高盐废水零排放最新的解决方法

高盐废水零排放最新的解决方法
高盐废水零排放最新的解决方法

高盐废水零排放解决方案

一、高盐废水是什么

高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。含盐废水的产生途径广泛,水量也逐年增加。去除含盐污水中的有机污染物对环境造成的影响至关重要。采用生物法进行处理,高浓度的盐类物质对微生物具有抑制作用,采用物化法处理,投资大,运行费用高,且难以达到预期的净化效果。采用生物法对此类废水进行处理,仍是目前国内外研究的重点。

二、高盐废水的成分

高盐废水不同于其他其他类型的废水,其中成分差异并不会太大,所含盐类物质多为CI-、SO42-、Na+、Ca2+等盐分物质。虽然这些离子都为微生物提供良好的成长环境,但是如果这些成分浓度太高,就会对微生物的产生抑制和毒害作用。主要表现在盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质锋利;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥

易上浮流失,从而严重影响生物处理系统的净化效果。

三、高盐废水的主流处理手段

面对高盐废水,从物理化学和生物两方面入手,主流处理手段有:①浓缩蒸发处理法、②膜渗透除盐法、③电解除盐法、④耐盐菌生化处理法。

①浓缩蒸发处理法

优势:处理量大,对处理水质要求不高,

劣势:运行成本高

②膜渗透处理法

优势:原理简单,只适用于小量高盐废水处理

劣势:设备娇贵,易堵易污染,无法大量处理废水

③电解除盐法

优势:原理简单,只适用于小量高盐废水处理

劣势:只能处理废水中的含盐类,所含的其他物质会造成你根本电解不下去

④耐盐菌生化处理法

优势:成本较低,效果一般

劣势:对处理水质要求苛刻,受废水中有机物影响较大。

就目前技术而言,只有①浓缩蒸发处理法能理想地处理高盐废水。但是由于浓缩蒸发需要大量热量,传统蒸发器使用烧炉存在有烧炉内温度不发精确控制、热能传递流失等众多缺陷,虽然可以做到高盐废水处理或零排放,但是运行成本非常昂贵。

这时候,“MVR蒸发器”应时而被研发出来,不同于传统蒸发器,蒸发器内部为排列的细管,管外是蒸汽,物料在管内自上而下呈膜状流动,增加受热面积,可以快速蒸发浓缩。加热后残余的蒸汽和物料在蒸发器内加热蒸发产生的蒸汽、部分冷凝水,进入分离器进行分离,冷凝水由分离器下部流出,进入余热模块中的板式换热器,用来预热进入蒸发器前的物料,蒸汽通过压缩机进行压缩,然后经通过管路再次进入蒸发器。

设备启动时加入一部分鲜蒸汽进行预热,可以减少设备启动的时间。正常运转后,所需鲜蒸汽会大幅度减少,一般浓缩比达到6倍以上就不再需要补充鲜蒸汽。压缩机对二次蒸汽压缩进行压缩,将电能转化为蒸汽的热能。

四、mvr蒸发器流程图

五、如何能快速建设处理设备:

心德实业为了解决客户高盐废水处理方面的需求,投入了千万资金,用于研发高效节能的“MVR蒸发器”,如今已经拥有多项专利,成为国内最先拥有“MVR蒸发器”成熟技术的公司。可以为客户提供一整套专业的高盐废水处理或高盐废水零排放解决方案,集“研发-设

计-生产-安装调试-培训使用”一整套解决方案。

高硫酸盐废水处理方案

营口市近岸海域功能区划

排海标准 海水的主要盐分 (1)盐类组成成分每千克海水中的克数百分比(2)氯化钠 27.2 77.7 (3)氯化镁 3.8 10.9 (4)硫酸镁 1.7 4.9 (5)硫酸钙 1.2 3.6 (6)硫酸钾 0.9 2.5 (7)碳酸钙 0.1 0.3

