新人教版2020年七年级数学下学期综合测试卷一
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(含答案解析)(1)
人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
人教版七年级数学下学期名校实数检测卷含解析(1)
一、选择题1.已知{}min ,,a b c 表示取三个数中最小的那个数.例如:当2x =-时,()(){}23min 2,2,28---=-,当{}21min ,,16x x x =时,则x 的值为( ) A .116 B .18C .14D .122.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 8的大小B .利用四个直角边为3dm 18的大小C 2的正方形以及一个直角边为2dm 6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10的大小3.已知T 122119311242++,T 22211497123366++,T 32211134++21313()1212,⋯,T 22111(1)n n +++n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220214.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .85.若225a =,3b =,则a b +所有可能的值为( ) A .8B .8或2C .8或2-D .8±或2±6.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;164±,其中正确的个数有( ) A .0个B .1个C .2个D .3个7.a ,小数部分为b ,则a-b 的值为() A.6B6C.8D88.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个 B .6个 C .5个 D .4个 9.设n 为正整数,且nn+1,则n 的值为( ) A .5B .6C .7D .810.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 24 10 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .428二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为2M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 13.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.15.对于正整数n ,定义2,10()(),10n n F n f n n ⎧<=⎨≥⎩其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,2(123)(123)1F f ==2310+=.规定1()()F n F n =,()1()()k k F n F F n +=.例如:1(123)(123)10F F ==,()21(123)(123)F F F =(10)1F ==.按此定义2021(4)F =_____.16.我们可以用符号f (a )表示代数式.当a 是正整数时,我们规定如果a 为偶数,f (a )=0.5a ;如果a 为奇数,f (a )=5a +1.例如:f (20)=10,f (5)=26.设a 1=6,a 2=f (a 1),a 3=f (a 2)…;依此规律进行下去,得到一列数:a 1,a 2,a 3,a 4…(n 为正整数),则2a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+…+a 2013﹣a 2014+a 2015=_____.17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 18.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 20.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.三、解答题21.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即; 仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++22.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ; (2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.23.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=24.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣12)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于;25.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1 即1+2+22+23+24+…+22017=22018-1 请你仿照此法计算: (1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数); (3)1+2×2+3×22+4×23+…+9×28+10×29. 26.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值.27.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;28.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 29.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文.30.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ; (2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行: 令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…② 由② ﹣ ①式,得2S ﹣S =231﹣1 即(2﹣1)S =231﹣1 所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】2111161616x x ===,,的x 值,找到满足条件的x 值即可. 【详解】116=时,1256x =,x <当2116x =时,14x =±,当14x =-时,2x x <,不合题意;当14x =12=,2x x << 当116x =时,21256x =,2x x <,不合题意, 故选:C . 【点睛】本题主要考查了实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.2.C解析:C 【分析】在拼图的过程中,拼前,拼后的面积相等,所以我们只需要分别计算拼前,拼后的面积,看是否相等,就可以逐一排除. 【详解】A :222=8⨯,2=8,不符合题意;B :4×(3×3÷2)=18,2=18,不符合题意;C :22224+⨯÷=,26=,符合题意;D :24(132)210⨯⨯÷+=,210=,不符合题意. 故选:C . 【点睛】本题考查了利用二次根式计算面积,解题的关键是在拼图的过程中,拼前,拼后的面积相等.3.A解析:A 【分析】根据数字间的规律探索列式计算 【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021=371320212022+1+++...261220212022⨯+⨯ =11111++1++1++...1+261220212022+⨯=11112021++++ (261220212022)=11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A . 【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.4.A解析:A 【分析】根据相关知识逐项判断即可求解. 【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题. 所以真命题有5个.故选:A 【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.5.D解析:D 【分析】先求出a 、b 的值,再计算即可. 【详解】 解:∵225a =, ∴a =±5, ∵3b =, ∴b =±3,当a =5,b =3时,8a b +=; 当a =5,b =-3时,2a b +=; 当a =-5,b =3时,2a b +=-; 当a =-5,b =-3时,8a b +=-; 故选:D . 【点睛】本题考查了绝对值、平方根和有理数加法运算,解题关键是分类讨论,准确计算.6.C解析:C 【分析】分别根据相关的知识点对四个选项进行判断即可. 【详解】解:①所有无理数都能用数轴上的点表示,故①正确; ②若一个数的平方根等于它本身,则这个数是0,故②错误; ③任何实数都有立方根,③说法正确;2±,故④说法错误; 故其中正确的个数有:2个. 故选:C . 【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.7.A解析:A 【分析】先根据无理数的估算求出a 、b 的值,由此即可得. 【详解】91516<<,<34<<,3,3a b ∴==,)336a b ∴-=-=故选:A . 【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8.B解析:B 【分析】根据有理数的分类依此作出判断,即可得出答案. 【详解】解:①没有最小的整数,所以原说法错误; ②有理数包括正数、0和负数,所以原说法错误; ③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确; ⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个. 故选:B . 【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.9.D解析:D 【分析】n 的值. 【详解】解:∵∴89,∵n n+1,∴n=8, 故选;D . 【点睛】10.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.二、填空题11.2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可.【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧,∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A位于点B左边:①若点D在点A左边,如图所示:此时,37222 BD AD AB=+=+=;②若点D在点A右边,如图所示:此时,31222 BD AB AD=-=-=;2>若点A位于点B右边:①若点D在点A左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.13.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.403【解析】当k=6时,x6=T(1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达 解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.15.145【分析】根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解.【详解】解:F1(4)=16,F2(4)=F (16)=37,F3(4解析:145【分析】根据题意分别求出F 1(4)到F 8(4),通过计算发现,F 1(4)=F 8(4),然后根据所得的规律即可求解.【详解】解:F 1(4)=16,F 2(4)=F (16)=37,F 3(4)=F (37)=58,F 4(4)=F (58)=89,F 5(4)=F (89)=145,F 6(4)=F (145)=26,F 7(4)=F (26)=40,F 8(4)=F (40)=16,……通过计算发现,F 1(4)=F 8(4),∴202172885÷=, ∴20215(4)(4)145F F ==;故答案为:145.【点睛】本题考查了有理数的乘方,新定义运算,能准确理解定义,多计算一些数字,进而确定循环规律是解题关键. 16.7【分析】本题可以根据代数式f (a )的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an 的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f (a )的运算求出a 1,a 2,a 3,a 4,a 5,a 6 ,a 7的值,根据规律找出部分a n 的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a 1=6,a 2=f (a 1)=3,a 3=f (a 2)=16,a 4=f (a 3)=8,a 5=f (a 4)=4,a 6=f (a 5)=2,a 7=f (a 6)=1,a 8=f (a 7)=6,…,∴数列a 1,a 2,a 3,a 4…(n 为正整数)每7个数一循环,∴a 1-a 2+a 3-a 4+…+a 13-a 14=0,∵2015=2016-1=144×14-1,∴2a 1-a 2+a 3-a 4+a 5-a 6+…+a 2013-a 2014+a 2015=a 1+a 2016+(a 1-a 2+a 3-a 4+a 5-a 6+…+a 2015-a 2016)=a 1+a 7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a 1-a 2+a 3-a 4+…+a 13-a 14=0来解决问题.17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 19.3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.20.①④⑤【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确;②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.三、解答题21.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.22.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=24332-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.23.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,∴故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.∴3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∴∵只有个位数是4的立方数是个位数是4,∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.24.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21na-⎛⎫⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11na aa-⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.25.(1)210-1;(2)n 1514+-;(3)9×210+1. 【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n 的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n ,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n +5n+1,将下式减去上式得5S-S=5n+1-1,即S=n1514+-,即1+5+52+53+54+…+5n=n1514+-;(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.26.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.27.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =;∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.28.(1)①5;②2-;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据2x =,讨论3和 m 的两种大小关系,进行计算;(3)先判定A 、B 的大小关系,再进行求解.【详解】(1)根据题意:∵21>-,∴()()212215-=⨯--=※,∵43-<-,∴()()()243434223--=--⨯-=-+=-※. (2)∵2x =,∴31325m =-+⨯=※,① 若3m >,则235m ⨯-=,解得1m =,②若3m <, 则2353m -⨯=,解得3m =-(不符合题意), ∴1m =.(3)∵()()323224162210A B x x x x x x x -=-+-+--+-+=--<,∴A B <, ∴()3232224162333A B A B x x x x x x =-=-+-+--+-+=-※, 得380x x +-=,∴3222816x x +=⨯=.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.29.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.30.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12, a 18=1×(12)17=1712,a n =1×(12)n ﹣1=112n -, 故答案为:12,1712,112n -; (2)设S =3+32+33+ (323)则3S =32+33+…+323+324,∴2S =324﹣3,∴S =24332-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试及答案(1)
