cm D.3- 5 )cm二、填空题:1..一把菜刀长30厘米,则刀柄长约_____厘米时这把菜刀最好使用。
2.东方明珠塔高468米,上球体点A 事塔身的黄金分割点,则点A 到塔底部的距离为_____米。
3.我们知道古希腊时期的巴台农神庙(Parthenom Temple )的正面是一个黄金矩形。
若已知黄金矩形的长等于6,则这个黄金矩形的宽等于_____________.(结果保留根号)4.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体。
若舞台AB 长为20米,主持人此时在舞台一端点A 处,试计算主持人应走到离B 点至少______米处。
如果他乡B 点至少再走______米,也处在比较得体的位置。
(结果精确到0.1米)“黄金分割”练习题单一、选择题:1.如图,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC=,那么下列说法错误的是 ( ) A.线段AB 被点C 黄金分割 B.点C 叫做线段AB 的黄金分割点C.AB 与AC 的比叫做黄金比D.AC 与AB 的比叫做黄金比2.若P 为线段AB 的黄金分割点且AP>PB,则下列各式成立的是( )A. AB 2=AP·BPB. BP 2=AP· ABC. PA 2=2BA·BPD. AP 2=AB·BP3. 已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为( )A.2 5 –2)cmB.(6-2 5 )cmC.( 5 –1)cmD.3- 5 )cm二、填空题:1..一把菜刀长30厘米,则刀柄长约_____厘米时这把菜刀最好使用。
黄金分割练习题
黄金分割练习题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--黄金分割比:假设身高160cm,上半身高度为64cm,则妈妈应该穿多高的高跟鞋64÷≈ cm 理想下半身160-64=96 cm 实际下半身-96= cm 高跟鞋高度实践作业:1、帮妈妈计算需要的高跟鞋高度2、寻找生活中的黄金比记录下来。
易错题:1.一个和长方形的周长是36厘米,长和宽的比是4:5,长和宽各是多少厘米2.一个三角形三个内角度数比是1:2:3,这个三角形是什么三角形3.六年级三个班数学平均成绩是87,比为4:5:6,三个班的成绩各是多少24.一项工程,甲队单独做完成要5天完成,乙队单独做要6天完成,甲乙两队工作效率比是多少5.糖与水比是1:50,现有水300千克,需加糖多少千克6.甲,乙两数之和是18,.甲数是乙数的5分之一,求甲乙两数、B两地相距408KM,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?8.一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?9.将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。
这个模型的长、宽、高各是多少厘米表面积是多少平方厘米?10.一块长方形土地,周长是160m,长和宽的是5:3,这块长方形土地的面积是多少平方米?311.李老师把2000元钱存入银行,整存整取五年,年利率是%。
到期时,李老师一共能取回多少钱(利息税是5%)12.李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?4。
黄金分割同步练习及答案(9)
黄金分割同步练习(典型题汇总)【学习目标】1.知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点.2.通过找一条线段的黄金分割点,培养学生的理解与动手能力.3.理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系.【学习重点】了解黄金分割的意义并能运用.【学习难点】找出黄金分割点和作黄金矩形.情景导入生成问题形是( B )A.△ EFB B.△ DEFC.△ CFB D.△ EFB 和△ DEF2.如图,在边长为 1 的正方形网格中有点P,A,B, C ,则图中所形成的三角形中,相似三角形是△APB∽△ CPA.自学互研生成能力知识模块黄金分割的有关概念先阅读教材P95-96 页的内容,然后解答下列问题:1. 黄金分割的意义:如图,点C把线段AB分成两条线段AC和BC,如果AC=BC,那么称线段AB被点C黄AB AC金分割,其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,近似数为0.618.2.黄金分割点的作法:如图所示,已知线段AB.1.如图,在矩形ABCD 中, E 在AD 上,E F⊥BE,交CD 于F,连接BF,则图中与△ ABE 一定相似的三角1(1) 过 B 作 BD ⊥AB 使 BD =2AB ; (2) 连接 AD ,在 DA 上截取 DE =DB ;(3) 在 AB 上截取 AC =AE ,则点 C 即为线段 AB 的黄金分割点.1.动手量一量,五角星图案中,线段 AC 、 BC 的长度,然后计算 A AB C 与B AC C ,它们的值相等吗?教学说明: 学生亲自动手操作,得到黄金比并加深对黄金分割的理解.2.计算黄金比:见教材 P 96 页例 4. 3.探究教材 P 96 页 “想一想 ”.归纳结论: 在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC ,如果A AB C = BC, AC,那么称线段 AB 被点 C 黄 金分割,点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比.内容:古希腊时的巴台农神庙,将图中的虚线表示的矩形画成如图中的矩形 ABCD ,以矩形 ABCD 的宽为边在其内部作正方形 AEFD ,那么,我们可以惊奇的发现BC =AB. BE =BC .提出问题:点 E 是 AB 的黄金分割点吗?矩形 ABCD 宽与长的比是黄金比吗?观看多媒体演示的内容,观察 与思考、交流、讨论、解决问题.问题解决:由 B B E C =A B B C ,可以得到 A B B C =B B E C 即A AB E =A BE E .所以点 E 是 AB 的黄金分割点. 对应练习:1.已知点 C 是线段 AB 的黄金分割点,且 AC >BC ,则下列等式成立的是 ( C ) A .AB 2=AC ·CB B . CB 2=AC ·ABC .AC 2= CB ·ABD .AC 2=2AB ·BC2.如图,点 C 把线段 AB 分成两条线段 AC 和BC ,如果AC =BC ,那么称线段 AB 被点 C 黄金分割, AC 与AB ACAB 的比叫做黄金比,其比值是 ( AA. 52-1B.3-2 5)C. 5+ 12D.3+2 53.已知 C 是线段 AB 的一个黄金分割点,则 AC ∶AB 为( D ) A. 52-1 B.3-2 5 C. 52+ 1D. 52-1或3-2 5交流展示 生成新知1.将阅读教材时 “生成的问题 ”和通过 “自主探究、合作探究 ”得出的 “结论 ”展示在各小组的小黑板上.并将疑 难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将 “问题和结论 ”展示在黑板上,通过交流 “生成新知 ”.知识模块 黄金分割的有关概念检测反馈 达成目标1.下列说法正确的是 ( B ) A .每条线段有且仅有一个黄金分割点 B .黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618 倍C .若点 C 把线段 AB 黄金分割,则 AC 2=AB ·BCD .以上说法都不对 2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为 ( A )3.如图,在平行四边形 ABCD 中,点 E 是边 BC 上的黄金分割点,且 BE > CE ,AE 与 BD 相交于点 F.那么 BF ∶ FD 的值为 52- 1.4.五角星是我们常见的图形,如图是AB =20cm ,求 EC +CD 的长.解:∵点 D 为线段 AB 的黄金分割点 (AD >BD),∴ AD = 52-1,AB =(10 5-10)cm.∵EC +CD =AC +CD =AD ,∴ EC +CD =(10 5-10)cm.课后反思 查漏补缺1.收获: 2.存在困惑:黄金分割同步练习(典型题汇总)、选择题 :A . 12.36cmB .13.6cmC . 32.36cmD .C ,D 分别是线段 AB 的黄金分割点,AC BC1.如图,点C 把线段 AB 分成两条线段 AC 和 BC,如果,那么下列说法错误的是 ( )AB AC4. 黄金分割比是 (AC 5.如图,点C 是AB 的黄金分割点 ,那么 AC 与AB BC二、填空题 :1. 点 C 把线段 AB 分成两条线段 AC 和 BC,如果 _____ , 那么称线段 AB 被点 C?黄金分割 , 点 C 叫做线段 AB 的 _______ ,AC 与AB 的比叫做 _______ .2. _______________________________________________如图,若点 C 是AB 的黄金分割点 ,AB=1,则AC= ________________________________________________,BC= _____ .A C BAC5 1 AC3. _________________________________________________________ 已知点 C 是AB 的黄金分割点 ,即 AC = 5 1,那么 AC = _________________________________________________ .AB 2 CB4. 如图,点C 是AB 的黄金分割点 ,AB=4,则AC 2=5. 宽与长的比等于 _______ 的矩形叫做黄金矩形6. 已知黄金矩形的长等于 6, 则这个黄金矩形的宽等于 ________ 三、计算题 : 1.已知线段 AB 长 6厘米,点P 是 AB 的黄金分割点 ,且AP>BP,求AP 和BP 的长.A. 线段 AB 被点 C 黄金分割 ; C.AB 与 AC 的比叫做黄金比 ;B. 点 C 叫做线段 AB 的黄金分割点 AD.AC 与 AB 的比叫做黄金 2. 如图的五角星中 , AC 与 BC AB 的关系是 ( )ACA. 相等;B. AC >BC ABACC.AC <BC; D.AC AB不能确定3. 一条线段的黄金分割点有 A.1 个 B.2个 C.3D.无数个A. 5 1B.2512C.51 2D.0.618ACAC的值分别是A. 5 1, 5 1A. 2 , 2B. 5 1, 5 1; C. B. , 2; C.21; D.5126.如图,若点 C 是 AB 的黄金分割点 ,AB=2, 则 AC= CBA. 5 1B. 5 122C. 5 1D.51BCB2. 仿照课本上“做一做”的方法,画出线段AB的黄金分割点.12 23. 请你在实际生活中搜集一个与黄金分割有关的资料五、已知线段 AB=1,C 为 AB 的黄金分割点 ,且 AC>BC 求, AC-BC 的值.六、如图的五角星中 ,AD=BC,且 C 、D 两点都是 AB 的黄金分割点 ,AB=1,求 CD 的长.七、已知 C 、D 是线段 AB上的两点 , 且 CD=( 5 -2)AB,AC=BD,不难证明当 AB=1时,C 、 D 是线段 AB 的黄金分割 点,试探究当 AB 任意长时 ,C 、D 是否是线段 AB 的黄金分割点 ?为什么 ?四、已知一个等腰三角形如果腰与底边的比是黄金比 出一个黄金三角形 .,? 那么这样的等腰三角形称为黄金三角形 . 请你设法作, 并与同伴相互交流B答案:1.C2.A3.B4.B5.B6.C、 1. AC BC ; 黄金分割点 ; 黄金比 2. AB AC3. 5 14.24-8 55. 黄金比6.3 5 -32三、 1.因为点 P 是 AB 的黄金分割点 ,且 AP>BP,AP= 52 1×AB= 52 1×6=3 5-3, BP=AB-AP=9-3 512. (1) 过点 B 作 BD ⊥AB 且 BD= AB,连接 AD2(2) 以 D 为圆心 BD 为半径作圆弧交 AD 于 E(3) 以 A 为圆心 AE 为半径作圆弧交 AB 于 C,则 C 为 AB 的黄金分割点 3. 查阅资料四、先做出线段 AB,及其黄金分割点 C(AC>BC 分) 别以 A 、B 为圆心 ,AC 为半径作圆弧 ,交点为 P,则△ PAB 就是 黄金三角形 五、根据 C 为 AB 的黄金分割点 ,AC>BC 得 AC = 5 1,AB 2 因为 AB=1,所以 AC= 5 1 BC=AB-AC=1- 5 1= 3 5 ,?2 所以 AC-BC= 5 1-3 5= 5-2.22六、根据 C 、 D 都是 AB 的黄金分割点得因为 AB=1,所以 AC= 5 1,BD= 5 所以 AD=AB-BD=1- 5 1=3 5 ,225 1; 3 52 ; 2所以AP ABPB= 5 1AP = 222 AC= 5 1, BD = 5 1AB 2 AB 2因此CD=AC-AD= 5 1- 3 5 = 5-2 22七、C、D 是线段AB的黄金分割点.122。