硫酸盐废水排放执行啥标准? (8)综排标准、污水处理厂排放标准都没有对硫酸根离子进行规定,其实存在高盐度废水的工业很多的,都是对COD等进行适当处理后排放;硫酸根离子对人身的损害小,不过对土地盐碱化的作用比较大,当然海水中的这些离子的浓度很高,不作要求也是有道理的。 (9)但高浓度的SO4-对市政管网及市政污水处理系统有很大的负面影响;所以 (10)CJ343-2010《污水排入城市下水道水质标准》中对硫酸盐的排放浓度有明确的规定,分为ABC三个级别,不能大于 400~600mg/l。 (11)地表水标准在饮用水方面对硫酸盐有规定,为不超过250mg/l。 硫酸盐废水如何处理 (12)硫酸盐废水的处理方法包括物理化学和生物处理两种方法。 物理化学处理的方法主要包括沉淀法、离子交换法、液膜分离等。 化学处理主要是将硫酸盐分离,从一种状态转化成另一种状态,并未彻底去除。化学处理的缺点是耗费大,且容易造成二次污染。 而生物处理方法具有能耗低、剩余污泥少、耐冲击负荷、运行管

理方便等优点,所以含硫酸盐废水一般采用生物处理的方法。(13)矿山废水是我国硫酸盐污染存在的一个主要领域,其主要特征是pH低,有机成分少,硫酸盐浓度相对较高(3000mg/L),含有大量的金属离子。工程上多采用石灰法处理,但这一过程会产生大量的固体废气物,易造成二次污染。利用微生物法处理矿山废水,费用低,实用性强,无二次污染,还可以回收重要的单质硫,是目前最前沿的技术。它利用硫酸盐还原菌(SRB)的代谢作用将SO42-还原为S2-,从而达到去除硫酸盐、提高pH值的目的。 高盐废水处理方法 1、高盐废水常用方法----生化:不行;耐盐菌生化:盐分 高,细菌都盐死了;稀释生化:水费高,排量大,效果差,一个小时一吨的废水需要数十吨的自来水稀释费用更高,行不通; 2 、蒸发高盐废水------传统的蒸发浓缩设备、运行费用高, 需要资源多,需配备冷却锅炉系统; 3 、高盐废水处理技术考察------膜技术除盐:设备价格昂 贵,易堵塞,易污染,且浓液无法处理,不适合(如果你对膜技术的原理和应用做了认真了解,并且明白什么是“废水”,就会真正知道不适合的意义); 4 、电解除盐:含氯化钠的废水电解,无论是离子膜法还是 隔膜法,都因为含有有机物的问题而无法满足电解要求;退一步说,即使可行你能解决极板的问题、安全的问题(你污水站总不

浅谈关于高盐废水处理

1、高盐一般是指高于1%的盐度,即盐度大于10g/L. 当水中含盐量在3%时候,微生物的增长会明显受到抑制。 一般控制Cl离子在1200mg/L以下,最好低于400~600mg/L。 2、对于活性污泥法和生物膜法,如果不考虑培养专性的嗜盐菌,盐对生物繁殖的抑止浓度是多少?耐冲击范围又大概在多少? 含盐污水的生物处理按照微生物的来源可以分两种处理技术,一种就是采用淡水微生物进行盐度驯化,另一种是接种筛选嗜盐微生物。盐对传统淡水微生物的抑制程度是不同的,换句话说就是不同功能的微生物的耐盐范围是不同的。现在研究的结果很有限,尤其对氮磷去除的研究少之又少。安全的范围对于有机物降解的异氧菌盐度应该低于15g/L.除磷盐度不能超过6g/L,脱氮盐度应该低于15g/l.但是强调一点这些盐度的范围以处理工艺、水质不同有很大不同。对好氧异氧菌的盐度冲击范围适盐度驯化系统的不同而不同。未驯化淡水处理系统大于在0~20g/L之间。具体见我在《中国给水排水》发的文章。 2、嗜盐菌(不知是否有)的嗜盐机理能否赐教? 一般有光能质子泵原理和吸钾排钠原理。 3、工艺 高含盐废水生物处理流程的选择高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。(1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2•h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。在处理盐度波动较大的废水的时候,仍然需要设置调节池。 生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。

高含盐、氨氮、COD_化工废水处理[1]