人教版七年级数学下册第八章 二元一次方程组 单元测试卷一、选择题(共 10 小题,每题 3 分,共 30 分) 1. 以下各方程组中,属于二元一次方程组的是()3x 2y 72x y 1xy 15 y 1C .32D . x 3 2A .5B .2xyx z3x 4 y 2x 2 y 32 方程组3x 2 y 7).4x y 的解是(13x 1 B .x 3 x3 x 1A .3y-1C .1D .-3yyy 3.假如 2x-7y=8, 那么用含 y 的代数式表示x 正确的选项是()8 2 xB . y2x 8C . x8 7 yD . x8 7yA . y7722x 3是二元一次方程 3xmy 5 的一组解,则 m 的值为 ()4.已知2 yA . -2B . 2C . -0.5D . 0.55. 方程 2 x y 8 的正整数解的个数是()A . 4B . 3C . 2D . 16. 若方程 ax3y2x 6 是对于 x , y 的二元一次方程,则a 一定知足()A. a ≠ 2B. a ≠-2C. a=2D. a=07.若 3x 2 y 7 0 ,则 6 y 9x 6 的值为 ()A . 15B . -27C . -15D .没法确立x 2 ax by 5b 的值是 (8.已知是方程组bx ay的解,则 a)y11A. -1B. 2C. 3D. 49.假如方程 x 2y 4,2 xy7, y kx 9 0 有公共解,则 k 的解是()A .-3B . 3C .6D . -610. 甲、乙两人练习跑步,假如乙先跑 10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为 x 米 /秒,乙的速度为 y 米 /秒,可列方程组正确的选项是()5x 5 y 10B .5x5y105x+10 5 y5x 5 y 10A .C.D.4x 2 4y 4x 4 y 2 y4x 2 y 4 y4x 4 y 2二、填空题(每题 3 分,共 18 分)11.已知方程5x3y40 ,用含x的代数式表示y 的形式,则 y=__________________ 。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
2022-2023学年人教版七年级数学下册第十章综合检测卷附答案解析
2022-2023学年七年级数学下册第十章综合检测卷数据的收集、整理与描述一、选择题(每小题3分,共24分)1.下列调查中,最适合采用全面调查的是()A.了解全国中学生的睡眠时间B.了解某河流的水质情况C.调查全班同学的视力情况D.了解一批灯泡的使用寿命2.如图,整个圆代表七年级全体同学参加数学拓展课的总人数,其中参加“生活数学”拓展课的人数占总人数的35%,则图中表示“生活数学”拓展课人数的扇形是()A.MB.NC.PD.Q3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型百分率40%35%10%15%A.16B.14C.4D.64.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力情况进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.本次调查是抽样调查C.1800名学生的视力情况是总体的一个样本D.样本容量是340005.某学校在开展“节约每一滴水”的活动中,从八年级的200名同学中任选出10名同学汇报各自家庭一个月的节水情况,将有关数据整理成下表:节水量(单位:吨)0.511.52同学数(人)2341估计这200名同学的家庭一个月节约用水的总量是()A.180吨B.200吨C.240吨D.360吨6.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①7.2020年11月1日零时,我国开展第七次全国人口普查.2021年5月11日,国务院新闻办公室公布普查结果,如图是根据我国历次人口普查数据,绘制的我国每10万人中拥有大学文化(指大专及以上)程度人数的折线图.设2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,则下列关于x 的方程正确的是()A.(1+0.9)x=1.55B.0.9(1+x)×10=1.55C.0.9(1+x)=1.55D.0.9(1+x)10=1.558.十一假期期间相关部门对到某景点的游客的出行方式进行了随机抽样调查,整理绘制了两幅统计图(如图,尚不完整),根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有25万人二、填空题(每小题3分,共24分)9.据中国载人航天工程办公室消息,神舟十四号航天员乘组于2022年7月25日10时03分成功开启问天实验舱舱门,顺利进入问天实验舱.这是中国航天员首次在轨进入科学实验舱.在神舟十四号飞船起飞前,科学工作者要对其零件进行检查,检查的方式是.(填“全面调查”或“抽样调查”)10.(2021上海金山二模)为了了解某校初三学生在体育测试中报名球类的情况,随机调查了40名学生的报名情况,得到如下数据.项目排球篮球足球人数101515根据此信息,估计该校480名初三学生报名足球的学生人数为.11.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如图所示的折线图,若该路段汽车限速为110km/h,则超速行驶的汽车有辆.12.(2022广东东莞一模)双减政策背景下,为落实“五育并举”,某学校准备打造学生第二课堂,有四类课程可供选择,分别是A.书画类、B.文艺类、C.社会实践类、D.体育类.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了如下两幅不完整的统计图,若该校七年级共有800名学生,根据上述调查结果估计该校七年级学生选择“社会实践类”的共有名.13.某中学开展以“我最喜欢的职业”为主题的调查活动,根据数据绘制的不完整统计图如图所示,图中工人部分的圆心角为°.14.在某校对若干名青少年进行最喜爱的运动项目的抽样调查中,得到如下统计图.如果最喜爱足球的人数比最喜爱骑自行车的人数多30,那么参加这次调查的总人数是.15.2022年《狙击手》《长津湖之水门桥》《奇迹·笨小孩》等电影火爆上映.某中学抽取部分学生对“你最喜欢的电影”进行问卷调查,收集整理数据后列频数分布表(部分)如下:电影《狙击手》《长津湖之水门桥》《奇迹·笨小孩》其他频数8050百分比40%25%m则表格中m的值为.16.(2020湖北十堰房县期末)某中学七年级甲、乙、丙三个班中,每班的学生人数都为40,某次数学考试的成绩统计如下:(统计表和统计图中,每组分数含最小值,不含最大值)甲班数学成绩频数分布直方图乙班数学成绩各分数段人数扇形统计图丙班数学成绩频数分布表分数50~6060~7070~8080~9090~100频数1415119(人数)根据图、表提供的信息,80~90分这一组人数最多的班是.三、解答题(共52分)17.(8分)(2022广东东莞光明中学一模改编)为了抵制手机诱惑,减少手机影响,七年级各班召开了“放下手机,让我们读书吧!”主题班会,号召全体同学每周读一本好书(从自然科学、文学艺术、社会百科和小说四类书籍中选一本),一周后,七年级(2)班学习委员对全班同学所读书籍进行统计并绘制成如下不完整的统计图表.书籍类型频数百分率自然科学a20%文学艺术2550%社会百科12b小说36%请你根据图表中提供的信息,解答以下问题:(1)该班总人数为;(2)表中a=,b=,将条形图补充完整;(3)七年级共有学生860人,按七年级(2)班统计结果估算,全年级有人阅读的书籍是自然科学类. 18.(8分)(2022广东东莞一模)为了解某市人口年龄结构情况,一机构对该市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计表和统计图.类别A B C D年龄0≤t<1515≤t<6060≤t<65t≥65t(岁)人数4.711.6m2.7(万)根据以上信息解答下列问题:(1)m=,扇形统计图中“C”对应的圆心角度数是;(2)该市现有人口约800万,请根据此次抽查结果,估计该市现有60岁及以上的人数.19.(8分)(2022广东广州花都期末)第24届冬季奥林匹克运动会于2022年2月4日至20日在北京市和河北省张家口市联合举行,这是中国第一次举办冬季奥运会.北京冬季奥运会的成功举办,激发了国人对冰雪运动项目的喜爱.某中学为了解学生对速度滑冰、冰球、单板滑雪、高山滑雪、冰壶的喜爱情况,在全校范围内随机抽取了若干名学生进行问卷调查,数据如下:(1)单板滑雪所在扇形的圆心角度数为,补全条形统计图;(2)该校共有1200名学生,估计该校全体学生中喜爱单板滑雪的学生有多少名.20.(8分)2022年两会召开之前,某校数学实践小组就人们近期关注的五个热点话题:“A.从严治党;B.依法治国;C.国家安全;D.社会保障;E.教育改革”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图所示的两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将条形统计图补充完整;(3)扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“依法治国”的人数.21.(10分)(2022广东广州大学附中期末)某校为了了解初三年级600名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生所占的百分比为,在扇形统计图中,D组的圆心角是度;(3)请你估计该校初三年级体重超过60.5kg的学生有多少名.22.(10分)2022年2月6日,中国女足以3∶2逆转绝杀韩国队,夺得亚洲杯冠军.某校受中国女足队精神的鼓舞拟成立校足球队,为了解学校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的学生中男生和女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)求抽取的男生人数;(2)求抽取的女生的身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170范围内的学生总人数.答案1.C根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,一般来说,对于具有破坏性的、无法进行全面调查的、全面调查意义或价值不大的调查,应选择抽样调查,对于调查范围比较小、精确度要求高的、事关重大的调查,往往选用全面调查.2.A∵扇形Q的圆心角为120°,∴参加此类课的人数占总人数的120°÷360°×100%≈33%,∵35%>33%,∴表示“生活数学”拓展课人数的扇形的圆心角一定比120°大,∴题图中表示“生活数学”拓展课人数的扇形是M,故选A.3.A本班A型血的人数为40×40%=16.故选A.4.D A.34000名学生的视力情况是总体,故A不符合题意;B.本次调查是抽样调查,故B不符合题意;C.1 800名学生的视力情况是总体的一个样本,故C不符合题意;D.样本容量是1800,故D符合题意.故选D.5.C选出的10名同学的家庭平均月节约用水量为(0.5×2+1×3+1.5×4+2×1)÷10=1.2(吨),故这200名同学的家庭一个月节约用水的总量约为1.2×200=240(吨).6.A统计调查的一般过程:①收集数据;②整理数据;③描述数据;④分析数据.根据统计调查的一般过程判断即可得本题正确统计步骤的顺序是②→③→①,故选A.7.C2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,根据题意得0.9(1+x)=1.55,故选C.(注意:不要误以为x是每年的增长率而错选D)8.D A.本次抽样调查的样本容量是2000÷40%=5000,此选项结论正确;B.扇形统计图中的m为1-(50%+40%)=10%,此选项结论正确;C.样本中选择公共交通出行的有5000×50%=2500(人),此选项结论正确;D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有50×40%=20(万人),此选项结论错误.故选D.9.答案全面调查解析对神舟十四号飞船的零件进行检查,事关重大,检查方式是全面调查.10.答案180解析估计该校480名初三学生报名足球的学生人数为480×1540=180.11.答案80解析由题图可知,速度超过110km/h的有60+20=80(辆).12.答案128解析本次被抽查的学生共有20÷40%=50(名),800×850=128(名),即估计该校七年级学生选择“社会实践类”的共有128名.13.答案36解析∵被调查的总人数为40÷20%=200,∴题图中工人部分的圆心角为360°×20200=36°,故答案为36.14.答案360解析根据题意,可得(人),即参加这次调查的总人数是360.15.答案10%解析由题表可知被调查的学生总人数为80÷40%=200,∴最喜欢《长津湖之水门桥》的人数所占百分比为50200×100%=25%,则m=1-(40%+25%+25%)=10%.16.答案甲班解析由甲班数学成绩频数分布直方图可知,80~90分这一组人数=40-12-8-5-2=13,由乙班数学成绩各分数段人数扇形统计图可知,80~90分这一组人数=40×(1-10%-5%-35%-20%)=12,由丙班数学成绩频数分布表可知,80~90分这一组人数是11,所以80~90分这一组人数最多的班是甲班.17.解析(1)该班总人数为25÷50%=50.(2)a=50×20%=10,b=12÷50×100%=24%,补全的条形图如图.(3)860×20%=172(人),即全年级大约有172人阅读的书籍是自然科学类.18.解析(1)本次抽样调查,共调查的人数是11.6÷58%=20(万),“C”的人数为20-4.7-11.6-2.7=1(万),∴m=1,扇形统计图中“C”对应的圆心角度数为120×360°=18°.故答案为1;18°.(2)1+2.720×800=148(万).答:该市现有60岁及以上的人数约为148万.19.解析(1)调查的学生有50÷25%=200(人),单板滑雪所在扇形的圆心角度数为360°×80200=144°,高山滑雪的人数为200-50-24-80-16=30,补全条形统计图如下:(2)1200×80200=480(名).答:估计该校全体学生中喜爱单板滑雪的学生有480名.20.解析(1)调查的居民共有60÷30%=200(人),故答案为200.(2)选择C的居民有200×15%=30(人),选择A的居民有200-60-30-20-40=50(人),补全的条形统计图如图所示.(3)a%=50÷200×100%=25%,话题D所在扇形的圆心角是360°×20200=36°,故答案为25;36.(4)10000×30%=3000(人).答:该小区居民中最关注的话题是“依法治国”的人数大约为3000.21.解析(1)4÷8%=50(人),50-4-16-10-8=12(人),故样本容量为50,补全的直方图如下:(2)C组学生所占的百分比为16÷50×100%=32%,D组所对应的圆心角的度数为360°×1050=72°.(3)600×10+850=216(名).答:该校600名初三年级的学生中,体重超过60.5kg的大约有216名.22.解析(1)抽取的男生人数为4+12+10+8+6=40.(2)40×(1-17.5%-37.5%-25%-15%)=2(人),∴抽取的女生的身高在E组的人数为2.(3)10+840×380+320×(25%+15%)=299(人),∴估计全校身高在160≤x<170范围内的学生总人数为299.。
人教版七年级数学第二学期期末测试卷1-4Microsoft Word 文档 (2)
A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个 角都是对顶角 C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在 同一直线上,这两个角互为对顶角 10.下列各式中,正确的是( ) A.±=± B.±=; C.±=± D.=± 三、解答题:( 每题6分,共18分) 11.解下列方程组: 12.解不等式组,并在数 轴表示: 13.若A(2x-5,6-2x)在第四象限,求a的取值范围.