比例线段黄金分割习题
⽐例线段黄⾦分割习题例1.下列各组中的四条线段成⽐例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =1例2. 已知线段a 、b 、c 、d 满⾜ab =cd ,把它改写成⽐例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 例3. 若a =2,b =3,c =33,则a 、b 、c 的第四⽐例项d 为________例4. 若ac =bd ,则下列各式⼀定成⽴的是( )A.dc b a =B.ccb d d a +=+ C.c d b a =22 D.dacd ab = 例5. 已知dcb a =,则下列式⼦中正确的是() A. a ∶b =c 2∶d 2B. a ∶d =c ∶bC. a ∶b =(a +c )∶(b +d )D. a ∶b =(a -d )∶(b -d )例6.已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值。
例7.在⽐例尺为1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是______ 例8.在⼀张地图上,甲、⼄两地的图上距离是3 cm,⽽两地的实际距离为1500 m ,那么这张地图的⽐例尺为________.例9.(1)已知ba ab b a x +=+=+=222,求x 的值(2)已知524232xz z y y x -=-=-,求y x z y x -++2的值例10.已知点M 将线段AB 黄⾦分割(AM >BM ),则下列各式中不正确的是( ) A .AM ∶BM =AB ∶AM B.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 例11.如图,线段AB=2,点C 是AB 的黄⾦分割点(AC <BC ),点D (不同于C 点)在AB 上,且AB BD AD ?=2,A CDB求:ACCD的值【经典练习】1.如果bc ad =,那么下列⽐例中错误的是()A 、d b c a =B 、b a d c =C 、b d c a =D 、cd a b =2.若5:6:=y x ,则下列等式中,不正确的是()A 、511=+y y x B 、51=-y y x C 、6=-yx x D 、5=-x y y3.若2:1:::===d c c b b a ,则=d a :()A 、1:2B 、1:4C 、1:6D 、1:8 4.若3:2:1::=c b a ,则cb a cb a +---的值为()A 、-2B 、2C 、3D 、-35.已知875cb a ==,且20=++c b a ,则=-+c b a 2() A 、11 B 、12 C 、314D 、96.若4:3:2::=c b a ,且5=-+c b a ,则b a -的值是()A 、5B 、-5C 、20D 、-20 7.若43xx =,则x 等于() A 、12 B 、32 C 、-32 D 、32± 8.已知AB=1,)15(2 1-=AC ,且BC AB AC ?=2,则BC 的长为() A 、215- B 、215+ C 、)53(21- D 、)53(21+ 9.已知P 是线段AB 的黄⾦分割点,且15-=AP ,则AB 的长为()A 、2B 、15+C 、2或15+D 、以上都不对 10.已知572zy x ==,设x z y x C y z x B z y x y A -+=+=++=,,,那么A 、B 、C 的⼤⼩顺序为() A 、A>B>C B 、AA>B D 、A35=y x ,则=-+)(:)(y x y x 12.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a 13.已知a b a 3)(7=-,则=ba14.如果2===c z b y a x ,那么=+-+-cb a z y x 3232 15.已知:2,2,1三个数,请你再填⼀个数,可写成⼀个⽐例式,这个数是 16.把长为5的线段进⾏黄⾦分割,则较短的线段长是17.若65432+==+c b a ,且2a -b +3c =21.试求a ∶b ∶c . 19. 若54,23,43===d c c b b a ,则22db ac+等于多少?20. 已知xbc a x a c b x c b a =+=+=+,,,求x 的值1.如果线段a=3,b=12,那么线段a 、b 的⽐例中项x=___________。
6.2 黄金分割提优练习 2022-2023学年苏科版数学九年级下册
九年级数学下册提优练习6.2黄金分割一、选择题1.一条线段的黄金分割点有( )A .1个B .2个C .3个D .无数个2.黄金分割比的准确值是( )3.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC =那么下列说法错误的是( ) A .线段AB 被点C 黄金分割B .点C 叫做线段AB 的黄金分割点C .AB 与AC 的比叫黄金比D .AC 与AB 的比叫黄金比 4.已知P 是线段AB 的黄金分割点,AP >PB ,则下列等式成立的是( )A .AB 2=AP·PBB .AP 2=PB·ABC .BP 2=AP·ABD .AP :AB =AB :PB5.已知线段AB =1,C 是线段AB 的黄金分割点(AC >BC ),则AC 的长度为( )6.已知P 是线段AB 的黄金分割点,且AP PB >,10AB =,则AP 长约为( )A .0.618B .6.18C .3.82D .0.3827.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x 与y 的比通常按黄金比来设计,这样的扇子外形较美观,若取黄金比为0.6,则x 为( )A .216B .135C .120D .1088.已知线段AB =1,C 是线段AB 的黄金分割点,则AC 的长度为( )9.宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图4-1-13所示,作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连结EF ;以F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H.则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH10.如果三条线段的长a ,b ,c 满足b a =c b =5-12,那么a ,b ,c 叫做“黄金线段组”.黄金线段组中的三条线段( )A. 必构成锐角三角形 B .必构成直角三角形 C. 必构成钝角三角形 D .不能构成三角形二、填空题11.已知P 是线段AB 的黄金分割点,且AP>BP ,AB=4,那么AP=________.12.东方明珠塔高468m ,上球体点A 是塔射的黄金分割点,点A 到塔底的距离约是___________米(精确到0.1m );13.据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为____________℃(精确到1℃).14.下列矩形中,哪个比较匀称?若矩形的两条邻边长度的比例约为_____,这种矩形称为黄金矩形.15.已知线段AB =10cm ,C 是线段AB 的黄金分割点,且AC >BC ,则AC 的长约为______.(精确到0.1cm )16.已知C 是线段AB 的黄金分割点(AC >BC ),那么AC 是线段_____与线段_____的比例中项,如果AB =12cm ,那么AC =____cm ,BC =____cm17.如图,在△ABC 中,D 是AB 上一点.若AD =4,BD =5,AC 是AD 与AB 的比例中项,则AC 等于6 .第17题图 第18题图 第19题图 第20题图18.已知顶角为36°的等腰三角形称为黄金三角形(底边与腰的比值为黄金分割比).如图,已知△ABC ,△BDC ,△DEC 都是黄金三角形,AB =1,DE=______.19.如图,一张矩形报纸ABCD 的长AB =a (cm),宽BC =b (cm),E ,F 分别是AB ,CD 的中点.若将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于_____20.如图,在矩形ABCD 中,AB =10,四边形EFCD 是正方形.若BF AB =AB BC,则BC =______. 三、解答题21.如图,点C 是线段AB 的黄金分割点,BC >AC ,D.E 分别是AC.BC 的中点,那么点C 是线段DE 的黄金分割点吗?为什么?22.“黄金分割”在人类历史上有着重要的作用和影响,世界上许多著名的建筑和艺术品都蕴涵着“黄金分割”.下面我们就用黄金分割来设计一把富有美感的纸扇:假设纸扇张开到最大时,扇形的面积与扇形所在圆的剩余部分的比值等于黄金比,请你来求一求纸扇张开的角度.(黄金比取0.6)23.如图,以长为2cm的定线段AB为边,作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD,以AF为边长作正方形AFEM,点M在AD上.(1)试求AM.DM的长;(2)点M是线段AD的黄金分割点吗?请说明理由.24.如图所示,线段AB=6cm,C为线段AB的黄金分割点,且AC>BC,以AC为边的正方形ACDE的面积为S1,以BC为一边,AB长为另一边的矩形BCFG的面积为S2.(1)试求S1与S2的大小;(2)判断点D是线段CF的黄金分割点吗?为什么?25.已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.26.二次根式的除法,要化去分母中的根号,需将分子.分母同乘以一个恰当的二次根式.例如:化简:.解:将分子.分写同乘以得==.类比应用:(1)化简:=.(2)化简:++…+.拓展延伸:宽与长的比是的矩形叫黄金矩形,如图①,已知黄金矩形ABCD的宽AB=1.(1)黄金矩形ABCD的长BC=;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE,则点D到线段AE的距离为.。
初中数学相似三角形之黄金分割专项练习题(附答案详解)
解:由于D为线段AB=2的黄金分割点,
且AD>BD,
则AD= ×2=( )cm
∴BD=AB−AD=2−( )=
故选D.