江苏莱茵河医药化工材料有限公司 年产200吨4,4-二氨基苯酰替苯胺、200吨N-(乙氧基羰基苯基)-N’-甲基-N’-苯甲脒、150吨3,4’-二氨基二苯醚、300吨双(2, 2, 6, 6-四甲基-4-哌啶基)癸二酸酯、100吨4-叔丁基-4’-甲氧基二苯酰甲烷、50吨3,3’-双(对甲苯磺酰氨基羰基氨基)二苯甲酸-1,5-(3-氧代戊酯)、50吨4,4’-双(对甲苯磺酰氨基羰基氨基)二苯甲烷、100吨4-氨基-N-甲基苯甲酰胺、100吨1,3-双(4-氨基苯氧基)苯、200吨对硝基苯甲酰胺、120吨2-(4-氨基苯基)-5-氨基苯并咪唑技改项目 废水处理工艺 项 目 方 案 及 报 价 书 江苏穆玉耳环境工程有限公司 二○一○年六月

目录 一、公司简介 (1) 二、项目概况 (1) 三、项目基本资料 (1) 四、方案设计 (1) 4.1 工艺选择说明 (2) 4.2 工艺说明 (2) 4.3污水处理设备技术性能参数及说明 (3) 1、高含盐、高含有机物废水收集池(前置格栅井) (3) 2、三效蒸发器 (4) 3、蒸发集水池 (4) 4、铁碳微电解池 (5) 5、水质水量的调节——调节池 (6) 6、混凝沉降器 (6) 7、酸化水解池(上流式兼氧滤池) (7) 8、接触氧化池 (8) 9、斜管沉淀池 (9) 10、清水池 (9) 11、污泥浓缩池 (10) 12、机房 (10) 五、设备配置及报价 (10)

5.1 土建费用概算 (10) 5.2 主要机电设备及器材概算 (11) 5.3 工程总概算 (12) 附表:进水水质及园区污水处理厂水质接受标准 (13)

高盐废水零排放MVR蒸发器的详细描述

高盐废水零排放MVR蒸发器的详细描述 煤化工浓盐水的高含盐量导致其无法直接进入生化系统处理,同时高COD对膜有腐蚀和损害作用,也使其无法利用常规膜系统进行除盐处理,COD过高给蒸发结晶运行带来困难,同时传统蒸发成本过高。造成了煤化工浓盐水难处理的现状。 MVR蒸发器专业供应商,目前,废水处理及高盐分离结晶是制约新型煤化工行业发展的一大瓶颈。国内一直在探讨高含盐浓水的治理及回收可能的技术途径。新型MVR蒸发结晶器蒸发一吨水整个系统的能耗为50kw左右,极大地降低了能耗。 煤化工浓盐水来自中水回用装置二级反渗透的浓水、循环水排污水以及化学水再生水等。高含盐水含盐量高达10000~50000mg/L,主要含Na+、K+、Mn2+、SO42-、Cl-、NO3-、NO2-、Ca2+、Mg2+、Al3+、等离子,其中Na+的浓度达到10000~40000mg/L,SO42-浓度为10000~20000mg/L,Cl-浓度可达到10000~20000mg/L。煤化工浓盐水的另一特点是COD 含量较高,为500~2000mg/L。 目前国内多数企业采用传统蒸发结晶法处理高盐废水。高含盐水经多效蒸发器浓缩后送至蒸发塘自然蒸发或结晶器结晶成固体后安全填埋。结晶固体需作为危险固体废弃物进行危废处理。对于每年产生3万~5万吨危废物质的企业,这一处理方法的处置成本约为

2000元/吨,占蒸发结晶总费用的60%以上,煤化工企业很难承受。若采用MVR蒸发结晶,则处理成本降低一半以上。 石家庄博特环保王工,,认为,真正实现液体“零排放”的关键在于浓盐水的去向,同时降低蒸发结晶成本采用MVR蒸发结晶,降低一半以上的蒸发结晶运行成本。

高盐废水处理方法及案例

高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。 为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。 高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。 将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。 吸附法的优点 1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔 过滤器 高盐废水 后续蒸发 氧化后返回生化系统 脱附液