24.
25.(10分)如图,AD为△ABC的中线,BE为△ABD的中 线。 (1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)在△BED中作BD边上的高; (3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多 少?
26.(10分)5月12日我国四川汶川县发生里氏8.0级大地震,地 震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发 生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人 民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助 床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些 物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一 辆乙货车可装床架10个和课桌凳10套. (1)学校如何安排甲、乙两种货车可一次性把这些物资运到 灾区?有几种方案? (2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费 1000元,则学校应选择哪种方案,使运输费最少?最少运费是多
3.(05兰州)一束光线从点A(3,3)出发,经过y轴上 点C反射后经过点B(1,0)则光线从A点到B点经过的路 线长是( )A.4 B.5 C.6 D.7
4.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B. 四边形 C.五边形 D.六边形 5.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有 人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六 边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④ 6.如果中的解x、y相同,则m的值是( )(A)1(B)-1 (C)2(D)-2 7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一 队打了14场比赛,负5场,共得19分,那么这个队胜了( )(A) 3场(B)4场(C)5场(D)6场 8.若使代数式的值在-1和2之间,m可以取的整数有( )(A)1个 (B)2个(C)3个 (D)4个 9.把不等式组的解集表示在数轴上,正确的是( ).
2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析
2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.106.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.87.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.19.在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,P A,若∠POA=m°,∠P AO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(,)的“双角坐标”为;(2)若点P到x轴的距离为,则m+n的最小值为.20.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A1OB1,使∠A1OB1=90°,使∠B1=30°;作OA2⊥A1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,……,以同样的作法可得到Rt△A n OB n,则当n=2018时,点B2018的纵坐标为.21.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2017B2018C2018的顶点B2018的坐标是.22.如图,已知正方形A1A2A3A4,A5A6A7A8,A9A10A11A12…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A2018的坐标为.23.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后动点P的坐标是.24.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,P4,…P2018的位置,则P2018的横坐标x2018=.25.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为.26.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M(6,m)表示单车停放点,且满足M到A,B的“实际距离”相等,则m=.若点N表示单车停放点,且满足N到A,B,C的“实际距离”相等,则点N的坐标为.27.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当点P第2018次碰到长方形的边时,点P的坐标为.28.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.29.如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.30.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,…第n次碰到矩形的边时,记为点P n,则点P4的坐标是;点P125的坐标是.31.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.32.已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为.33.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OP A 的面积为S.则S随x的增大而.(填“增大”,“不变”或“减小”)34.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC =13,则点A的坐标为.35.无论m为何值,点A(m﹣1,m+1)不可能在第象限.36.对于任意实数x,点P(x,x2﹣4x)一定不在第象限.37.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.38.在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,﹣x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(a,b),对于任意的正整数n,点A n均在y轴的右侧,则a,b应满足的条件是.39.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,若△AOB内部(不包括边)的整点个数为3,则点B的横坐标的所有可能值是.40.平面直角坐标系中,点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的坐标是(任意写一个,正确即可).41.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.三.解答题(共9小题)42.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(﹣2,1)、F(0,6),则这3点的“矩面积”=.(2)若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.43.若点P(2a﹣4,a+2)是第二象限内的整点(横纵坐标都是整数),求满足条件的所有P点坐标.44.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.45.(1)在数轴上,点A表示数3,点B表示数﹣2,我们称A的坐标为3,B的坐标为﹣2;那么A、B的距离AB=;一般地,在数轴上,点A的坐标为x1,点B的坐标为x2,则A、B的距离AB=;(2)如图,在直角坐标系中点P1(x1,y1),点P2(x2,y2),求P1、P2的距离P1P2;(3)如图,△ABC中,AO是BC边上的中线,利用(2)的结论证明:AB2+AC2=2(AO2+OC2).46.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.47.已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y 轴交于点(0,﹣5).48.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y 轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连结O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.49.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为50.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【解答】解:观察发现:A1(2,4),A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),A6(﹣3,3)…∴依此类推,每4个点为一个循环组依次循环,∵2019÷4=504余3,∴点A2019的坐标与A3的坐标相同,为(﹣2,﹣2),故选:B.【点评】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)【分析】根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【解答】解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)【分析】根据线段的中点坐标公式即可得到结论.【解答】解:设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=1,∴D(﹣1,1),故选:A.【点评】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故选:A.【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.10【分析】根据直角三角形斜边上中线的性质,即可得到OP=AB=3,依据OC﹣OP≤CP≤OP+OC,即可得出当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长.【解答】解:如图所示,连接OC,OP,PC,∵P A⊥PB,∴∠APB=90°,又∵AO=BO=3,∴Rt△ABP中,OP=AB=3,∵OC﹣OP≤CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,∴线段PC的最大值为OP+OC=3+5=8,故选:C.【点评】本题主要考查了坐标与图形性质,判断点P在以O为圆心,AB长为直径的圆上是解决问题的关键.6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.8【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.7.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)【分析】观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.依此先确定2025的坐标为(45,1),再根据图的结构求得2019的坐标.【解答】解:观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.12=1的坐标为(1,1),32=9的坐标为(3,1),52=25的坐标为(5,1),…452=2025的坐标为(45,1),图中横坐标为45的数共有45个数,∵2025﹣2019=6,∴2019的坐标为(45,7).故选:A.【点评】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)【分析】根据点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,据此根据平移的定义和性质解答可得.【解答】解:由点B(﹣4,1)的对应点B1坐标为(﹣4+5,1+1),即(1,2),∴点C(﹣2,1)对应的点C1的坐标为(﹣2+5,1+1),即(3,2),故选:A.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是根据对应点的坐标得出平移的方向和距离及平移的定义和性质.二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为(﹣,).【分析】设AC与BD交于F点,则由不等式的性质可得,|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,可求最小值.【解答】解:如图,设AC与BD交于F点,则|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|P A|+|PB|+|PC|+|PD|≥|AC|+|BD|=,此时P的坐标为:(﹣,)故答案为:(﹣,)【点评】本题主要考查了轴对称问题,关键是根据不等式的性质在求解最值中的应用解答.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为﹣()2018.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,即可得出结果.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x轴的负半轴上,∵2019÷4=504…余数是3,∴A2019在x轴的负半轴上,横坐标为﹣()2018,故答案为:﹣()2018.【点评】本题考查了图形与坐标、规律型等知识,找出序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上的规律是解题的关键.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为(﹣1008,0).【分析】根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.【解答】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,﹣1),A10(1,﹣5),A11(﹣4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是﹣(2019﹣3)÷2=﹣1008,纵坐标是0,∴A2019的坐标为(﹣1008,0).故答案为:(﹣1008,0).【点评】本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为(0,﹣21010).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2019的坐标.【解答】解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(2,0),同理可知OB2=2,B2点坐标为(2,﹣2),同理可知OB3=4,B3点坐标为(0,﹣4),B4点坐标为(﹣4,﹣4),B5点坐标为(﹣8,0),B6(﹣8,8),B7(0,16)B8(16,16),B9(32,0),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2019÷8=252…3,∴B2019的横坐标,与点B3的相同为0,横纵坐标都是负值,∴B2013的坐标为(0,﹣21010).故答案为:(0,﹣21010).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是(,).【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A n(,),即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),故答案为:(,).【点评】本题考查了点的坐标,等边三角形的性质,关键是能根据求出的数据得出规律,题目比较好,但是有一定的难度.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于4.【分析】根据点A的坐标可以求得∠AOB和OA的长度,再根据锐角三角函数可以求得AC和AB的长,从而可以求得BC的长.【解答】解:∵点A(3,),∴tan∠AOB=,OA=,∴∠AOB=30°,∵AC⊥OA于点A,∠BOC=30°,∴∠OAC=90°,∠AOC=60°,∴tan∠AOB=,tan∠AOC=,即tan30°=,tan60°=,解得,AB=2,AC=6,∴BC=AC﹣AB=4,故答案为:4.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是(﹣21009,21009).【分析】利用等腰直角三角形的性质可得出部分点A n的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”,结合2019=252×8+3即可得出点A2019的坐标.【解答】解:由等腰直角三角形的性质,可知:A1(1,1),A2(0,2),A3(﹣2,2),A4(0,﹣4),A5(﹣4,﹣4),A6(0,﹣8),A7(8,﹣8),A8(16,0),A9(16,16),A10(0,32),A11(﹣32,32),…,∴点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数).∵2019=252×8+3,∴点A2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009),故答案为:(﹣21009,21009).【点评】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”是解题的关键.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是(4+,0).【分析】根据含30°的直角三角形的性质和坐标特点解答即可.【解答】解:∵MAC=120°,∴∠CAB=60°,∵∠CBN=150°,∴∠ABC=30°,∴∠C=90°,∵MA=AC=2﹣1=1,∴AB=2AC=2,∴BC=,∴ON=1+1+2+=4+,∴点N的坐标为(4+,0),故答案为:(4+,0),【点评】此题考查坐标与图形,关键是根据含30°的直角三角形的性质和坐标特点解答.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是(673,0).【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故答案为(673,0).【点评】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.【分析】过点P作PD⊥向x轴于D,PE⊥y轴于E,根据角平分线的性质,角平分线上的点到这个角两边的距离相等,求出PD和PE,再根据三角形OAB的面积=三角形OAP 的面积+三角形OPB的面积,此题便可求解【解答】解:如图,过点P作PD⊥向x轴于D,PE⊥y轴于E,则∠PEO=∠PDO=90°∵若OP平分∠AOB∴PD=PE,∵∠AOB=90°,∴∠PEO=∠PDO=∠AOB=90°,∴四边形EPDO是矩形,又PD=PE∴矩形EPDO为正方形,∵OP=4,∴PD=PE=,∵三角形OAB的面积=三角形OAP的面积+三角形OPB的面积,∴,∴,。
人教版七年级数学下册第八章二元一次方程组单元测试卷(附答案)(1)
一、选择题(共 10 小题,每小题 3 分,共 30 分) 温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!
x1
1.若
是关于 x、 y 的方程 2x y 2a 0 的一个解,则常数 a 为( ) .
y2
A. 1
B. 2
x y 3,
2. 方程组
的解是
xy 1
23、(本题 8 分) 某校初三学生在上实验课时, 要把 2000 克质量分数为 80%的酒精溶液配制 成质量分数为 60%的酒精溶液,某同学未经考虑先加了 500 克的水。
( 1)试通过计算说明该学生加水是否过量?
( 2)如果加水不过量,则还应加入质量分数为
20%的酒精溶液多少克?
24、(本题 10 分)古运河是杭州的母亲河, 为打造古运河风光带, 现有一段长为 180 米的河
y6
b,而得到方程组的解为
方程组的正确解。
x1
求出原
y 12
21、(本题 8 分)一列快车长 70 米,慢车长 80 米。若两车同向而行,快车从追上慢车到完全 离开慢车所用的时间为 20 秒;若两车相向而行, 则两车从相遇到离开所用的时间为 4 秒。 求两车每小时各行多少千米?