【点睛】
本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的 ,较长的线段=原线段的 .
2.B
【解析】
【分析】
由AP>BP知PA是较长线段,根据黄金分割点的定义,则AP2=BP•AB.
5.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为()
A.2 ﹣2B.6﹣2√5C. D.4﹣2
6.已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()
A. B. C. D.
7.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()
【详解】
解:∵P为线段AB的黄金分割点,且AP>BP,
∴AP2=BP•AB.
故选:B.
【点睛】
本题考查了黄金分割,理解黄金分割点的概念,找出黄金分割中成比例的对应线段即可.
3.D
【解析】
【分析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
【详解】
解:当AC<BC时,BC= AB= ,
当AC>BC时,BC= = ,
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;
(2)请你说明:三角形的中线是否是该三角形的黄金分割线.
21.把宽与长之比为 的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调、匀称的美感,如图,四边形 是黄金矩形,如果在这个黄金矩形里画一个正方形,那么剩下的矩形(矩形: )还是黄金矩形吗?请证明你的结论.
黄金分割专项练习题有答案
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC?AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC?AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC?AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD?AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE?AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD?AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.黄金分割专项练习30题参考答案: 1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD?AC,∴AD2=CD?AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD?AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)?10(3﹣)=(400﹣800)cm2.3.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=, ∴AD 2=AC?CD .∴点D 是线段AC 的黄金分割点.(2)∵点D 是线段AC 的黄金分割点,∴AD=AC ,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB 作为三角形底边;②取AB 的一半作AB 的垂线AC ,连接BC ,在BC 上取CD=CA .③分别以A 点和B 点为圆心、以BD 为半径划弧,交点为E ;④分别连接EA 、EB ,则△ABE 即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC ﹣CD=﹣1,=. 5.解:(1)由于P 为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣; (2)如图,点P 是线段AB 的一个黄金分割点.6.解:(1)设AC=x ,则BC=AB ﹣AC=1﹣x ,∵AC 2=BC?AB ,∴x 2=1×(1﹣x ),整理得x 2+x ﹣1=0,解得x 1=,x 2=(舍去),所以线段AC 的长度为; (2)设线段AD 的长度为x ,AC=l ,∵AD 2=CD?AC ,∴x 2=l×(l ﹣x ),∴x 1=,x 2=(舍去),∴线段AD 的长度AC ;(3)同理得到线段AE 的长度AD ; 上面各题的结果反映:若线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),则C 点为AB 的黄金分割点7.解:D 是AC 的黄金分割点.理由如下:∵在△ABC 中,AB=AC ,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC?CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB?HB=2×(3﹣)=6﹣2,∴AH2=AB?HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC?DC,∵BC=AD,∴AD2=AC?DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD?AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB?HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB?HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在Rt△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN 就是平行四边形ABCD的黄金分割线.(9分)。
专题27.13 黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练
专题27.13 黄金分割(基础篇)(专项练习)一、单选题1.大自然巧夺天工,一片树叶也蕴含着“黄金分割”.如图,P为AB的黄金分割点(AP>PB),如果AB的长度为8cm,那么BP的长度是()A.12-B.9-C.4D.42.已知点C是线段AB的黄金分割点,且2<,则AC长是()AB=,AC BCA B1C.3D3523.把2米的线段进行黄金分割,则分成的较短的线段长为()A.3B1C.1D.34.已知2AB=,点P是线段AB上的黄金分割点,且AP BP>,则AP的长为()A1B C35D.325.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对6.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.6187.下列命题正确的是()A.任意两个等腰三角形一定相似B.任意两个正方形一定相似C .如果C 点是线段AB 的黄金分割点,那么AC AB =D .相似图形就是位似图形8.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .2020⎝⎭B .2021⎝⎭C .2020⎝⎭D .2021⎝⎭9.已知点C 把线段AB 分成两条线段AC 、BC ,且AC BC >,下列说法错误的是( ) A .如果AC BCAB AC=,那么线段AB 被点C 黄金分割 B .如果2AC AB BC =⋅,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么BC 与AB 的比叫做黄金比D .0.618是黄金比的近似值10.等腰△ABC 中,AB=AC ,△A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )△△BCD 是等腰三角形;△点D 是线段AC 的黄金分割点;△△BCD△△ABC ;△BD 平分△ABC . A .1个B .2个C .3个D .4个11.在△ABC 中,△A=36°,AB=AC ,BD 是△ABC 的角平分线,下列结论: △△ABD ,△BCD 都是等腰三角形; △AD=BD=BC ; △BC 2=CD•CA ; △D 是AC 的黄金分割点 其中正确的是( )A .1个B .2个C .3个D .4个二、填空题12.在线段AB 上,点C 把线AB 分成两条线段AC 和BC ,若AC BCAB AC=,则点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点(PM PN >),当1MN =时,PM 的长是__________.13.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).14.把2米长的线段进行黄金分割,则分成的较长的线段长为__________.15.古希腊时期,(称为黄金分割比例),著名的“断臂维纳斯” 2.236≈,则黄金分割比例约为______________.(精确到0.01)16.已知AB=2,点C是线段AB的黄金分割点(AC>BC),则AC= .17.把长度为4cm的线段进行黄金分割,则较长线段的长是__________cm.18.已知线段4AB=,点P是线段AB的黄金分割点(AP BP>),那么线段AP=______.(结果保留根号)19.已知线段AB长为2cm,P是AB的黄金分割点,则较长线段PA=___;PB=______.200.61803398=…,将这个分割比保留4个有效数字的近似数是.21.若点C为线段AB的黄金分割点,且AC<BC,若AB=10,则BC=_____.22.若点P是线段AB的黄金分割点,AB=10cm,则较长线段AP的长是_____cm.三、解答题23.已知C、D是线段AB上的点,CD=(√5﹣2)AB,AC=BD,则C、D是黄金分割点吗?为什么?24.已知线段MN = 1,在MN 上有一点A ,如果AN =,求证:点A 是MN 的黄金分割点.25.(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求: 2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.26.(1)我们知道,将一条线段AB 分割成大小两条线段AP 、PB ,使AP >PB ,点P 把线段AB 分成两条线段AP 和BP ,且=AP BP AB AP ,点P 就是线段AB 的黄金分割点,此时PAAB的值为 (填一个实数):(2)如图,Rt△ABC 中,△B=90°,AB=2BC ,现以C 为圆心、CB 长为半径画弧交边AC 于D ,再以A 为圆心、AD 长为半径画弧交边AB 于E . 求证:点E 是线段AB 的黄金分割点.27.某校要设计一座2m 高的雕像(如图),使雕像的点C (肚脐)为线段AB (全身)的黄金分割点,上部AC (肚脐以上)与下部BC (肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到0.001)米. 2. 236=,结果精确到0.001).28.在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE△ΔCAD.(2)若CE=CP,求证△CPD=△PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.参考答案1.A【分析】根据黄金分割的定义得到AP AB,然后把AP的长度代入可求出AB的长.