2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低; 3.工艺流程简单,可实现全程自动化操作,操作维护方便。 4.可实现多层布置,占地面积小,安装周期短。 案例介绍 本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。海普对该废水进行了定制化的工艺设计,废水设计指标如下表。 表1 废水设计参数表 指标水量(m3/d)颜色(mg/L) 吸附进水100 棕红色 吸附出水~100 淡黄色 出水蒸盐白色 图2 原水(左)、出水(右)外观图

高含盐工业废水处理技术现状分析

高含盐工业废水处理技术现状分析 摘要本文分析了高含盐废水的浓缩处理技术,同时阐述了直接脱盐的电吸附处理技术,最后总结了浓缩液处理技术。旨在提高对高含盐浓缩液的处理效果,选择最合适的废水处理方式,实现对自然生态环境的保护。 关键词高含盐;工业废水;处理技术;现状分析 1 高含盐废水的浓缩处理技术[1] 1.1 热浓缩技术 高含盐废水的热浓缩处理技术包括了多级闪蒸技术、多效蒸发技术(图1)以及机械式蒸汽再压缩技术(图2)。最初针对高含盐废水处理所使用的技术是多级闪蒸技术,但是该种方法需要消耗的热能较高,处理废水产生的污垢较大,且污垢多具有严重的腐蚀性,因此并不适合被大力推广使用。多效蒸发技术顾名思义是将几个蒸发器连接起来共同操作,具体操作原理是将前一个蒸发器产生的二次蒸汽作为后一个蒸发器的热源,达到对热能的循环利用,比多级闪蒸技术的资源能源的损耗更小,但是需要的占地面积更大,投资成本会相应增加。机械式蒸汽再压缩技术将蒸汽通过加热泵,形成一个相对负压环境,通过压强差作用,使得加热室内部分蒸汽被抽取,用于下一个蒸发器的热源,同样起到对资源能量的一个循环利用,具有占地面积小,运行成本低、消耗资源少的优点,在废水的处理上应用十分广泛,但是针对高含盐废水的处理,该技术目前仍然停留在试运用阶段。 1.2 膜分离技术 膜分离技术是指不需要额外驱动力加持,对由压力差、浓度差、电势差等因素造成的正渗透、反渗透以及减压渗透现象的一种运用,如图3所示。与热浓缩技术相比较,膜分离技术的建设运用成本投入更低,且技术难度较小,对高含盐废水的处理效果更好,不会有其他难处理物质产生。 1.3 膜蒸馏技术 膜蒸馏是近二十年来兴起的一种新型高含盐废水处理技术,也可以说是热浓缩技术与膜分离技术的结合,相当于是膜分离技术的优化,将原本受压力差、浓度差、电势差等因素影响产生渗透现象的膜两侧,添加了蒸汽压差驱动,膜的材质要求更高,为疏水性微孔膜,通过膜两侧蒸汽驱动作用,形成蒸汽高温压差,使得蒸汽分子从高温侧穿过膜运行到低温侧,高温侧溶液得到浓缩。与单一传统的膜分离技术相比,膜蒸馏技术实际上是加快了膜分离进程,对高含盐废水的处理效果更好,但同时存在对热能的消耗较大,利用率不高的问题,且膜蒸馏技术实际运用所需要的膜的建造技术还不成熟,市面上大多数膜都不能满足膜蒸馏技术的实施要求,限制了膜蒸馏技术的发展和推广。