22、(本题 8 分).甲、乙两从 A 地出发到 B 地,甲步行、乙骑车。若甲走 6 千米,则在乙 出发 45 分钟后两人同时到达 B 地;若甲先走 1 小时,则乙出发后半小时追上甲,求 A、 B 两地的距离。
ax by 2
2x 3y 4
与
的解相同,
ax by 4
4x 5y 6
22解设甲的速度为 x千米 / 时,乙的速度为 y千米 / 时
3
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
精选人教版初中数学七年级下册第8章《二元一次方程组》单元测试(解析版)(1)
人教版七年级数学下册第八章二元一次方程组单元综合测试卷含答案一、选择题 (本大题共 10小题,,共 30 分 )1.已知方程 2 m6x |n |1n2y m 2 80是二元一次方程,则m+n 的值()A.1B. 2C.-3D.32.用代入法解方程组2y- 3x= 1,() x=y- 1,下边的变形正确的选项是A . 2y- 3y+ 3= 1B. 2y- 3y- 3= 1C. 2y- 3y + 1= 1D .2y- 3y- 1= 13.以下方程组,解为x1y 是().2A.x y 1B.x y 1x y 3x y3 3x y53x y5C.y1D.53x3x y4.已知 x,y 知足方程组x m4y5,则 x, y 的关系式是()mA. x+y=1B. x+y=- 1C. x+y=9D.x+y=9 5.依据图中供给的信息,可知一个杯子的价钱是()A.51 元 B. 35 元C.8 元D.7.5 元6.已知x2ax by5b 的值是(y是方程组bx ay的解,则 a)11A. -1B. 2C.3D. 47.在等式y x2mx n 中,当x2时, y5; x3时, y 5.则 x3时,y()。
A.23B.-13C.-5D.138.方程组2x y 53x 2 y ,消去 y 后获得的方程是()8A. 3x4x100B.3x4x58C.3x2(52x)8D.3x4x1089.已知是方程组的解,则a+b+c 的值是()A.3B. 2C. 1D.没法确立10.甲、乙两人练习跑步,假如乙先跑10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为x 米/ 秒,乙的速度为y 米 / 秒,可列方程组正确的选项是()5x5y10B.5x5y105x+105y5x 5 y10A.4y 2 y4x 2 y C.4x 4 y2D.2 4 y4x4y4x 二、填空题 (本大题共 6 小题,每题 4 分,共24 分)11.写出一个解为x1的二元一次方程组 __________.y212.方程4 xy7中,用含 x 的式子表示y,则y=13.若 2x 5a b+41- 2b2a是同类项,则 a+b=________.y与- x ya1是对于 a, b 的二元一次方程 ax+by- b=7 的一个解,则代数式2x- 4y+1?的14.若b2值是 _________.15.在△ ABC中,∠ B-∠ A= 45°,∠ A+∠ B= 135 °.则∠ C=____16.今年甲和乙的年纪和为24, 6 年后甲的年纪就是乙的年纪的 2 倍,则甲今年的年纪是_________岁 .三、解答题 (本大题共 6 小题,,共 66 分 )17.解方程组(每题 5 分,共 20 分)4x3y5( 2)3x 5 y10(1)y22x 3 y62x人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题。
2020新人教版七年级数学下册:第十章《数据的收集、整理与描述》单元检测试题(有答案)
人教版七年级数学下册第十章《数据的收集、整理与描述》单元检测试题班级:姓名:分数:(满分120分,考试时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)1.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查 D. 在四个学校各随机抽取150名学生进行调査2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工3. 为了考察某初中4500名毕业生的数学成绩,从中抽出25份试卷,每份30张.在这个问题中,样本容量是 ( )A. 4500B. 25C. 30D. 7504. 医生要清楚地表明某一病人的体温变化情况,应选用的统计图是( )A. 折线统计图B. 条形统计图C. 扇形统计图D. 频数直方图5. 从一块麦田中抽出100穗麦穗,测量这些麦穗的质量,以下说法正确的是 ( )A. 这块麦田中的每一穗麦穗是个体B. 这块麦田中所有的麦穗是总体C. 抽出的100穗麦穗的质量是总体的一个样本D. 以上说法都是不正确的6.某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A. 12名 B. 13名C. 15名 D. 50名7. 某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动,实践小组就“是否知道端午节的来由”这个问题,对部分学生进行了调查,调查结果如图,其中不知道的学生有8人,下列说法不正确的是( )A. 被调查的学生共50人B. 被调查的学生中“知道”的人数为32人C. 图中“记不清”对应的圆心角为60°D. 全校“知道”的人数约占全校人数的64%第7题第8题8.如图所示,是某农户自留地里的三种蔬菜种植面积的扇形统计图,其中豆角的种植面积是1.2公顷,则土豆的种植面积是 ( )A. 1.3公顷B. 2公顷C. 2.7公顷D. 3公顷9.某次考试中,某班级数学成绩统计图如下,下列说法错误的是( )A. 得分在70~80分之间的人数最多B. 该班总人数为40C. 得分在90~100分之间的人数最少D. 及格(≥60分)人数是2610.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是( )A. 该班总人数为50B. 骑车人数占总人数的20%C. 步行人数为30D. 乘车人数是骑车人数的2.5倍二、填空题(本大题共7小题,每小题4分,共28分)11.某大型商场在“元旦”期间平均每天的营业额是20万元,由此推算一月份的总营业额为20×31=620(万元),你认为这样的推断是否合理? 为什么?答:,理由是:12.有人收集了某药厂生产的同一种感冒药在近十年的每箱出厂价,为了让人们知道这种药品的价格在逐渐降低,使用________统计图来表示这些数据是最恰当的13.某校为了解该校500名毕业生的数学考试成绩,从中抽查了50名考生的数学成绩,在这次调查中,样本容量是。
人教版七年级数学下册期末综合复习试卷(及答案)
人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
最新人教版七年级下册数学第七章平面直角坐标系单元综合练习题(含答案)(1)
人教版七年级下册第七章平面直角坐标系单元测试卷一、选择题:1.若点 P(x , y) 在第三象限,且点 P 到 x 轴的距离为 3,到 y 轴的距离为 2,则点 P 的坐标是( )A.(-2 ,-3)B.(-2, 3)C.(2, -3)D.(2, 3)2.若点 A(2 , m)在 x 轴上,则点 B(m﹣ 1, m+1)在 ()A. 第一象限B.第二象限C.第三象限D. 第四象限3.点 A(5,– 7) 对于 x轴对称的点 A 的坐标为 ().12A.( – 5,–7)B.( –7 , –5)C.(5, 7)D.(7,– 5)4.一个长方形在平面直角坐标系中,三个极点的坐标分别是(-1 ,-1) 、 (-1,2) 、(3 ,-1) ,则第四个极点的坐标是()A.(2 , 2)B.(3, 2)C.(3 , 3)D.(2 , 3)5.若点 A(m,n) 在第二象限 , 那么点 B(-m,│ n│ ) 在 ()A. 第一象限B. 第二象限 ;C. 第三象限D. 第四象限6.若点 P 对于 x 轴的对称点为 P (2a+b , 3) ,对于 y 轴的对称点为P (9 , b+2) ,则点 P的坐12标为()A.(9 , 3)B.(﹣9, 3)C.(9,﹣ 3)D.( ﹣ 9,﹣ 3)7.已知点 P(x , y) ,且,则点 P 在()A. 第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,若点P(m- 3, m+ 1) 在第二象限,则 m的取值范围为 ()A. - 1< m<3B.m> 3C.m<- 1D.m >- 19.坐标平面上有一点 A,且 A 点到 x 轴的距离为3, A 点到 y 轴的距离恰为到 x 轴距离的 3倍. 若 A 点在第二象限,则A点坐标为 ()A.(-9 , 3)B.(-3, 1)C.(-3, 9)D.(-1, 3)10. 在平面直角坐标系中,线段BC∥轴,则 ()A. 点 B 与 C的横坐标相等B. 点 B 与 C的纵坐标相等C. 点 B 与 C的横坐标与纵坐标分别相等D. 点 B 与 C的横坐标、纵坐标都不相等11. 如图,在 5× 4 的方格纸中,每个小正方形边长为1,点 O,A,B 在方格纸的交点 ( 格点 )上,在第四象限内的格点上找点C,使△ ABC的面积为3,则这样的点C共有()A.2 个B.3 个C.4个D.5个12.如图,一个质点在第一象限及 x 轴、y 轴上运动,在第一秒钟,它从原点 (0,0) 运动到 (0,1) ,而后接着按图中箭头所示方向运动,即(0,0)→ (0,1)→ (1,1)→ (1,0),?且每秒挪动一个单位,那么第80 秒时质点所在地点的坐标是()A.(0 , 9)B.(9 , 0)C.(0,8)D.(8 , 0)二、填空题:13.若点 A在第二象限,且到 x 轴的距离为 3,到 y 轴的距离为 2,则点 A 的坐标为 __________.14.在平面直角坐标系中,点C(3 , 5) ,先向右平移了 5 个单位,再向下平移了 3 个单位到达 D 点,则 D 点的坐标是.15.若 A(a,b) 在第二、四象限的角均分线上,a 与 b 的关系是 _________.16.已知点 A(0, 1) , B(0, 2) ,点 C 在 x 轴上,且,则点 C的坐标.17.在平面直角坐标系中,对于平面内随意一点 (x ,y) ,若规定以下两种变换:① f(x,y)=(x+2,y).② g(x,y)=(- x, - y),比如依据以上变换有:f(1,1)=(3,1); g(f(1,1)) =g(3,1)=(-3, -1).假如有数a、 b, 使得f(g(a,b)) = (b,a),则g(f(a+b,a- b))=.18. 将自然数按以下规律摆列:表中数 2 在第二行,第一列,与有序数对(2,1) 对应;数 5 与 (1,3)对应;数14 与(3,4)对应;依据这一规律,数2014 对应的有序数对为.三、解答题:19. 如图,在单位正方形网格中,成立了平面直角坐标系xOy,试解答以下问题:(1)写出△ ABC三个极点的坐标;(2)画出△ ABC向右平移 6 个单位,再向下平移 2 个单位后的图形△A1B1C1;(3)求△ ABC的面积 .20.如图,方格纸中的每个小方格都是边长为1 个单位的正方形,在成立平面直角坐标系后,点 A, B, C均在格点上 .(1)请值接写出点 A, B,C 的坐标 .(2)若平移线段 AB,使 B 挪动到 C的地点,请在图中画出A 挪动后的地点 D,挨次连结 B,C,D,A,并求出四边形ABCD的面积 .21.如图,已知 A(-2 , 3) 、 B(4, 3) 、 C(-1 , -3)(1) 求点 C到 x 轴的距离;(2)求△ ABC的面积;(3)点 P 在 y 轴上,当△ ABP的面积为 6 时,请直接写出点 P 的坐标 .22. 如图,直角坐标系中,△ABC的顶点都在网格点上,此中, C 点坐标为 (1 ,2).(1)写出点 A、 B 的坐标: A(________ , ________) 、B(________ , ________)(2)将△ ABC先向左平移 2 个单位长度,再向上平移 1 个单位长度,获得△ A′ B′ C′,则 A′B′ C′的三个极点坐标分别是A′ (_______ , _______) 、 B′ (_______ , _______) 、 C′(________ , ________).(3) △ ABC的面积为.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、仔细填一填:(本大题共有8 小题,每题 3 分,共 24 分.请把结果直接填在题中的横线上.只需你理解观点,认真运算,踊跃思虑,相信你必定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,假如我用 (0,2)表示左眼,用 (2,2) 表示右眼,那么嘴的地点能够表示成 __________.2.如图,△ ABC 向右平移 4 个单位后获得△A′B′C′,则 A′点的坐标是 __________ .3.如图,中国象棋中的“象”,在图中的坐标为( 1,0),?若“象”再走一步,试写出下一步它可能走到的地点的坐标 ________.4.点 P(- 3,- 5)到 x 距离 ______,到 y 距离 _______.5.如,正方形ABCD的4,点 A 的坐 (- 1,1),平行于X,点C的坐___.6.已知点( a+1,a-1)在 x 上, a 的是。
2019-2020学年人教版七年级下学期《5.4 平移》同步测试卷及答案解析