【详解】解:△P为AB的黄金分割点(AP>PB),△AP AB,△AB的长度为8cm,△AP×8=4(cm),△BP=AB-AP=8-(4)=12-故选:A.【点拨】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB.2.C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知BC AB===21△21)3=-=-=AC AB BC故选C【点拨】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.3.A【分析】根据黄金分割的定义列式进行计算即可得解.【详解】解: 较短的线段长=2⨯(1=2故选A.【点拨】本题考查了黄金分割的概念, 熟记黄金分割的比值是解题的关键.4.A【分析】根据黄金分割点的定义和AP BP=,代入数据即可得出AP的长度.>得出AP AB【详解】解:由于P为线段AB=2的黄金分割点,且AP BP>,则21==.ABAP=故选:A.35,2.5.B【分析】根据黄金分割的定义分别进行解答即可.【详解】A.每条线段有两个黄金分割点,故本选项错误;B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C.若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC.故选B.【点拨】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.6.D【分析】根据比例中项和黄金分割的概念分析各个说法.【详解】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,错误;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,正确;故选D.【点拨】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键. 7.B 【分析】根据相似多边形的概念、黄金分割点及位似可直接进行排除选项. 【详解】解:A 、任意两个等腰三角形的底角或顶角相等,则这两个等腰三角形相似,故原命题错误; B 、任意两个正方形一定相似,故原命题正确;C 、如果C 点是线段AB 的黄金分割点(AC >BC ),那么AC AB =D 、相似图形不一定是位似图形,故原命题错误; 故选B .【点拨】本题主要考查相似多边形的概念、黄金分割点及位似,熟练掌握相似多边形的概念、黄金分割点及位似是解题的关键. 8.C 【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则11AP ==2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点拨】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键. 9.C 【解析】【分析】根据黄金分割的定义判断即可.【详解】根据黄金分割的定义可知A、B、D正确;C.如果线段AB被点C黄金分割(AC>BC),那么AC与AB的比叫做黄金比,所以C错误.所以C选项是正确的.【点拨】本题考查了黄金分割的概念:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.注意线段AB的黄金分割点有两个.10.D【详解】△AB=AC,△△ABC=△C=12(180°-△A)=12(180°-36°)=72°,△AD=BD,△△DBA=△A=36°,△△BDC=2△A=72°,△△BDC=△C,△△BCD为等腰三角形,所以△正确;△△DBC=△ABC-△ABD=36°,△△ABD=△DBC,△BD平分△ABC,所以△正确;△△DBC=△A,△BCD=△ACB,△△BCD△△ABC,所以△正确;△BD:AC=CD:BD,而AD=BD,△AD:AC=CD:AD,△点D是线段AC的黄金分割点,所以△正确.故选D.11.D【解析】试题分析:在△ABC,AB=AC,△A=36°,BD平分△ABC交AC于点D,可推出△BCD,△ABD 为等腰三角形,可得AD=BD=BC,利用三角形相似解题.解:如图,△AB=AC,△A=36°,△△ABC=△C=72°,△BD平分△ABC交AC于点D,△△ABD=△CBD=△ABC=36°=△A,△AD=BD,△BDC=△ABD+△A=72°=△C , △BC=BD ,△△ABD ,△BCD 都是等腰三角形,故△正确; △BC=BD=AD ,故△正确; △△A=△CBD ,△C=△C , △△BCD△△ACB , △,即BC 2=CD•AC ,故△正确; △AD=BD=BC ,△AD 2=AC•CD=(AD+CD )•CD , △AD=CD ,△D 是AC 的黄金分割点.故△正确, 故选D .考点:相似三角形的判定与性质;黄金分割.12 【分析】根据若点P 是线段MN 的黄金分割点(PM PN >),则PM MN 计算即可. 【详解】当PM >PN 时,,.是解题的关键. 13.6.2 【分析】黄金分割又称黄金率,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618,0.618被公认为最具有审美意义的比例数字.上述比例是最能引起人的美感的比例,因此被称为黄金分割.【详解】由题意知AC:AB=BC:AC,△AC:AB≈0.618,△AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为6.2.【点拨】本题考查黄金分割,解题关键是掌握黄金分割定理.14.米【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分叫做黄金比.【详解】解:△将长度为2米的线段进行黄金分割,△较长的线段=2⨯米.是解的关键.15.0.62【分析】把黄金分割比例按要求进行计算即可.【详解】解: 2.236≈,≈2.23612-≈0.62,故答案为:0.62.【点拨】本题考查了求一个数的近似值,有理数的除法,正确计算是解题的关键.161【解析】21AC==17.()2cm.【解析】根据黄金分割的定义得到较长线段的长=×4,然后进行二次根式的运算即可.解:较长线段的长=×4=(2)cm.故答案为(2)cm.18.2【分析】计算即可.【详解】解:△点P是线段AB的黄金分割点(AP>BP)△AP2AB==故答案为:2.【点拨】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.)1cm (3cm【分析】根据黄金分割的概念得到较长线段AB,则PB=AB-352AB,然后把AB=2cm代入计算即可.【详解】解:△P是AB的黄金分割点,△较长线段AB,△PB=AB-352AB,而AB=2cm,△PA=)1cm,PB=(3cm.故答案为:)1cm;(3cm.【点拨】本题考查了黄金分割的概念:一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分倍.20.0.6180【解析】根据有效数字的定义,运用四舍五入法保留4个有效数字,需观察第五位有效数字,由于第五位有效数字是,不需往前面进一位.所以0.61803398…≈0.618021.5【分析】根据黄金分割点的定义,知BC为较长线段;则BC AB,代入数据即可得出AC的值.【详解】解:由于C为线段AB=10的黄金分割点,且AC<BC,BC为较长线段;则BC==5.故答案为:5.【点拨】本题考查黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB≈0.618AB,并且线段AB的黄金分割点有两个.22.5【解析】△P是线段AB的黄金分割点,AP>BP,AB,△AB=10cm,△AP=105=.故答案为5.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即AB. 23.C 、D 是黄金分割点.【解析】【分析】 根据题意求出AC 与AB 的关系,计算出AD 与AB 的关系,根据黄金比值进行判断即可.【详解】解:C 、D 是黄金分割点,△AC+CD+BD =AB ,CD =(√5﹣2)AB ,AC =BD ,△AC =3−√52AB , AD =AC+CD =3−√52AB+(√5﹣2)AB =√5−12AB , △D 是AB 的黄金分割点,同理C 也是AB 的黄金分割点.【点拨】本题考查黄金分割,关键是掌握黄金分割的概念和黄金比.24.见解析【解析】试题分析:先求得AM=√5−12,即可得到AM MN =AN AM =√5−12,结论得证。
《黄金分割》专题练习
黄金分割专题练习一、选择题1.已知C 是线段AB 的一个黄金分割点,则AC ∶AB 为A .215-B .253-C .215+D .215-或253-A .55B .21C .25 D 3.把2米的线段进行黄金分割,则分成的较短的线段长为A .53-B .15-C .51+D .3+4.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割;在人体躯干由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉;如果某女士身高为1.60m,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为A .2.5cmB .5.1cmC .7.5cmD .8.2cm 5.如图,在正五边形ABCDE 中,对角线AD 、AC 与EB 分别相交于点M 、N .下列命题:①四边形EDCN 是菱形;②四边形MNCD 是等腰梯形;③△AEN 与△EDM 全等; ④△AEM 与△CBN 相似;⑤点M 是线段AD 、BE 、NE 的黄金分割点,其中假命题有A .0个B .1个C .2个D .4个二、填空题1.C 是AB 的黄金分割点,则=BCAC ; 2.P 为线段AB =10cm 的黄金分割点,则AP = cm 保留两个有效数字;3.当人的肚脐到脚底的距离与身高的比等于黄金分割比0.618时,身材是最完美的;一位身高为165cm,肚脐到头顶高度为65cm 的女性,应穿鞋跟为 cm 的高跟鞋才能使身材最完美精确到1cm;4.如图,节目主持人现站在舞台AB 的一端A 点,在主持节目时,站在舞台的黄金分割点处可获得最佳美学效果,若舞台AB 长20米,主持人要想站在舞台的黄金分割点处,她应走到距A 点至少 米处,如果向B 点再走 米,也处在舞台的黄金分割点处结果精确到0.1米5.如图,在平行四边形ABCD 中,点E 是边BC 上的黄金分割点,且BE >CE,AE 与BD 相交于点F .那么BF :FD 的值为 ;6.如图,在△ABC 中,点D 是AB 的黄金分割点AD >BD,BC =AD,如果∠ACD =90°, 那么tanA = ;三、 解答下列各题1.在人体躯干脚底到肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感;张女士的身高为1.68米,身体躯干脚底到肚脐的高度为1.02米,那么她应选择约多大的高跟鞋看起来更美;精确到十分位2.一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看;如图,是一个参加空姐选拔的选手的身高情况,那么她应穿多高的鞋子才能好看 精确到1cm参考数据:黄金分割比为215-,5=2.236; 3.要设计一座2m 高的维纳斯女神雕像如图,使雕像的上部AC 肚脐以上与下部BC 肚脐以下的高度比,等于下部与全部的高度比,即点C 肚脐就叫做线段AB 的黄金分割点,这个比值叫做黄金分割比;试求出雕像下部设计的高度以及这个黄金分割比 结果精确到0.0014.