高盐废水零排放工艺的设计与应用

高盐废水零排放工艺的设计与应用 发表时间:2019-08-13T16:22:43.103Z 来源:《科学与技术》2019年第06期作者:武华平 [导读] 高盐废水的处理工艺已经成为废水处理中的研究热点。 广州汉泰环境技术有限公司广东广州 510610 摘要:随着我国经济的发展与技术的进步,高盐废水已成为石油、化工等行业常见的废水。高盐废水具有水量大、含盐量高、有机物含量高等特点,如果直接排放会造成土地盐碱化,并对生态环境造成严重的破坏。高盐废水的处理工艺已经成为废水处理中的研究热点。零排放技术是通过清洁生产、生态产业等对自然资源循环利用,以达到污染物零排放、资源化的生产目标,零排放始于上世纪70年代,并逐步得到推广与发展。 关键词:高盐废水;反渗透;钠床;STRO;零排放 引言 随着我国工业化进程的加速推进,在煤转化、火电厂脱硫、印染、造纸、化工和农药及石油、天然气的采集加工等生产领域通常会产生大量的高盐废水,多含Cl-、SO42-、Na+、Ca2+等盐类物质,其总含盐量高于1%。这种高盐废水对环境的危害远远高于城市生活污水,但由于治污成本较高、环保监管难,其无序排放不仅会造成环境污染,还会引起土壤的盐碱化[1-2]。以煤化工为例,煤在转化过程中每年会产生10亿吨的含盐废水,主要以高浓度煤气洗涤废水为主,还包括焦化废水、煤气化黑水、煤直接/间接液化废水和合成气转化催化剂制备过程中产生的废水等。我国水资源远低于世界平均水平,而煤炭资源与水资源呈逆向分布,约70%的煤矿资源分布在水资源匮乏的地区,作为煤化工发展主体的新疆、内蒙古、山西和陕西,其水煤比仅为1∶22、1∶30、1∶45和1∶7,水资源目前已成为煤化工发展的首要约束指标。随着2015年4月国务院“水十条”法规的颁布,国家对这类高盐废水的处理提出了更高的要求,并制定造纸、焦化、氮肥、有色金属、印染、农副食品加工、原料药制造、制革、农药、电镀等行业专项治理方案,实施清洁化改造,努力实现废水“零排放”方式对废水中的无机盐加以综合利用,以最大化地减少对环境的危害和实现资源的循环利用[3-5]。目前,高盐废水“零排放”处理工艺流程主要包括预处理过程、生化处理过程、超滤+反渗透(RO)、盐浓缩单元、蒸发结晶等。 1设计进、出水水质 零排放系统进水为本工程锅炉补给水处理系统反渗透浓水、凝液混床再生废水等高含盐废水。原水为地表水经反渗透浓缩4倍后进入零排放系统一级浓水反渗透,一级浓水反渗透浓水进入调节池与凝液混床再生废水混合,经预处理软化后再进入后续膜浓缩系统;该废水具有高含盐、高硬度、硅和磷含量较高、氯离子含量较高等特点,控制一级反渗透回收率、避免膜结垢、提高膜系统的清洗周期、氯离子含量较高设备材质选型是本工程的处理难点。STRO浓水至少能满足进入蒸发结晶系统的最低水质要求(要求含盐量不低于90000mg/L)。 2工艺流程 锅炉补给水系统中的反渗透浓水进入反渗透浓水箱,在反渗透浓水箱内的停留时间约为半小时,此时前面所加的阻垢剂还未失效,也没有絮状物产生。经过水泵提升至一级浓水反渗透进行浓缩,一级浓水反渗透采用65%回收率。为防止离子结垢,一级浓水反渗透进水预留了阻垢剂接口。一级浓水反渗透产生的浓水和锅炉补给水系统的再生废水均进入调节池均质。调节池内废水经泵提升进入高效反应澄清池,高效反应澄清池主体为钢砼结构,集化学反应、混凝、泥水分离和储水于一体。