2019-2020学年人教版七年级下学期《5.4 平移》同步测试卷一.选择题(共8小题)1.以下现象属于平移的是()A.钟摆的摆动B.电风扇扇叶的转动C.分针的转动D.滑雪运动员在平坦的雪地上沿直线滑行2.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC=∠DFE;④∠DAE=∠AEB.正确的个数为()A.4个B.3个C.2个D.1个3.如图,俄罗斯方块游戏中,图形A经过平移使其填补空位,则正确的平移方式是()A.先向右平移5格,再向下平移3格B.先向右平移4格,再向下平移5格C.先向右平移4格,再向下平移4格D.先向右平移3格,再向下平移5格4.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长为8cm,则四边形ABFD 的周长为()A.8cm B.9cm C.10cm D.11cm5.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.46.如图,某公园里一处长方形风景欣赏区ABCD,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米.若AB=50米,BC=25米.小明沿着小路的中间从入口E处走到出口F处,则他所走的路线(图中虚线)长为()A.75米B.96米C.98米D.100米7.数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴:②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等8.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A.πcm2B.4 cm2C.cm2D.cm2二.填空题(共8小题)9.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为平方米.10.如图,∠3=30°,∠2=150°,直线b平移后得到直线a,则∠1=.11.为了便于游客领略“人从桥上过,如在景中游”的美好意境,某景区拟在如图所示的长方形水池上架设景观桥.若长方形水池的周长为300m,景观桥宽忽略不计,则小桥总长为m.12.如图是一个会场的台阶的截面图,要在上面铺上地毯,则所需地毯的长度是.13.如图,在宽为20m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为m2.14.如图,将△ABC沿射线AB的方向平移到△DEF的位置,点A、B、C的对应点分别为点D、E、F,若∠ABC=75°,则∠CFE=15.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为.16.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为秒.三.解答题(共3小题)17.作图题.(1)过点M作直线AC的平行线;(2)将三角形ABC平移,使得点B与点B′重合.18.如图,△ABC的顶点都在方格纸的格点上,将△ABC向右平移4格,再向下平移3格,其中每个格子的边长为1个单位长度.(1)请在图中画出平移后的△A'B'C';(2)求△A'B'C'的面积.19.实践操作:如图,平移三角形ABC,使点A平移到点A′,画出平移后的三角形A′B′C′(点B平移到B′,点C平移到C′,保留作图痕迹,在图中标明相应字母,不写作法);猜想结论:猜想∠A′AB,∠ABC,∠BCC′的数量关系(直接写出答案,不需证明).2019-2020学年人教版七年级下学期《5.4 平移》同步测试卷参考答案与试题解析一.选择题(共8小题)1.以下现象属于平移的是()A.钟摆的摆动B.电风扇扇叶的转动C.分针的转动D.滑雪运动员在平坦的雪地上沿直线滑行【分析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.【解答】解:A、钟摆的摆动,不属于平移现象,故本选项不符合题意;B、电风扇扇叶的转动,不属于平移现象,故本选项不符合题意;C、分针的转动,不属于平移现象,故本选项不符合题意;D、滑雪运动员在平坦的雪地上滑雪,属于平移现象,故本选项符合题意.故选:D.【点评】本题考查平移的特点,属于基础题目,注意掌握平移不改变图形的形状、大小和方向.2.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC=∠DFE;④∠DAE=∠AEB.正确的个数为()A.4个B.3个C.2个D.1个【分析】根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【解答】解:∵△ABC沿着某一方向平移一定的距离得到△DEF,①AD=CF,正确;②AC∥DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故选:B.【点评】本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.3.如图,俄罗斯方块游戏中,图形A经过平移使其填补空位,则正确的平移方式是()A.先向右平移5格,再向下平移3格B.先向右平移4格,再向下平移5格C.先向右平移4格,再向下平移4格D.先向右平移3格,再向下平移5格【分析】利用网格特点和平移的性质对各选项进行判断.【解答】解:图形A经过平移使其填补空位,则正确的平移方式是先向右平移4格,再向下平移4格.故选:C.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.4.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长为8cm,则四边形ABFD 的周长为()A.8cm B.9cm C.10cm D.11cm【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1cm得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10cm.故选:C.【点评】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.5.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.4【分析】根据平移的性质得到AB=BD,BC∥DE,利用三角形面积公式得到S△BCD=S=5,然后利用DE∥BC得到S△BCE=S△BCD=5.△ACD【解答】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.故选:A.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6.如图,某公园里一处长方形风景欣赏区ABCD,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米.若AB=50米,BC=25米.小明沿着小路的中间从入口E处走到出口F处,则他所走的路线(图中虚线)长为()A.75米B.96米C.98米D.100米【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98(米),故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.7.数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴:②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【分析】先利用平移的性质得到∠1=∠2=60°,然后根据同位角线段两直线平行可判断a∥b.【解答】解:利用平移的性质得到∠1=∠2=60°,所以a∥b.故选:A.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了平行线的判定.8.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A.πcm2B.4 cm2C.cm2D.cm2【分析】根据平移后阴影部分的面积恰好是长2cm,宽为2cm的矩形,再根据矩形的面积公式即可得出结论.【解答】解:∵平移后阴影部分的面积恰好是长为2cm,宽为2cm的矩形,∴S阴影=2×2=4cm2.故选:B.【点评】本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.二.填空题(共8小题)9.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为42平方米.【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【解答】解:由平移的性质,得草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点评】本题考查了生活中的平移,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.10.如图,∠3=30°,∠2=150°,直线b平移后得到直线a,则∠1=60°.【分析】利用平移的性质得a∥b,再根据平行线的性质得∠4=180°﹣∠2,加上对顶角相等得∠5=∠3=30°,则根据三角形外角性质得∠6=∠1=∠4+∠5,从而可计算出∠1的度数.【解答】解:如图,∵直线b平移后得到直线a,∴a∥b,∴∠1=∠6,∵∠5=∠3=30°,∴∠4=180°+∠2=180°﹣150°=30°,∴∠6=∠1=∠4+∠5=60°,故答案为:60°【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.11.为了便于游客领略“人从桥上过,如在景中游”的美好意境,某景区拟在如图所示的长方形水池上架设景观桥.若长方形水池的周长为300m,景观桥宽忽略不计,则小桥总长为150m.【分析】根据图形得出景观桥的长为矩形的长与宽的和,进而得出答案.【解答】解:∵长方形水池的周长为300m,∴景观桥总长为:300÷2=150(m).故答案为:150.【点评】此题主要考查了生活中的平移现象,得出景观桥的总长为矩形的长与宽的和是解题关键.12.如图是一个会场的台阶的截面图,要在上面铺上地毯,则所需地毯的长度是7.5m.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此可得出答案.【解答】解:楼梯的长为5m,高为2.5m,则所需地毯的长度是5+2.5=7.5(m).故答案为:7.5m.【点评】考查了生活中的平移现象,本题是一道实际问题,难度不大,关键是利用平移的性质得出地毯长的表示形式.13.如图,在宽为20m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为551m2.【分析】可通过平移把两条路都移到边上,则可知剩余耕地是长为29m,宽为19m的矩形,可求得答案.【解答】解:可把两条路平移到耕地的边上,如图所示,则耕地的长变为(30﹣1)m,宽变为(20﹣1)m,耕地面积为:29×19=551(m2).故答案是:551.【点评】本题主要考查生活中的平移现象、矩形的性质,利用平移把耕地面积化为长为29m,宽为19m的矩形是解题的关键.14.如图,将△ABC沿射线AB的方向平移到△DEF的位置,点A、B、C的对应点分别为点D、E、F,若∠ABC=75°,则∠CFE=105°【分析】本题利用平移的性质可求解.【解答】解:由平移可知∠DEF=∠ABC=75°,∵BE∥CF,∴∠EFC=180°﹣∠DEF=180﹣75=105°故答案是:105°.【点评】本题利用平移的性质知识点,准确的应用平移的性质是解决问题的关键.15.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为15.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=3,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵△ABC沿着点B到点C的方向平移到△DEF的位置∴△ABC≌△DEF,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=3,∵AB=6,DH=2,∴HE=DE﹣DH=6﹣2=4,∴阴影部分的面积=×(6+4)×3=15.故答案为:15.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.16.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为1或6秒.【分析】先求出重叠部分长方形的宽,再分重叠部分在大正方形的左边和右边两种情况讨论求解.【解答】解:当S=2时,重叠部分长方形的宽=2÷2=1cm,重叠部分在大正方形的左边时,t=1÷1=1秒,重叠部分在大正方形的右边时,t=(5+2﹣1)÷1=6秒,综上所述,小正方形平移的时间为1或6秒.故答案为:1或6.【点评】本题考查了平移的性质,主要利用了长方形的面积,难点在于分两种情况解答.三.解答题(共3小题)17.作图题.(1)过点M作直线AC的平行线;(2)将三角形ABC平移,使得点B与点B′重合.【分析】(1)利用点A平移到M点,C点平移到N,从而得到AC∥MN;(2)利用点B和B′点的位置关系确定平移的方向与距离,然后利用此平移规律画出A、C的对应点A′、C′即可.【解答】解:(1)如图,MN为所作;(2)如图,△A′B′C′为所作.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.18.如图,△ABC的顶点都在方格纸的格点上,将△ABC向右平移4格,再向下平移3格,其中每个格子的边长为1个单位长度.(1)请在图中画出平移后的△A'B'C';(2)求△A'B'C'的面积.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A′B′C′即为所求.(2)S△A′B′C′=2×4﹣×1×2﹣×2×2﹣×1×4=3.【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.实践操作:如图,平移三角形ABC,使点A平移到点A′,画出平移后的三角形A′B′C′(点B平移到B′,点C平移到C′,保留作图痕迹,在图中标明相应字母,不写作法);猜想结论:猜想∠A′AB,∠ABC,∠BCC′的数量关系∠ABC=∠A′AB+∠BCC′(直接写出答案,不需证明).【分析】根据平移变换的定义和性质求解可得.【解答】解:如图所示,△A′B′C′即为所求,∵AA′∥BB′∥CC′,∴∠A′AB=∠ABD,∠BCC′=∠DBC,∴∠ABC=∠ABD+∠DBC=∠A′AB+∠BCC′,即∠ABC=∠A′AB+∠BCC′,故答案为:∠ABC=∠A′AB+∠BCC′.【点评】此题主要考查了平移变换,正确得出平移后对应点位置是解题关键.。
人教版数学七年级(下)期末质量测试卷1(附答案)
C组合:一个笔袋、一支签字笔、一副三角板单价33元
已知B组合的单价比A组合的单价多3元.2份A组合和1份B组合共需78元.请回答以下问题:
(1)A.B组合的单价分别是多少元?