如图,在△ABC 中,AB =AC,∠A =36°,∠1=∠2,请问点D 是不是线段AC 的黄金分割点;请说明理由;5.如图,△ABC 中,AB =AC,∠BAC =108°,在BC 边上取一点D,使BD =BA,连接AD;求证: 1△ADC ∽△BAC ;2点D 是BC 的黄金分割点;6.如图1,点C 将线段AB 分成两.部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点;某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线; 1研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点如图2,则直线CD 是ABC △的黄金分割线;你认为对吗 为什么2请你说明:三角形的中线是否也是该三角形的黄金分割线3研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC于点F ,连接EF 如图3,则直线EF 也是ABC △的黄金分割线;请你说明理由;4如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD,交DC 于点F,显然直线EF 是ABCD的黄金分割线;请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点;7.2013 黄石如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点 ;某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1、S 2,如果121S S S S =,那么称直线l 为该 图形的黄金分割线;1如图2,在△ABC 中,∠A =36°,AB =AC,∠C 的平分线交AB 于点D,请问点D 是否是AB 边上的黄金分割点,并证明你的结论;2若△ABC 在1的条件下,如图3,请问直线CD 是不是△ABC 的黄金分割线,并证明你的结论; 3如图4,在直角梯形ABCD 中,∠D =∠C =90°,对角线AC 、BD 交于点F,延长AB 、DC 交于点E,连接EF交梯形上、下底于G 、H 两点,请问直线GH 是不是直角梯形ABCD 的黄金分割线,并证明你的结论;8.已知线段AB,求作线段AB 的黄金分割点C,使AC >BC;相似形专题练习答案一、选择题1.D2.D3.A4.C5.B二、填空题1.215-或215+; 2.6.2或3.8;3618.0= 456.解:∵点D 是AB 的黄金分割点AD >BD,====AB AD AB BC 在△ACD 中,∠ACD =90°,=三、 解答下列各题1.设张女士应该选择xcm 高的高跟鞋,则618.0168102=++xx ,解得x =4.8cm; 2.解:设应穿xcm 高的鞋子,=3答:维纳斯女神雕像下部的高度为1.236m;618.0≈; 456.1直线是的黄金分割线;理由如下:设ABC △的边AB 上的高为h ;12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△, 所以,ADC ABC S AD S AB =△△,BDC ADC S BD S AD=△△;又因为点D 为边AB 的黄金分割点,所以有AD BD AB AD =.因此ADC BDC ABC ADC S S S S =△△△△; 所以,直线CD 是ABC △的黄金分割线; 2因为三角形的中线将三角形分成面积相等的两部分,此时1212s s s ==,即 121s s s s ≠,所以三角形的中线不可能是该三角形的黄金分割线; 3因为DF CE ∥,所以DEC △和FCE △的公共边CE 上的高也相等,所以有DEC FCE S S =△△;设直线EF 与CD 交于点G .所以DGE FGC S S =△△.所以ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形;又因为ADC BDC ABC ADCS S S S =△△△△,所以BEFC AEF ABC AEF S S S S =四边形△△△; 因此,直线EF 也是ABC △的黄金分割线;4画法不惟一,现提供两种画法;画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD 的黄金分割线;7.解:1点D 是AB 边上的黄金分割点.理由如下:∵AB =AC,∠A =36°,∴∠B =∠ACB =72°;∵CD 是角平分线,∴∠ACD =∠BCD =36°,∴∠A =∠ACD,∴AD =CD;∵∠CDB =180°-∠B -∠BCD =72°,∴∠CDB =∠B,∴BC =CD; FB D E N M G第6题答图1F B D E N M 第6题答图2另一种作法:⑴经过点B作BD⊥AB,使BD=错误!AB;⑵连接AD,在AD上截取DE=DB;⑶在线段AB上截取AC=AE;如图,点C就是线段AB的黄金分割点;A EB CD。
北师大版九年级数学《黄金分割》分层练习(含答案)
4.4.4 黄金分割一、目标导航1.黄金分割定义:点C 把线段AB 分成两条线段AC 和BC ,如果AC :AB =BC :AC ,那么称线段AB 被点C 黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2.618.0215≈-=AB AC . 二、基础过关 1.若点P 是AB 的黄金分割点,则线段AP 、PB 、AB 满足关系式 .2.黄金矩形的宽与长的比大约为________(精确到0.001).3.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 处?,如果他向B 点再走 m ,也处在比较得体的位置.(结果精确到0.1m )三、能力提升4.有以下命题:①如果线段d 是线段a , b ,c 的第四比例项,则有dc b a =;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1.其中正确的判断有( )A . 1个B .2个C .3个D .4个 5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A .AM ∶BM =AB ∶AM B .AM =215-AB C .BM =215-AB D .AM ≈0.618AB 6.已知C 是线段AB 的黄金分割点(AC >BC ), 则AC ∶BC = ( )A .(5-1)∶2B .(5 +1)∶2C .(3-5)∶2D .(3+5)∶27.在长度为1的线段上找到两个黄金分割点P ,Q .则PQ =( )A .215-B .53-C .25-D .253- 8.已知线段MN = 1,在MN 上有一点A ,如果AN =253-. 求证:点A 是MN 的黄金分割点.四、聚沙成塔9.如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求AM 、DM 的长.(2)求证:AM 2=AD ·DM .(3)根据(2)的结论你能找出图中的黄金分割点吗?10.如果一个矩形ABCD (AB <BC )中,215-=BC AB ≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.参考答案1.AP 2=BP ·AB 或PB 2=AP ·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN ·MN 即可;9.⑴AM =5-1;DM =3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形.。
黄金分割同步练习及答案 (6)
黄金分割同步练习(典型题汇总)知识点 1 对黄金分割的理解1.已知点C把线段AB分成两条线段AC,BC,下列说法错误的是( )A.如果ACAB=BCAC,那么线段AB被点C黄金分割B.如果AC2=AB·BC,那么线段AB被点C黄金分割C.如果线段AB被点C黄金分割,那么AC与AB的比叫做黄金比D.一条线段有两个黄金分割点2.如图4-4-28,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是( )图4-4-28A.ACAB=BCAC B.BC2=AB·ACC.ACAB=5)-12D.BCAC≈0.6183.已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC的长为( )A.5-1 B.3-5 C.5)-12 D.0.6184.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP-BP=________.5.教材习题4.8第1题变式题如图4-4-29,乐器上的一根弦AB=80 cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,求C,D之间的距离.图4-4-29知识点 2 黄金分割的应用6.如图4-4-30所示,扇子的圆心角为α,余下扇形的圆心角为β,α与β的比通常按黄金比来设计,这样的扇子较美观.若取黄金比为0.6,则α为( )A.216° B.135° C.120° D.108°4-4-304-4-317.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图4-4-31,某女士的身高为160 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )A.6 cm B.10 cm C.4 cm D.8 cm8.人体的正常体温是37 ℃左右,根据有关测定,当气温处于人体正常体温的黄金比值时,人体感觉最舒适,这个气温的度数约为________(精确到1 ℃).9.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.如图4-4-32,若舞台AB的长为20 m,主持人应走到离A点至少多远处才最自然得体?(结果精确到0.1 m,黄金比≈0.618)图4-4-3210.点C是线段AB的黄金分割点,且AB=6 cm,则BC的长为( )A.(3 5-3)cmB.(9-3 5)cmC.(3 5-3)cm或(9-3 5)cmD.(9-3 5)cm或(6 5-6)cm11.宽与长之比为5)-12∶1的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调匀称的美感.如图4-4-33,如果在一个黄金矩形里面画一个正方形,那么留下的矩形CDFE还是黄金矩形吗?请证明你的结论.图4-4-3312.如图4-4-34,已知点C和点D均为线段AB的黄金分割点,CD=6 cm,求AB的长.图4-4-3413.定义:如图4-4-35①,点C在线段AB上,若满足AC2=BC·AB,则称点C为线段AB的黄金分割点.如图②,在△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求线段AD的长.图4-4-3514.如图4-4-36①,点C将线段AB分成两部分,如果ACAB=BCAC,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果S1S=S2S1(S1>S2),那么称直线l为该图形的黄金分割线.(1)如图②,在△ABC中,∠A=36°,AB=AC,∠ACB的平分线交AB于点D,请问点D 是不是AB边上的黄金分割点(直接写出结论,不必证明)?