根据来水水质条件,投加软化剂、氧化镁、絮凝剂及助凝剂等药剂,将废水中钙离子、镁离子、硅酸根离子态转化为固体颗粒态,经絮凝反应形成较大颗粒物,在沉淀区经重力分离去除。固态杂质从淡盐水中分离出来后采用脱水机脱水处理,形成泥饼外运,压滤液仍返回到调节池。高效反应澄清池产水进入产水池,经泵提升至双介质过滤器和浓水超滤装置进一步去除水中的悬浮物和杂质。浓水超滤产水进入二级浓水反渗透进行浓缩,回收率为65%。二级浓水反渗透采用循环回流及段间增压的方式一方面增加浓水流速,另一方面减少浓差极化,降低膜的污染。二级浓水反渗透产生的浓水进入STRO,本项目采用了90bar的STRO膜,可以使浓水的TDS达到90000mg/L以上,大大减少了浓水量。 3工业废水零排放主要膜处理技术介绍 3.1纳滤(NF)技术 纳滤(NF)最早被称为疏松反渗透,操作区间介于反渗透和超滤之间。对一价盐的去除率为20%~50%,但对CODcr及二价盐的去除率高达90%以上。纳滤膜的一个很大特性是膜本体带有电荷,这是它在很低压力下具有较高除盐性能和截留相对分子质量为数百的物质,也可脱除无机盐的重要原因。在高盐废水零排放处理工艺中,纳滤技术可用于去除绝大多数的Ca2+,Mg2+,SO42-等易结垢离子,同时其特殊的膜表面电荷及孔径使它比反渗透更耐COD的污堵,因此可用于反渗透的预处理,以降低结垢离子对RO膜的污染。同时因纳滤膜对二价离子的高截留性(对于硫酸根的截留可达98%及以上),目前在部分高盐废水零排放中用于分离硫酸根及氯离子,实现水中氯化钠的回收。已有电厂脱硫废水采用通过软化预处理(混凝+微滤)+膜浓缩处理(NF+DTRO)+蒸发结晶干燥技术,制成纯度为97.5%的袋装氯化钠,作为工业盐销售,实现了脱硫废水的资源化回收利用。通过纳滤的选择性过滤实现分盐的技术在高盐废水资源化的应用将会越来越多。 3.2高压反渗透DTRO技术 高压反渗透DTRO即碟管式反渗透膜,碟管式反渗透是反渗透的一种形式,是专门用来处理高浓度污水的膜组件,其核心技术是碟片式膜片膜柱。把反渗透膜片和水力导流盘叠放在一起,用中心拉杆和端板进行固定,然后置入耐压套管中,形成一个膜柱,最初用于垃圾渗滤液的处理。DTRO压力等级有75bar,90bar,120bar,160bar,盐分浓缩最高可达到100000~180000mg/L。DTRO在初期主要用于垃圾渗滤液的处理,其耐高COD,运行压力高,浓缩能力强特点逐渐被用在高盐高COD工业废水的回收利用上。DTRO对于预处理的要求比较简单,吨水电耗与膜组件的压力等级有关,对于90bar的DTRO系统,吨水电耗电耗6~10kWh,吨水投资成本约在20万元左右,投资及运行费用较高。 3.3膜蒸馏(MD)技术 膜蒸馏(MD)技术是近20年来发展起来的,是由膜两侧的蒸汽压差驱动的分离过程,可看作是膜分离和蒸馏技术的集合。MD技术所用膜为疏水性微孔膜,在蒸汽压差驱动下,高温侧的蒸汽分子穿过该膜,并在低温侧冷凝回收,高温侧溶液得到浓缩。MD技术与传统的蒸馏和膜分离技术相比,操作条件温和、截留率可达100%、抗污染程度较强、能量来源较广、对废水盐浓度适应性强,MD技术在常压工况下运行,产水水质好,但目前绝大部分还处于实验室或小规模工厂试验阶段,工业化还不成熟,且膜通量低,成本高。