(2)若他共购买了8个笔袋、5支签字笔、n副三角板.则他选了份A组合份B组合、份C组合;(可用含n 代数式表示)
C. 对乘坐某航班 乘客进行安检.采用全面调查
D. 某市为了解该市中学生的睡眠情况.选取某中学初三年级的学生进行抽样调查
3.如图.把小河里的水引到田地A处.若使水沟最短.则过点A向河岸l作垂线.垂足为点B.沿AB挖水沟即可.理由是( )。
A. 两点之间.线段最短B. 垂线段最短
C. 两点确定一条直线D. 过一点可以作无数条直线
4.如图.点A.C.E在同一条直线上.下列条件中能判断AB∥CD的是( )。
A ∠1=∠4B. ∠3=∠4
C. ∠1=∠2D. ∠D+∠ACD=180°
5.已知点 在 轴上.则点 的坐标是( )。
A. B. C. D.
6.如果a<b.那么下列不等式中错误的是( )。
A.a+2<b+2B.a﹣2<b﹣2C. D.﹣2a<﹣2b
参考答案
BCA6-10. DCDAB
11.假12. 13.±314.x-y=0(答案不唯一)
15.150°16. ①.2016②.201517.-1
18. ①.1(答案不唯一)②. 19.解:原式=
20.
将解集 表示在数轴上:
21.解:
解①式得:x≥− .
解②式得: .
故不等式组的解集为:
(3)由已知可得:
解得:
因为n为整数.所以n=4,5,6.所以.共有3种购买方案:
2020年人教版七年级数学下册第7章平面直角坐标系单元综合评价试卷含解析
2020年人教版七年级数学下册第7章平面直角坐标系单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题)1.下列各点中位于第二象限的点是()A.(1,5)B.(1,﹣5)C.(﹣1,5)D.(﹣1,﹣5)2.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)3.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1 B.﹣4 C.2 D.34.第四象限内的点P到x轴的距离是3,到y轴的距离是4,那么点P的坐标是()A.(﹣3,4)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)5.若m<0,则点P(3,2﹣m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限7.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.( 6,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°)、B 的位置为(4,210°),则C的位置为()A.(﹣2,150°)B.(150°,3)C.(4,150°)D.(3,150°)9.如图:在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…则点P2020的坐标是()A.(673,﹣1)B.(673,1)C.(336,﹣1)D.(336,1)10.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)二.填空题(共5小题)11.在平面直角坐标系中,点(﹣1,m2+1)一定在第象限.12.点P(n﹣1,n+1)在平面直角坐标系的y轴上,则P点坐标为.13.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于.14.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为.15.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则线段BB′=.三.解答题(共5小题)16.△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)△ABC由△A′B′C′经过怎样的平移得到?答:.(3)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为;(4)求△ABC的面积.17.已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.18.已知点M(2a+6,a﹣2),分别根据下列条件求点M的坐标.(1)点M到x轴的距离为3;(2)点N的坐标为(6,﹣4),且直线MN与坐标轴平行.19.在平面直角坐标系中.(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围.20.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S ABOC,若存在,请求出t值,若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各点中位于第二象限的点是()A.(1,5)B.(1,﹣5)C.(﹣1,5)D.(﹣1,﹣5)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.【解答】解:∵点在第二象限,∴点的横坐标是负数,纵坐标是正数,∴只有C符合要求.故选:C.2.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)【分析】根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.【解答】解:∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=﹣2,∴3a=﹣6,∴点P的坐标为(﹣6,0).故选:C.3.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1 B.﹣4 C.2 D.3【分析】AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.【解答】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.4.第四象限内的点P到x轴的距离是3,到y轴的距离是4,那么点P的坐标是()A.(﹣3,4)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)【分析】应先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断点的具体坐标.【解答】解:∵点P在第四象限内,∴点P的横坐标大于0,纵坐标小于0,∵点P到x轴的距离是3,到y轴的距离是4,∴点P的横坐标是4,纵坐标是﹣3,即点P的坐标为(4,﹣3).故选:B.5.若m<0,则点P(3,2﹣m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:∵m<0,∴2﹣m>0,∴点P(3,2﹣m)所在的象限是第一象限.故选:A.6.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限【分析】根据a2b>0>0可得b>0,可得a>0或a<0,再根据平面直角坐标系中各象限内点的坐标特征可判断出P点所在象限.【解答】解:∵a2b>0,∴b>0,a>0或a<0,当a>0,b>0时,点P所在的象限为第一象限;当a<0,b>0时,点P所在的象限为第二象限;故选:A.7.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.( 6,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移1个单位,向上平移了1个单位,然后可得B′点的坐标;【解答】解:∵A(1,0)平移后得到点A′的坐标为(2,1),∴向右平移1个单位,向上平移了1个单位,∴B(3,2)的对应点坐标为(4,3),故选:B.8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°)、B 的位置为(4,210°),则C的位置为()A.(﹣2,150°)B.(150°,3)C.(4,150°)D.(3,150°)【分析】根据题意写出坐标即可.【解答】解:由题意,点C的位置为(4,150°).故选:C.9.如图:在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…则点P2020的坐标是()A.(673,﹣1)B.(673,1)C.(336,﹣1)D.(336,1)【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).∴点P2020的坐标是(673,﹣1),故选:A.10.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)【分析】根据题意知点B与点A的纵坐标相等,且与点A的距离是1.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.二.填空题(共5小题)11.在平面直角坐标系中,点(﹣1,m2+1)一定在第二象限.【分析】根据点在第二象限的坐标特点解答即可.【解答】解:∵点(﹣1,m2+1)它的横坐标﹣1<0,纵坐标m2+1>0,∴符合点在第二象限的条件,故点(﹣1,m2+1)一定在第二象限.故填:二.12.点P(n﹣1,n+1)在平面直角坐标系的y轴上,则P点坐标为(0,2).【分析】根据y轴上点的横坐标为0列方程求出n的值,再求解即可.【解答】解:∵点P(n﹣1,n+1)在平面直角坐标系的y轴上,解得n=1,∴n+1=1+1=﹣2,∴点P的坐标为(0,2).故答案为:(0,2).13.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于2.【分析】根据两点间的距离公式d=解答即可.【解答】解:∵直角坐标平面内两点A(3,﹣1)和B(﹣1,2),∴A、B两点间的距离等于=2,故答案为2.14.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为7 .【分析】根据平移的性质得到AD=BE=6﹣3=3,由B的坐标为(4,0),得到OB=4,于是得到结论.【解答】解:∵点A的坐标为(3,),D的坐标为(6,),把△OAB沿x轴向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐标为(4,0),∴OE=OB+BE=7,故答案为:7.15.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则线段BB′= 1 .【分析】根据平移的性质得出平移后坐标的特点,进而解答即可.【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以线段BB′=OC=OA=1,故答案为:1.三.解答题(共5小题)16.△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(1,3);;B(2,0);C(3,1);(2)△ABC由△A′B′C′经过怎样的平移得到?答:先向右平移4个单位,再向上平移2个单位.(3)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为(x﹣4,y﹣2);(4)求△ABC的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)A(1,3);B(2,0);C(3,1);(2)先向右平移4个单位,再向上平移2个单位;或:先向上平移2个单位,再向右平移4个单位;(3)P′(x﹣4,y﹣2);(4)△ABC的面积=2×3﹣×1×3﹣×1×1﹣×2×2=6﹣1.5﹣0.5﹣2=2.故答案为:(1)(1,3);(2,0);(3,1);(2)先向右平移4个单位,再向上平移2个单位;(3)(x﹣4,y﹣2).17.已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.【分析】(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.【解答】解:(1)∵点P(2m+4,m﹣1)在y轴上,∴2m+4=0,解得m=﹣2,所以,m﹣1=﹣2﹣1=﹣3,所以,点P的坐标为(0,﹣3);(2)∵点P的纵坐标比横坐标大3,∴(m﹣1)﹣(2m+4)=3,解得m=﹣8,m﹣1=﹣8﹣1=﹣9,2m+4=2×(﹣8)+4=﹣12,所以,点P的坐标为(﹣12,﹣9);(3)∵点P到x轴的距离为2,∴|m﹣1|=2,解得m=﹣1或m=3,当m=﹣1时,2m+4=2×(﹣1)+4=2,m﹣1=﹣1﹣1=﹣2,此时,点P(2,﹣2),当m=3时,2m+4=2×3+4=10,m﹣1=3﹣1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,﹣2).18.已知点M(2a+6,a﹣2),分别根据下列条件求点M的坐标.(1)点M到x轴的距离为3;(2)点N的坐标为(6,﹣4),且直线MN与坐标轴平行.【分析】(1)根据点到x轴的距离等于纵坐标的长度列式求出a的值,再求出纵坐标,即可得解;(2)根据平行于x轴的直线上的点纵坐标相等列出方程求出a的值,再求出横坐标,即可得解.【解答】解:(1))∵点M到x轴的距离为3,∴a﹣2=3或a﹣2=﹣3,解得a=5或﹣1,∴M(4,﹣3)或(16,3)(2)∵点N(6,﹣4),直线MN∥x轴,∴a﹣2=﹣4,解得a=﹣2,∴2a+6=2,∵点N(6,﹣4),直线MN∥y轴,∴2a+6=6,解得a=0,∴a﹣2=﹣2,∴点M(2,﹣4)或(6,﹣2)19.在平面直角坐标系中.(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围.【分析】(1)根据y轴上的点的横坐标为0列出关于a的方程,解之可得;(2)由AB∥x轴知A、B纵坐标相等可得m的值,再根据点B在第一象限知点B的横坐标大于0,据此可得n的取值范围.【解答】解:(1)∵点P(2a﹣4,a+4)在y轴上,∴2a﹣4=0,解得:a=2,∴a+4=6,则点P的坐标为(0,6);(2)∵A(﹣2,m﹣3),B(n+1,4),AB∥x轴,∴m﹣3=4,解得:m=7,∵点B在第一象限,∴n+1>0,解得:n>﹣1.20.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(0 , 6 )、C(8 ,0 );(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S ABOC,若存在,请求出t值,若不存在,请说明理由.【分析】(1)根据题意即可得到结论;(2)当点P在线段BA上时,根据A(8,6),B(0,6),C(8,0),得到AB=8,AC=6当点P在线段AC上时,于是得到结论;(3)当点P在线段BA上时,当点P在线段AC上时,根据三角形的面积公式即可得到结论.【解答】解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6 ∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD=AP•AC S ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD=S ABOC,。
2020人教版七年级下册数学《期末检测卷》(带答案)