(2)若△ABC在(1)的条件下,如图③,请问直线CD是不是△ABC的黄金分割线?并证明你的结论;(3)如图④,在直角梯形ABCD中,∠ADC=∠BCD=90°,对角线AC,BD相交于点F,延长AB,DC交于点E,连接EF并延长分别交梯形上、下底于G,H两点,请问直线GH是不是直角梯形ABCD的黄金分割线?并证明你的结论.图4-4-361.C 2.B3.A [解析] ∵点C是线段AB的黄金分割点,且AC>BC,∴AC=5)-12AB,而AB=2,∴AC=5-1.4.2 5-4 [解析] ∵点P是线段AB的黄金分割点,AP>BP,∴AP=5)-12AB=5-1,则BP=2-AP=3-5,∴AP-BP=(5-1)-(3-5)=2 5-4.5.解:∵点C是靠近点B的黄金分割点,点D是靠近点A的黄金分割点,∴AC=BD=80×5)-12=(40 5-40)cm,∴CD=BD-(AB-BD)=2BD-AB=(80 5-160)cm.6.B 7.D8.23 ℃[解析] 37×5)-12≈23(℃).9.解:根据黄金比,得20×(1-0.618)≈7.6(m),故主持人应走到离A点至少7.6 m处才最自然得体.10.C [解析] ∵点C是线段AB的黄金分割点,且AB=6 cm,∴BC=5)-12AB=(3 5-3)cm,或BC=5)2AB=(9-3 5)cm.11.解:留下的矩形CDFE还是黄金矩形.证明:∵四边形ABEF是正方形,∴AB=DC=AF.又∵ABAD=5)-12,∴AFAD=5)-12,即点F是线段AD的黄金分割点,∴FDAF=AFAD=5)-12,∴FDDC=5)-12,∴矩形CDFE是黄金矩形.12.[解析] 因为C,D均为线段AB的黄金分割点,所以ADAB与BCAB相等,都等于黄金比.因此AD=BC,所以AC=BD.解:∵C,D均为线段AB的黄金分割点,∴ADAB=BCAB,∴AD=BC,∴AB-AD=AB-BC,即BD=AC.设AC=BD=x cm,则AD=(x+6)cm,AB=(2x+6)cm. ∵ADAB=5)-12,∴x+62x+6=5)-12,∴x+62(x+3)=5)-12,解得x=3 5+3,∴AB=(6 5+12)cm.13.解:(1)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵BD平分∠ABC,∴∠ABD=∠DBC=∠A=36°,∴∠BDC=72°,∴BC=BD=AD.∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴BCAC=CDCB,即BC2=AC·CD,∴AD2=AC·CD,∴点D是线段AC的黄金分割点.(2)设AD=x,则CD=1-x.由(1)得x2=1-x.解得x1=5)2(舍去),x2=5)2,∴AD=5)2.14.解:(1)点D是AB边上的黄金分割点.(2)直线CD是△ABC的黄金分割线.证明:设△ABC的边AB上的高为h,则S△ADC=12AD·h,S△DBC=12BD·h,S△ABC=12AB·h,∴S△ADC∶S△ABC=AD∶AB,S△DBC∶S△ADC=BD∶AD.由(1)知点D是AB的黄金分割点,∴ADAB=BDAD,∴S△ADC∶S△ABC=S△DBC∶S△ADC,∴直线CD是△ABC的黄金分割线.(3)直线GH不是直角梯形ABCD的黄金分割线.证明:∵BC∥AD,∴△EBG∽△EAH,△EGC∽△EHD,∴BGAH=EGEH,①GCHD=EGEH.②由①②得BGAH=GCHD,即BGGC=AHHD.③同理,由△BGF∽△DHF,△CGF∽△AHF,得BGHD=GCAH,即BGGC=HDAH.④由③④得AHHD=HDAH,∴AH=HD,∴BG=GC,∴梯形ABGH与梯形GCDH的上、下底分别相等,高也相等,∴S梯形ABGH=S梯形GCDH=12S梯形ABCD,CBAC BA ∴直线GH 不是直角梯形ABCD 的黄金分割线.黄金分割同步练习(典型题汇总)一、选择题:1.如图,点C 把线段AB 分成两条线段AC 和BC,如果AC BCAB AC=,那么下列说法错误的是( ) A.线段AB 被点C 黄金分割; B.点C 叫做线段AB 的黄金分割点 C.AB 与AC 的比叫做黄金比; D.AC 与AB 的比叫做黄金比 2.如图的五角星中,AC AB 与BCAC的关系是( ) A.相等; B.AC AB >BC AC ; C.AC AB <BC AC; D.不能确定 3.一条线段的黄金分割点有( )A.1个B.2个C.3个D.无数个4.黄金分割比是( )A.12 B.12 C.12D.0.618 5.如图,点C 是AB 的黄金分割点,那么AC AB 与ACBC的值分别是( ) A.,B.,; C.,; D.6.如图,若点C 是AB 的黄金分割点,AB=2,则AC= ( )11 二、填空题:CBAC BAC BA1.点C 把线段AB 分成两条线段AC 和BC,如果_________,那么称线段AB 被点C•黄金分割,点C 叫做线段AB 的________,AC 与AB 的比叫做_________.2.如图,若点C 是AB 的黄金分割点,AB=1,则AC=_______,BC=______.3.已知点C 是AB 的黄金分割点,即AC AB那么AC CB=________.4.如图,点C 是AB 的黄金分割点,AB=4,则AC 2=________.5.宽与长的比等于________的矩形叫做黄金矩形.6.已知黄金矩形的长等于6,则这个黄金矩形的宽等于_________. 三、计算题:1.已知线段AB 长6厘米,点P 是AB 的黄金分割点,且AP>BP,求AP 和BP 的长.2.仿照课本上“做一做”的方法,画出线段AB 的黄金分割点.3.请你在实际生活中搜集一个与黄金分割有关的资料,并与同伴相互交流.四、已知一个等腰三角形如果腰与底边的比是黄金比,•那么这样的等腰三角形称为黄金三角形.请你设法作出一个黄金三角形.五、已知线段AB=1,C 为AB 的黄金分割点,且AC>BC,求AC-BC 的值.六、如图的五角星中,AD=BC,且C 、D 两点都是AB 的黄金分割点,AB=1,求CD 的长.D C BA七、已知C 、D 是线段AB 上的两点,且不难证明当AB=1时,C 、D 是线段AB 的黄金分割点,试探究当AB 任意长时,C 、D 是否是线段AB 的黄金分割点?为什么?答案:一、1.C 2.A 3.B 4.B 5.B 6.C二、1. AC BC AB AC=;黄金分割点;黄金比 2. 12;32-3. 12黄金比三、1.因为点P 是AB 的黄金分割点,且AP>BP,所以AP PB AB AP=,××2.(1)过点B 作BD ⊥AB 且BD=12AB,连接AD (2)以D 为圆心BD 为半径作圆弧交AD 于E(3)以A 为圆心AE 为半径作圆弧交AB 于C,则C 为AB 的黄金分割点3.查阅资料四、先做出线段AB,及其黄金分割点C(AC>BC)分别以A 、B 为圆心,AC 为半径作圆弧,交点为P,则△PAB 就是黄金三角形五、根据C 为AB 的黄金分割点,AC>BC 得AC AB =12,因为AB=1,所以AC= 12BC=AB-AC=1-12= 32-,•所以六、根据C 、D 都是AB 的黄金分割点得AC AB ,BD AB因为AB=1,所以AC=12,BD=12,所以AD=AB-BD=1-12=32-,因此七、C、D是线段AB的黄金分割点.。
2020年中考复习--黄金分割专题训练(一)(有答案)
2020中考复习--黄金分割专题训练(一)一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D.0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割C. 如果线段AB被点C黄金分割,那么BC与AB的比叫做黄金比D. 0.618是黄金比的近似值8.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是()A. 点D是线段BC的黄金分割点B. 点E是线段BC的黄金分割点C. 点E是线段CD的黄金分割点D. EDBE =√5−12二、填空题9.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10.如果线段AB=10cm,P是线段AB的黄金分割点,那么线段BP=________cm.11.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(BC<AC).已知AB=4cm,则BC的长约为________cm.(结果精确到0.1)12.在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62cm,则其身长约为_______cm(保留两位小数)13.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则宽约为________(精确到1cm).15.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
黄金分割专项练习30题(有答案)
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC•AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD•AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE•AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD 为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD•AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD 的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF 是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.黄金分割专项练习30题参考答案:1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)•10(3﹣)=(400﹣800)cm2.3.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=,∴AD2=AC•CD.∴点D是线段AC的黄金分割点.(2)∵点D是线段AC的黄金分割点,∴AD=AC,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB作为三角形底边;②取AB的一半作AB的垂线AC,连接BC,在BC上取CD=CA.③分别以A点和B点为圆心、以BD为半径划弧,交点为E;④分别连接EA、EB,则△ABE即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC﹣CD=﹣1,=.5.解:(1)由于P为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣;(2)如图,点P是线段AB的一个黄金分割点.6.解:(1)设AC=x,则BC=AB﹣AC=1﹣x,∵AC2=BC•AB,∴x2=1×(1﹣x),整理得x2+x﹣1=0,解得x1=,x2=(舍去),所以线段AC的长度为;(2)设线段AD的长度为x,AC=l,∵AD2=CD•AC,∴x2=l×(l﹣x),∴x1=,x2=(舍去),∴线段AD的长度AC;(3)同理得到线段AE的长度AD;上面各题的结果反映:若线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),则C点为AB的黄金分割点7.解:D是AC的黄金分割点.理由如下:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC•CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB•HB=2×(3﹣)=6﹣2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC•DC,∵BC=AD,∴AD2=AC•DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD•AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB•HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在Rt△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.(9分)第21 页共21 页。