人教版数学七年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A. B. C. D. 2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A. B. C. D.3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒4.下列说法错误..的是( )A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有05.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于()A. 140°B. 120°C. 100°D. 807.下列命题中是真命题的是( )A. 两个锐角的和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则图中符合他要求的小区是( )A. 甲B. 乙C. 丙D. 丁10.某公园门票的收费标准如下: 门票类别成人票 儿童票 团体票(限5张及以上) 价格(元/人)100 40 60有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.12.用一组a,b的值说明命题“若a2>b2,则a>b”是错误的,这组值可以是a=____,b=____.13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为______.15.己知关于,x y的方程组4723x y mx y m+=-⎧⎨-=+⎩的解满足0x>,0y>.则m的取值范围是______.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.3-832|+()2-33. 20.解方程组35342x y x y +=-⎧⎨-=-⎩ .. 21.解不等式组5178(1)1062x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解..... 22.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABC V 中,BE 平分ABC ∠交AC 于E ,CD AC ⊥交AB 于D ,BCD A ∠=∠,求BEA ∠的度数.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A .不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值答案与解析一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A.B. C. D.【答案】D【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:. 故选D考点:不等式的解集2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A.B. C.D. 【答案】C【解析】【分析】根据3134<<,即可选出答案.【详解】解:∵3134<<,故选C .【点睛】本题主要考查了无理数的估算和实数在数轴上的表示,能判断无理数的估值是解答此题的关键. 3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒【答案】D【解析】【分析】先根据量角器读出∠AOB 和∠AOC 的度数,再结合选项,得出正确答案.【详解】由图可知70AOB ∠=︒,110AOC ∠=︒,故A 项错误,B 项错误;因为180AOB AOC ∠+∠=︒,所以C 项错误,D 项正确.【点睛】本题考查量角器的度数,解题的关键是会根据量角器读出度数.4.下列说法错误..的是( ) A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有0【答案】B【解析】【分析】根据平方根、算术平方根与立方根的定义和求法逐个选项进行判断,即可得解.【详解】A. 9的算术平方根是3,说法正确;B. 64的立方根是8±,说法错误,正确答案为4;C. 5-没有平方根,说法正确;D. 平方根是本身的数只有0,说法正确.故答案为:B .【点睛】本题关键是区分并掌握平方根、算术平方根及立方根的定义和求法.5.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵 【答案】A【解析】【分析】全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此逐个选项分析判断.【详解】A. 调查“神舟十一号”飞船重要零部件的产品质量,由于是“重要零部件”,适合全面调查;B. 调查某电视剧的收视率,适合抽样调查;C. 调查一批炮弹的杀伤力,适合抽样调查;D. 调查一片森林的树木有多少棵,适合抽样调查.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查,要根据所要考察的对象的特征灵活选用.一般来说对于具有破坏性的调查,无法进行普查,普查的意义或价值不大应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于()A. 140°B. 120°C. 100°D. 80【答案】A【解析】【分析】先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM =40°,最后解答即可.【详解】解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM 是∠AOC 的平分线,∴∠COM =40°,∴∠BOM =40°+100°=140°,故选A .【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.7.下列命题中是真命题的是( )A. 两个锐角和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)【答案】B【解析】【分析】 点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,点B 的平移规律和点A 一样,由此可知点B ′的坐标.【详解】解:因为点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,故点B (2,1)平移到点B ′横、纵坐标也都减3,所以B ′的坐标为(-1,-2).故选:B【点睛】本题考查了平面直角坐标系中图形的平移变化规律,根据一组对应点的平移找准平移规律是解题的关键.9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求【详解】解:分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求,如图:从图中可知丙小区到两坐标轴的距离最短;故选C.【点睛】本题考查轴对称求最短路径;通过两次作轴对称,将问题转化为对称点的连线最短是解题的关键.10.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.x+元,根据题意得:设花费较少的一家花了x元,则另一家花了40x+⨯40=605x=解得:260检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B.【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】45【解析】【分析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=45°,故答案为:45.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 12.用一组a ,b 的值说明命题“若a 2>b 2,则a >b ”是错误的,这组值可以是a =____,b =____.【答案】 (1).3a =-, (2). 1b =-【解析】【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,∴命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.【答案】15或18【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键. 14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O ,AB ∥OC ,DC 与OB 交于点E ,则∠DEO 的度数为______.【答案】75°【解析】【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【详解】解:∵AB ∥OC ,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°, ∴∠BOC=120°-90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°.故答案为75°.【点睛】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.15.己知关于,x y 的方程组4723x y m x y m +=-⎧⎨-=+⎩的解满足0x >,0y >.则m 的取值范围是______. 【答案】5m >【解析】【分析】用加减消元法解关于,x y 的二元一次方程组;根据0x >,0y >,解关于m 的不等式组,可得m 的解集. 【详解】4732235x y m x m x y m y m +=-=-⎧⎧⇒⎨⎨-=+=-⎩⎩∵0x >,0y >,∴232053505m m m m m ⎧->>⎧⎪⇒⇒>⎨⎨->⎩⎪>⎩ 故答案为:5m >.【点睛】本题考查解二元一次方程组和一元一次不等式组,关键是先求出含m 的x 和y ,再根据题意列不等式组求解.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.【答案】 (1). 苗苗,同位角相等,两直线平行. (2). 小华,内错角相等,两直线平行.【解析】分析】结合两人的画法和“平行线的判定”进行分析判断即可.【详解】(1)如图1,由“苗苗”的画法可知:∠2=∠1=60°,∴a ∥b (同位角相等,两直线平行);(2)如图2,由“小华”的画法可知:∠2=∠1=60°,∴a ∥b (内错角相等,两直线平行).故答案为(1)苗苗,同位角相等,两直线平行;或(2)小华,内错角相等,两直线平行.【点睛】读懂题意,熟悉“三角尺的各个角的度数和平行线的判定方法”是解答本题的关键.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.【答案】 (1). (1,-3)或(-7,-3) (2). 6【解析】【分析】(1)先由//BC OA ,确定C 点纵坐标与B 点相同,再根据BC=4OA ,确定BC 的长,然后分别求出C 点在B 点左侧和右侧的横坐标,即可得解;(2)由三角形面积公式求解即可.【详解】(1)∵//BC OA ,∴点C 纵坐标为-3,又∵BC=4OA=4∴当点C 在点B 右边,点C 横坐标为-3+4=1,故C(1,-3),当点C 在点B 左边,点C 横坐标为-3-4=-7,故C(-7,-3),故答案为:(1,-3)或(-7,-3);(2)S △ABC =12BC ×3=12×4×3=6 故答案为:6.【点睛】本题结合坐标系考查平行和三角形面积,关键是由平行确定C 点纵坐标,并对C点横坐标进行分情况讨论.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.【答案】 (1). -7 (2). 6【解析】【分析】(1)根据新定义计算即可;(2)分3732x x -≥-和3732x x -<-两种情况,根据新定义列方程求解即可.【详解】(1)(4)3437-=--=-☆故答案为:-7;(2)当3732x x -≥-,即2x ≥时,由题意得:(37)+(32)2x x --=解得:6x =;当3732x x -<-,即2x <时,由题意得:(37)(32)2x x ---= 解得:125x =(舍). 故答案为:6.【点睛】本题考查新定义,解题关键是根据新定义列出一元一次不等式和一元一次方程并准确求解.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.2|+.【解析】【分析】直接利用立方根的性质和绝对值的性质、二次根式的性质分别化简得出答案.【详解】原式=﹣2+2=.【点睛】本题考查了实数运算,正确化简各数是解题的关键.20.解方程组35342x y x y +=-⎧⎨-=-⎩ .. 【答案】21x y =-⎧⎨=-⎩【解析】【分析】利用加减消元法将方程组中的未知数消去,可求得的值,再将值代入其中一个方程解得的值,即得原方程组的解.【详解】解:35342x y x y +=-⎧⎨-=-⎩①②①×3得: 3915x y +=-③, ③-②,得1313y =-∴ 1y =-把1y =-代入①,得x= -2∴21x y =-⎧⎨=-⎩ 是原方程组的解 21.解不等式组5178(1)1062x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解..... 【答案】不等式组的解集是-3<x ≤2,正整数解是1、2【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后从解集中找出所有的正整数即可.【详解】解:() 517811062x xxx⎧-<-⎪⎨--≤⎪⎩①②,解①得,x>-3,解②得,x≤2,∴原不等式组的解是-3<x≤2.∴原不等式组的正整数解有:1,2.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由【答案】(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【解析】【详解】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABC V 中,BE 平分ABC ∠交AC 于E ,CD AC ⊥交AB 于D ,BCD A ∠=∠,求BEA ∠的度数.【答案】135°【解析】【分析】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,根据三角形外角定理,分别用, x y 表示∠ADC 和∠BEC ,结合∠A 与∠ADC 互余,列方程即可求出∠BEC ,由邻补角的性质进而可求出BEA ∠的度数.【详解】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,∵CD AC ⊥∴∠A+∠ADC=∠A+(∠BCD+∠ABC)=()()22=90x x y x y ++=+︒∴45x y +=︒∴∠BEC=∠A+∠ABE=45x y +=︒∠=180°-45°=135°∴BEA∠的度数为135°.即BEA【点睛】本题主要考察三角形外角定理、互余与邻补角的性质,解题关键是用未知数表示出角的度数,进而根据它们之间的关系进行代数运算.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)购进A种树苗10棵,B种树苗7棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10.∴17﹣x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,解得:x>8.5.∵购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,是x的增函数,∴费用最省需x取最小整数9,此时17﹣x=8,所需费用为20×9+1020=1200(元).答:费用最省方案:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A.不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.【答案】(1)补图见解析;(2)108°;(3)200;8.【解析】【分析】(1)用抽查总人数乘以乘坐公共交通的百分比可得其人数,再减去图中已知的不同花费时间的人数,即得4050x <…的人数,从而补全图形;(2)用360°乘以乘坐私家车所占百分比即可得解;(3)利用样本估算总体,计算求解.【详解】(1)∵选择公共交通的人数为100×50%=50(人),∴4050x <…的人数为50-(5+17+14+4+2)=8(人)故补全直方图如下:(2)“私家车方式”对应扇形的圆心角为360°×30%=108°故答案为:108°;(3)全年级乘坐公共交通上学人数为400×50%=200(人)单程不少于60分钟的有200×250=8(人) 故答案为:200;8.【点睛】本题主要考察读图与计算,解题关键是从图表中准确读取数据信息. 26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】(1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】【分析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC =+︒⎧⎨=+∠⎩∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C 在线段OA 上时,∠BEC=135°.综上可知,当点C 在直线AO 上运动时,BEC ∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值.【答案】(1)①E ,F . ②()3,3-;(2)1k =或2k =.【解析】【分析】(1)①找到E 、F 、G 中到x 、y 轴距离最大为3的点即可;②先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x 、y 轴距离中有4的点,再根据“等距点”概念进行解答即可.。
新课标人教版七年级下册数学测试题及答案
4、如图,一把矩形直尺沿 直线断开并错位,点 E、D、B、F 在同一条直线上, ∠ADE=125°,则∠DBC 的度数为 ( A.55° B.65° C.75°
2
) D.125° )
5、在平面直角坐标系中,点 P(a +1,-3)所在的象限是 ( A.第一象限 B.第二象限 C.第三象限
D.第四象限
14、31
三、(本题满分 16 分,每小题 8 分) 15、解略 x= y=1 (8 分) (6 分) (8 分)
16、解略.-2≤x<4 在数轴上表示如下:
四、(本题满分 16 分,每小题 8 分) 17、(1)AD∥BC,理由略. (2)AB CD,理由略. (4 分) (8 分)
18、(1)(0,2)、(1,1)、(2,0); (0,3)、(1,2)、(2,1)、(3,0)(4 分) (2)15 (8 分)
用心
爱心
专心
7
x y 5000
( x 400) y 400 2
x y 5000
( x 400) ( y 400) 400 2
x y 5000 C. 1 ( y 400) ( x 400) 400 2
x y 5000 D. 1 y ( x 400) 400 2
7、某多边形的内角和与外角和的总和为 900°,此多边形的边数是 ( A.4 B.5 C.6 D.7
8、 一条线段将一个四边形分割成两个多边形, 得到的每个多边形的内角和与原四边形内角和比较将 ( A.增加 180° B.减少 180° C.不变 D.以上三 种情况都有可能
)
9、甲、乙两个书店共有图书 5000 册,若将甲书店的图书调出 400 册给乙书店,这样乙书店图书的数量仍 比甲书店图书的数量的一半还少 400 册,问这两个书店原来各有图书多少册?设甲书店原有图书 x 册,乙 书店原有图书 y 册,则可列出方程组为( A. 1 ) B. 1
新人教版七年级下册数学第七章平面直角坐标系检测试题及答案
人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10 小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点 B 的坐标为()A. .(-2,2)B. .(-2,-3)C. .(-3,-2)D. (-2,-2)3.已知点 A(-3,0),则 A 点在()A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点 M 到 x 轴的距离为3,到 y 轴的距离为4,则点 M 的坐标是()A. (3,-4)B.(-4,3)C. (4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移 2 个单位长度,再向下平移 2 个单位长度所获得的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.123° ~124° 34′C.福建的正方向D. 123° ~124° 34′ ,北 25° 40′~26° 8.已知点 M(a,1),N(3,1), 且 MN=2 , a 的(A.1 B. 5)C.1 或5D.不可以确立9.如所示是一个棋棋(局部)①的坐是 (-2,-1),白棋③的坐是A. (0,-2) B. (1,-2),把个棋棋搁置在一个平面直角坐系中,白棋(-1,-3),黑棋②的坐是()C. (2,-1)D. (1,2)10.如,在直角坐系中,已知点 A(-3,0)、B(0,4),△ OAB作旋,挨次获得△1、△2、△3、△4、⋯ ,△16的直角点的坐()19 1 9 A. (60,0)B. (72,0)C. 675,5D. 79 5,5二.填空(共 6 小)11.若 4 排3 列用有序数(4,3)表示,那么表示 2 排5 列的有序数.12.在平面直角坐系中,已知点A(2,3),点 B 与点A 对于x 称,点 B 坐是.13.若点P(m+5,m-2)在x 上,m=;若点P(m+5,m-2) 在y 上,m=.14A(-2,3)和B(2,1),那么炸机 C 的平面坐是.15.将点P(x,4)向右平移 3 个单位获得点(5,4),则P 点的坐标是.16.把自然数按如图的序次在直角坐标系中,每个点坐标就对应着一个自然数,比如点(0,0)对应的自然数是1,点 (1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n) 对应的自然数是三.解答题(共 6 小题)17.在平面直角坐标系中,点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,试求m+n 的值.18.已知点P(2m+4,m-1), 请分别依据以下条件,求出点P 的坐标.(1)点 P 在 x 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过点 A(2,-4)且与 y 轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如下图,但是她忘掉了在图中标出原点和x 轴、 y 轴,只知道游玩园 D 的坐标为 (2,-2),且一格表示一个单位长度.(1)在原图中成立直角坐标系,求出其余各景点的坐标;(2)在( 1)的基础上,记原点为 0,分别表示出线段 AO 和线段 DO 上随意一点的坐标.20.已知 A(1,0)、 B(4,1)、 C(2,4),△ABC经过平移获得△A′ B′ C′ ,若 A′的坐标为 (-5,-2).(1)求 B′、 C′的坐标;(2)求△ A′B′ C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB 变换成△ OA B,第二次将△ OA B 变换成1111△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0) .( 1 )察看每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则 A4的坐标为 ,B4的坐标为.(2)按以上规律将△ OAB 进行 n 次变换获得△ OA n B n,则 A n的坐标为 ,B n的坐标为 ;(3)△ OA n B n的面积为.22.( 1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1), 并将各点用线段按序连结起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)假如将原图形上各点的横坐标加2、纵坐标减 5,猜一猜,图形会发生如何的变化?(4)假如想让变化后的图形与原图形对于原点对称,原图形各点的坐标应当如何变化?答案:1-10 BDBCD DDCAA11.(2,5)12.(2,-3)13.-514.( -2, -1)15.(2,4)16.604n2 -2n+117.解:∵点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,∴2m-7=1,n-6=-3 ,解得 m=4, n=3,因此 ,m+n=4+3=7.18.解:( 1)∵点 P(2m+4,m-1) 在 x 轴上,∴m-1=0 ,解得 m=1,∴2m+4=2×1+4=6,m-1=0,因此,点P 的坐标为 (6,0);(2)∵点 P(2m+4,m-1)的纵坐标比横坐标大 3,∴m-1-(2m+4)=3 ,解得 m=-8,∴人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x 轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D.东经 123° ~124° 34′ ,北纬 25° 40′~26°8.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且MN=2 ,则a 的值为()A.1B. 5C.1 或5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空(共 6 小)11.若影票上座位是“ 4 排 5号” 作 (4,5), (8,13)的座位是12.若 P(a-2,a+1)在 x 上, a 的是.13.若 4 排 3 列用有序数(4,3)表示,那么表示 2 排 5列的有序数.14.在平面直角坐系中,将点A(-1,3)向左平移 a 个位后,获得点A′ (-3,3), a 的是15.在平面直角坐系中,点M 在 x 的上方, y 的左面,且点 M 到 x 的距离 4,到y 的距离 7,点 M 的坐是.16.如,在平面直角坐系中,每个最小方格的均1,P2 ,P3,⋯1 个位度, P均在格点上,其序按中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),⋯,依据个律,点P2019的坐三.解答(共 5 小)17.已知平面直角坐系中有一点M(2m-3,m+1) .(1)点 M 到 y 的距离 l , M 的坐?(2)点 N(5,-1)且 MN ∥x , M 的坐?18.六形六个点的坐A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所坐系中画出个六形;(2)写出各拥有的平行或垂直关系.(不原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段B A 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C 点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与 CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形 BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第是.1 个单位2012/ 秒匀速运动,物体次相遇地址的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21. 解:( 1)由点 A 位于点( -4 , 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第二学期综合测试卷(一)
一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...
是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )
A.16=±4
B.±16=4
C.327-=-3
D.2
(4)-=-4
3.已知a >b >0,那么下列不等式组中无解..
的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩
⎨⎧<->b x a
x
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角
度可能为 ( )
(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°
5.解为1
2x y =⎧⎨=⎩
的方程组是( )
A.135x y x y -=⎧⎨+=⎩
B.135x y x y -=-⎧⎨+=-⎩
C.331x y x y -=⎧⎨-=⎩
D.23
35
x y x y -=-⎧⎨+=⎩
6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大
小是( )
A .1000
B .1100
C .1150
D .1200
(1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的
1
2
,则这个多边形的边数是( ) A .5 B .6 C .7 D .8
9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20
cm 2
,则四边形A 1DCC 1的面积为( )
A .10 cm 2
B .12 cm 2
C .15 cm 2
D .17 cm
2
10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4)
B.(4,5)
C.(3,4)
D.(4,3)
二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.
13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.
P
B
A
小刚
小军
小华
14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.
15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.
16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.
17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是
_____________.(将所有答案的序号都填上) 18.若│x 2
-25│
则x=_______,y=_______.
三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.
19.解不等式组:⎪⎩⎪
⎨⎧+<-≥--.215
12,4)2(3x x x x ,并把解集在数轴上表示出来.
20.解方程组:231342
4()3(2)17
x y x y x y ⎧-=⎪
⎨⎪--+=⎩
21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.
1D 2
A
E
C
B
C
B A
D
23.如图, 已知A (-4,-1),B (-5,-4),C (-1,-3),△ABC 经过平移得到的△A ′B ′C ′,△ABC 中任意一点P(x 1,y 1)平移后的对应点为P ′(x 1+6,y 1+4)。
(1)请在图中作出△A ′B ′C ′;(2)写出点A ′、B ′、C ′的坐标.
24.
其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?
25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A ,B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案?请设计出来.
F
D
C
B
E
A
答案:一、选择题:(共30分)
BCCDD,CBBCD
二、填空题:(共24分)
11.±7,7,-2 12. x≤6
13.三 14.垂线段最短。
15. 40 16. 400
17. ①②③ 18. x=±5,y=3
三、解答题:(共46分)
19. 解:第一个不等式可化为
x-3x+6≥4,其解集为x≤1.
第二个不等式可化为
2(2x-1)<5(x+1),
有 4x-2<5x+5,其解集为x>-7.
∴原不等式组的解集为-7<x≤1.
把解集表示在数轴上为:
20. 解:原方程可化为
896 27170 x y
x y
-=
⎧
⎨
++=⎩
∴
8960 828680 x y
x y
--=
⎧
⎨
++=⎩
两方程相减,可得 37y+74=0,
∴ y=-2.从而
3
2
x=-.
因此,原方程组的解为
3
2
2 x
y
⎧
=-⎪
⎨
⎪=-⎩
21. ∠B=∠C 。
理由: ∵AD ∥BC
∴∠1=∠B ,∠2=∠C ∵∠1=∠2 ∴∠B=∠C
22. 解:因为∠AFE=90°,
所以∠AEF=90°-∠A=90°-35°=55°.
所以∠CED=•∠AEF=55°, 所以∠ACD=180°-∠CED-∠D
=180°-55°-42=83°.
23. A ′(2,3),B ′(1,0),C ′(5,1).
24. 解:设甲、乙两班分别有x 、y 人.
根据题意得810920
55515x y x y +=⎧⎨
+=⎩
解得5548
x y =⎧⎨
=⎩
故甲班有55人,乙班有48人.
25. 解:设用A 型货厢x 节,则用B 型货厢(50-x )节,由题意,得
3525(50)15301535(50)1150x x x x +-≥⎧⎨+-≥⎩
解得28≤x ≤30.
因为x 为整数,所以x 只能取28,29,30.
相应地(5O-x )的值为22,21,20. 所以共有三种调运方案.
第一种调运方案:用 A 型货厢 28节,B 型货厢22节; 第二种调运方案:用A 型货厢29节,B 型货厢21节;
第三种调运方案:用A 型货厢30节,用B 型货厢20节.。