黄金分割数学练习题
黄金分割数学练习题黄金分割是一个在数学中常见的概念,它的起源可以追溯到古希腊的数学家欧几里得。
黄金分割有着极其美丽和神秘的属性,其应用广泛,不仅在美学和设计领域,还在自然科学和金融领域中被广泛使用。
下面我将给大家提供一些黄金分割的数学题目,希望能加深大家对这一概念的理解和掌握。
1. 黄金矩形的特性请证明,在一个黄金矩形中,长和宽的比例等于黄金分割数。
即若将长和宽分别称为a和b,则有a/b = (a+b)/a = φ,其中φ为黄金分割率。
2. 黄金螺旋的构造把一个正方形中最大的正方形切下,然后将原正方形的一边与切下来的正方形接上,继续这个过程,可以得到一个逐渐趋近于黄金螺旋的形状。
请问,如果已知黄金螺旋的内切圆半径为1,则螺旋的长度是多少?3. 黄金分割点的寻找已知一条线段AB,要在该线段上寻找一个点C,使得整条线段AB被分割成一个小线段AC和一个大线段BC,且AC/BC = φ。
请问,应该在AB上的哪个位置放置点C?4. 黄金矩形和黄金螺旋的面积关系已知一个黄金矩形的宽为1,求其面积。
5. 黄金螺旋的旋转特性已知一个边长为1的正方形,将其边长的一半切下,然后旋转该半边,并接到原正方形的一边上。
依照这个规律一直操作下去,可以得到一个黄金螺旋。
请问,该螺旋每旋转一周,与原正方形形成的图形的面积增加多少?以上这些练习题涉及了黄金分割的几个重要方面,包括黄金矩形和黄金螺旋的构造、特性,以及黄金分割点的寻找。
通过解答这些题目,不仅可以加深对黄金分割概念的理解,还可以培养数学思维和问题解决能力。
黄金分割作为一种数学美学的表达方式,它的魅力在于其神秘的比例和无限的延伸。
它在自然界中广泛存在,比如太阳花的排列、贝壳的螺纹,都有黄金分割的痕迹。
同时在艺术和设计领域中,黄金分割也被广泛运用,用来构建视觉上的和谐和美感。
总之,黄金分割是一个深奥而有趣的数学概念,通过练习题的形式,我们可以更好地理解和应用它。
希望大家通过这些题目的解答,能够对黄金分割有更深入的认识,并在实际问题中灵活运用它。
分割黄金智力测试题(3篇)
第1篇一、选择题1. 下列关于黄金分割的描述,正确的是:A. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例。
B. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为1:1。
C. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为2:1。
D. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为3:2。
2. 黄金分割的比值约为:A. 1.618B. 2.618C. 0.618D. 1.4143. 黄金分割在以下哪个领域有广泛的应用?A. 数学B. 物理C. 建筑D. 以上都是4. 下列哪个不是黄金分割的应用实例?A. 斐波那契数列B. 古希腊建筑C. 印度教神像D. 荷兰风车5. 黄金分割在音乐中的运用体现在:A. 旋律B. 和弦C. 节奏D. 以上都是6. 黄金分割在艺术创作中的运用体现在:A. 形状B. 色彩C. 线条D. 以上都是7. 下列哪个不是黄金分割的特点?A. 比例关系B. 美学价值C. 经济效益D. 生物学意义8. 黄金分割在建筑设计中的运用体现在:A. 室内布局B. 外观造型C. 结构设计D. 以上都是9. 黄金分割在植物生长中的运用体现在:A. 叶片排列B. 花朵形态C. 果实分布D. 以上都是10. 下列哪个不是黄金分割的应用领域?A. 设计B. 科学研究C. 农业种植D. 医学治疗二、填空题1. 黄金分割的比值是__________。
2. 黄金分割在数学中被称为__________。
3. 黄金分割在自然界中普遍存在,如__________、__________等。
4. 黄金分割在艺术创作中的应用实例有__________、__________等。
5. 黄金分割在建筑设计中的应用实例有__________、__________等。
4.4探索三角形相似的条件(第4课时)黄金分割同步练习含答案
第4课时黄金分割关键问答①点C把线段AB分成两条线段AC和BC(AC>BC),当这三条线段之间存在什么关系时,可以称线段AB被点C黄金分割?②黄金比的值是多少?1.①已知点C是线段AB的黄金分割点,且AC>BC,则下列等式中成立的是()A.AC2=BC·AB B.AC2=2AB·BCC.AB2=AC·BC D.BC2=AC·AB2.·六盘水矩形的长与宽分别为a,b,下列数据能构成黄金矩形的是()A.a=4,b=5+2 B.a=4,b=5-2C.a=2,b=5+1 D.a=2,b=5-13.②在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为()A.32.36 cm B.13.6 cm C.12.36 cm D.7.64 cm命题点1利用黄金分割的结论进行计算[热度:83%]4.③如图4-4-34,已知点P是线段AB的黄金分割点,且P A>PB,若S1表示以P A 为边的正方形的面积,S2表示长为AB,宽为PB的矩形的面积,则()图4-4-34A.S1>S2B.S1=S2C.S1<S2D.无法确定S1和S2的大小方法点拨③根据黄金分割的概念将线段比转化为面积比.5.④如图4-4-35,在▱ABCD中,点E是BC边上的黄金分割点,且BE>CE,AE与BD相交于点F,那么BF∶DF的值为________.图4-4-35解题突破④求BF∶DF可以转化为求BE∶DA吗?如果可以,根据黄金分割点的定义先求出BE∶BC的值.6.把一根长为4 m的铁丝弯成一个矩形框,使它的宽与长的比为黄金比5-12,则这个矩形的面积为__________m2.图4-4-367.⑤·台州模拟如图4-4-36,连接正五边形ABCDE的各条对角线围成一个新的五边形MNPQR.图中有很多顶角为36°的等腰三角形,我们把这种三角形称为“黄金三角形”,黄金三角形的底与腰之比为5-12.若AB=5-12,则MN=________.方法点拨⑤黄金三角形是比较特殊的三角形,解决与黄金三角形有关的计算问题,往往需要借助黄金比及相似三角形的对应边成比例来完成.命题点2黄金分割在实际生活中的应用[热度:80%]8.·乳山期中某种乐器的弦AB长为120 cm,点A,B固定在乐器面板上,弦AB上有一个支撑点C,且C是AB的黄金分割点(AC>BC),则AC的长为()A.(120-305)cm B.(160-605)cmC.(605-120)cm D.(605-60)cm9.⑥大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图4-4-37,P为AB的黄金分割点(AP>PB),如果AB的长度为10 cm,那么PB的长度为________.图4-4-37解题突破⑥先利用黄金分割的定义计算出AP的长,然后通过AB-AP即可得到PB的长.10.⑦人体下半身的长度与身高的比例越接近0.618,越给人美感.遗憾的是,即使芭蕾舞演员也达不到如此的完美.某女士身高 1.68 m,下半身长 1.02 m,她应该选择穿________(精确到0.1 cm)的高跟鞋看起来更美.易错警示⑦注意身高包括高跟鞋的高度.命题点3有关黄金分割的证明[热度:75%]11.⑧如图4-4-38,在△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E.(1)求证:E为线段AB的黄金分割点;(2)若AB=4,求BC的长.图4-4-38知识链接⑧顶角为36°的等腰三角形被称为黄金三角形,底角的平分线与腰的交点就是腰的黄金分割点,并且被底角的平分线分成的两个三角形都是等腰三角形,其中的锐角三角形与原等腰三角形相似.12.⑨宽与长的比是5-12的矩形叫做黄金矩形.现将折叠黄金矩形的方法归纳如下(如图4-4-39所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以点N为圆心,ND长为半径画弧,交BC的延长线于点E;第四步:过点E作EF⊥AD,交AD的延长线于点F.请你根据以上作法,证明矩形DCEF为黄金矩形.'图4-4-39解题突破⑨对于没有出现具体数据的计算题或证明题,我们可以考虑设参数,如假设正方形的边长是2a,接下来你知道该怎么做了吗?13.⑩三角形中,顶角等于36°的等腰三角形称为黄金三角形.如图4-4-37①,在△ABC 中,已知AB =AC ,∠A =36°.(1)在图①中,用尺规作AB 的垂直平分线交AC 于点D ,并连接BD (保留作图痕迹,不写作法).(2)△BCD 是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由. (3)设BCAC=k ,试求k 的值.图4-4-40解题突破○10(1)可根据基本作图中线段垂直平分线的作法进行作图; (2)根据角度判断;(3)根据相似三角形的性质求解.14.⑪如图4-4-41①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图②),则直线CD 是△ABC的黄金分割线.你认为对吗?为什么?(2)三角形的中线是该三角形的黄金分割线吗?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图③),则直线EF也是△ABC的黄金分割线,请你说明理由;(4)如图④,点E是▱ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是▱ABCD的黄金分割线.请你画一条▱ABCD的黄金分割线,使它不经过▱ABCD 各边的黄金分割点.图4-4-41解题突破⑪对于新定义问题,关键是理解新定义的概念,解决此题的关键是把黄金分割线与黄金分割点联系起来,把面积与边长联系起来.详解详析【关键问答】①当AC 2=BC·AB 时,线段AB 被点C 黄金分割. ②5-12≈0.618. 1.A [解析] 根据线段黄金分割的定义,得AC 2=BC·AB. 2.D [解析] ∵宽与长的比是5-12的矩形叫做黄金矩形,∴ba =5-12,∴当a =2,b =5-1时满足题意.故选D .3.C [解析] 方法1:设这本书的宽为x cm ,则有2020+x =x20,解得x ≈12.36(负值已舍去).方法2:书的宽约为20×0.618=12.36(cm ).4.B [解析] 根据黄金分割的概念,得AP AB =PB AP ,则S 1S 2=AP 2AB ·PB =1,即S 1=S 2.故选B.5.5-12[解析] ∵四边形ABCD 是平行四边形, ∴BC ∥AD ,BC =AD , ∴△BEF ∽△DAF , ∴BE ∶DA =BF ∶DF . ∵BC =AD , ∴BE ∶BC =BF ∶DF .∵点E 是BC 边上的黄金分割点, ∴BE ∶BC =5-12, ∴BF ∶DF =5-12. 6.(4 5-8) [解析] 设这个矩形的长为x m ,宽为y m ,则x +y =2. 由题意,得y x =xx +y =5-12,解得x =5-1,y =3-5,所以这个矩形的面积为(5-1)×(3-5)=(4 5-8)m 2. 7.5-2 [解析] 设MN =x .由题意可知DE =AB =5-12. ∵∠EDM =∠ECD =36°,∠END =∠EDN =72°,∴DE =EN ,同理CD =CM , ∴EM =5-12-x , EC =EN +CM -MN =5-1-x .∵∠DEM =∠DEC ,∴△DEM ∽△CED , ∴DE 2=EM ·EC , ∴(5-12)2=(5-12-x )(5-1-x ), 整理,得x 2-32×(5-1)x +(5-1)24=0, ∴⎣⎡⎦⎤x -34×(5-1)2=516×(5-1)2, ∴x =5-2或x =12(5+1)(不合题意,舍去),∴MN =5-2.8.D [解析] 根据黄金分割点的概念,得AC =5-12AB =(605-60)cm.故选D. 9.(15-5 5)cm [解析] ∵P 为AB 的黄金分割点(AP >PB ), ∴AP =5-12AB =5-12×10=(5 5-5)cm , ∴PB =AB -AP =10-(5 5-5)=(15-5 5)cm. 10.4.8 cm [解析] 设她应选择高跟鞋的高度是x cm ,则 102+x168+x =0.618, 解得x ≈4.8.经检验,x ≈4.8是原分式方程的解且符合题意, 即她应该选择穿4.8 cm 的高跟鞋看起来更美.11.[解析] (1)根据等腰三角形两底角相等求出∠ACB =72°,再根据角平分线的定义求出∠BCE =36°,从而得到∠BCE =∠A ,然后判定△ABC 和△CBE 相似,根据相似三角形对应边成比例列出比例式整理,并根据黄金分割点的定义即可得证;(2)根据等角对等边的性质可得AE =BC ,再根据黄金比求解即可. 解:(1)证明:∵AB =AC ,∠A =36°, ∴∠ACB =∠B =12×(180°-36°)=72°.∵CE 平分∠ACB ,∴∠BCE =∠ACE =12∠ACB =12×72°=36°,∴∠BCE =∠A =∠ACE =36°,∴AE =CE , ∴∠BEC =180°-∠BCE -∠B =72°, ∴∠BEC =∠B , ∴BC =CE =AE . 又∵∠B =∠B , ∴△ABC ∽△CBE , ∴AB BC =BCBE, ∴BC 2=AB ·BE , 即AE 2=AB ·BE ,∴E 为线段AB 的黄金分割点.(2)∵E 为AB 的黄金分割点,∴AEAB =5-12.又BC =AE , ∴BC =5-12·AB =5-12×4=2 5-2. 12.证明:在正方形ABCD 中,设AB =2a . ∵N 为BC 的中点,∴NC =12BC =a .在Rt △DNC 中,ND =NC 2+CD 2=a 2+(2a )2=5a .又∵NE =ND ,∴CE =NE -NC =(5-1)a , ∴CE CD =()5-1a2a =5-12, ∴矩形DCEF 为黄金矩形. 13.解:(1)如图所示.(2)△BCD 是黄金三角形.证明如下:∵点D 在AB 的垂直平分线上, ∴AD =BD ,∴∠ABD =∠A =36°.∵∠A =36°,AB =AC ,∴∠ABC =∠C =72°, ∴∠ABD =∠DBC =36°.又∵∠BDC =∠A +∠ABD =72°, ∴∠BDC =∠C ,∴BD =BC , ∴△BCD 是黄金三角形.(3)设BC =x ,AC =y ,由(2)知,AD =BD =BC =x . ∵∠DBC =∠A ,∠C =∠C , ∴△BDC ∽△ABC , ∴BC AC =DC BC ,即x y =y -x x, 整理,得x 2+xy -y 2=0,解得x =-1±52y .∵x ,y 均为正数,∴k =xy =5-12.14.解:(1)对.理由如下: 设△ABC 的边AB 上的高为h .11 / 11 则S △ADC =12AD ·h ,S △BDC =12BD ·h ,S △ABC =12AB ·h , ∴S △ADC S △ABC =AD AB ,S △BDC S △ADC =BD AD. 又∵点D 为边AB 的黄金分割点,∴AD AB =BD AD, ∴S △ADC S △ABC =S △BDC S △ADC , ∴直线CD 是△ABC 的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴S 1=S 2=12S ,即S 1S ≠S 2S 1, 故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF ∥CE ,∴△DFC 和△DFE 的公共边DF 上的高也相等,∴S △DFC =S △DFE ,∴S △ADC =S △ADF +S △DFC =S △ADF +S △DFE =S △AEF ,S △BDC =S 四边形BEFC .又∵S △ADC S △ABC =S △BDC S △ADC, ∴S △AEF S △ABC =S 四边形BEFC S △AEF, 因此,直线EF 也是△ABC 的黄金分割线.(4)画法不唯一,现提供两种画法;画法一:如图①,取EF 的中点G ,过点G 作一条直线分别交AB ,DC 于M ,N 两点,则直线MN 就是▱ABCD 的黄金分割线;画法二:如图②,在DF 上取一点N ,连接EN ,再过点F 作FM ∥EN 交AB 于点M ,连接MN ,则直线MN 就是▱ABCD 的黄金分割线.。
黄金分割专项练习题有答案
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC•AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD•AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE•AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD 为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD•AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD 的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△AB C的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF 是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.黄金分割专项练习30题参考答案:1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)•10(3﹣)=(400﹣800)cm2.∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=,∴AD2=AC•CD.∴点D是线段AC的黄金分割点.(2)∵点D是线段AC的黄金分割点,∴AD=AC,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB作为三角形底边;②取AB的一半作AB的垂线AC,连接BC,在BC上取CD=CA.③分别以A点和B点为圆心、以BD为半径划弧,交点为E;④分别连接EA、EB,则△ABE即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC﹣CD=﹣1,=.5.解:(1)由于P为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣;(2)如图,点P是线段AB的一个黄金分割点.6.解:(1)设AC=x,则BC=AB﹣AC=1﹣x,∵AC2=BC•AB,∴x2=1×(1﹣x),整理得x2+x﹣1=0,解得x1=,x2=(舍去),所以线段AC的长度为;(2)设线段AD的长度为x,AC=l,∵AD2=CD•AC,∴x2=l×(l﹣x),∴x1=,x2=(舍去),∴线段AD的长度AC;(3)同理得到线段AE的长度AD;上面各题的结果反映:若线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),则C点为AB的黄金分割点7.解:D是AC的黄金分割点.理由如下:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC•CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB•HB=2×(3﹣)=6﹣2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC•DC,∵BC=AD,∴AD2=AC•DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD•AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB•HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在R t△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.(9分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄金分割比:
假设身高160cm,上半身高度为64cm,则妈妈应该穿多高的高跟鞋?64÷0.618≈103.5 cm 理想下半身
160-64=96 cm 实际下半身
103.5-96=7.5 cm 高跟鞋高度
实践作业:
1、帮妈妈计算需要的高跟鞋高度?
2、寻找生活中的黄金比?记录下来。
易错题:
1.一个和长方形的周长是36厘米,长和宽的比是4:5,长和宽各是多少厘米?
2.一个三角形三个内角度数比是1:2:3,这个三角形是什么三角形?
3.六年级三个班数学平均成绩是87,比为4:5:6,三个班的成绩各是多少?
4.一项工程,甲队单独做完成要5天完成,乙队单独做要6天完成,甲乙两队工作
效率比是多少?
5.糖与水比是1:50,现有水300千克,需加糖多少千克?
6.甲,乙两数之和是18,.甲数是乙数的5分之一,求甲乙两数?
7.A、B两地相距408KM,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?
8.一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?9.将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。
这个模型的长、宽、高各是多少厘米?表面积是多少平方厘米?
10.一块长方形土地,周长是160m,长和宽的是5:3,这块长方形土地的面积是多少平方米?
11.李老师把2000元钱存入银行,整存整取五年,年利率是4.14%。
到期时,李老师一共能取回多少钱?(利息税是5%)
12.李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?。