高盐水处理工艺研发

高盐水处理工艺研发调研报告 1.高盐水的来源、特点及处理局势 1.1高盐水的定义及来源 高盐水是指海水、苦咸水和含至少3.5%(质量分数)总溶解固体的废水。高盐水处理主要出现在海水及苦咸水淡化、燃煤电厂脱硫废水,以及化工、印染、食品加工行业高含盐污水等。目前世界范围内海水淡化日产量已超8000万吨,预计到2018年,全球淡化工程总装机容量将达到1.38亿吨/天。我国的海水淡化日产量截至2014年已超过90万吨,目前曹妃甸百万吨海水淡化项目已获批准。海水淡化主流技术为低温多效蒸发、反渗透及电渗析。而脱硫废水以及化工、印染、食品加工行业的高盐废水成分复杂,想实现处理水淡化回用难度更高。 1.2 高盐废水的成分及特点 高盐水中盐类物质多为Na+、Mg2+、Ca2+、K+、Cl-、SO42-、NO3-等,此外废水中通常还含有重金属离子、Fe3+、F-、NO2-等。以达标排放为目的的高盐废水,有机物污染对环境影响至关重要,高含盐量对废水中有机物的微生物降解非常不利,只有极少数的嗜盐菌能够在高盐环境中生存;现有的物化处理工艺投资大、运行成本高,且难以达到预期净化效果。当进行海水淡化或高盐废水处理以“脱盐回用”为目的时,除盐便成为了高盐水处理的关键。 1.3高盐水处理局势 近年来,我国工业规模不断增大,高盐工业废水量也不断增多,给当前废水处理回收技术带来巨大挑战。对于高盐废水,缺乏技术、经济上的可行性与可靠性,大多采取稀释外排的方法,造成淡水资源的极大浪费,同时陆上高盐废水排放势必造成淡水资源矿化与土壤盐碱化。与国外高盐废水“零排放”与“近零排放”相比,我国仍有较大差距。 “十二五”期间,国家大力发展海水淡化工程,目前我国的海水淡化工程装机规模以30%的年增长率增长。在一些沿海缺水城市以及一些岛屿,海水淡化作为一种能够提供饮用水的可行性措施被广泛采用,尤其是膜技术的发展,使海水淡化的能耗大大降低。

高含盐废水处理方法

高含盐废水处理方法 生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。这类废水含盐较高,污染严重,必须处理才能排放。况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离; ②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用;④由水的密度增加,活性污泥容易上浮流失。为此,高含盐废水的生物处理需要进行稀释,通常在低浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。 许多研究表明,生物方法可以处理高含盐废水。但由低盐到高盐,微生物有一个适应期。从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。 我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。 1 污泥的来源与驯化 盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。高含盐废水生物处理关键是要驯化出耐盐微生物。 我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验将普通污泥倒入含CaCl21%左右的曝气池中,经过半个月驯化,镜检微生物菌胶团结 构紧密,原生动物有钟虫、豆形虫、浮游虫等,多而活跃。经逐步驯化至耐盐为3%。将含盐废水排放的沟边土壤与废水混合搅拌后,取悬浮液倒入曝气池,镜检菌胶团结构良好,色泽透明有大量的豆形虫,非常活跃。用实际工业废水在不同盐浓度下经过3个月试验,两种方法培养的微生物试验结果分别见表1和表2。

脱硫废水零排放技术及投资分析

烟气脱硫过程中产生的废水含有重金属,含盐量较高,这类水盐分较高。厂区其他系统无法接纳,排放后对周边环境产生不利影响。根据常规2×350MW超临界燃煤供热发电机组估算,2台机脱硫废水的量约在10t/h左右,但是本工程打算采用循环水排污水作为锅炉补给水系统的补水,来水含盐量进一步浓缩,采用反渗透浓水作为脱硫用水后,脱硫废水排量将会进一步增加(需要脱硫厂家根据煤质、来水水质进行计算),可能会在20t/h~30t/h。 采用预处理软化+纳滤分盐+膜浓缩+蒸发结晶的处理方式处理脱硫废水,达到脱硫废水零排放。其基本方案如下: 一、预处理软化单元 根据石灰石-石膏湿法脱硫工艺产生的脱硫废水具有高悬浮物、高含盐、易结垢等水质特性,拟采用“两级混凝沉淀”工艺,去除脱硫废水中的悬浮物、重金属、硬度等杂质离子,确保后续膜浓缩单元的连续、稳定运行。

工艺说明: (1)通过两级混凝沉淀,通过投加絮凝剂、有机硫、熟石灰等药剂,去除废水中的悬浮物、重金属、结垢因子等杂质离子,确保进入后续膜浓缩单元水质; (2)两级混凝沉淀产生的无机污泥经离心脱水脱水后,含水率约为80%的污泥外运处置。 二、纳滤分盐 本工程脱硫废水处理系统中硫酸根可通过形成硫酸钙(石膏)回收去除,不需要得到硫酸钠的结晶盐,因此建议采用纳滤法进行分盐。 通过纳滤膜的截留作用,水中的钙镁离子、有机物等基本得到去除,一方面彻底解决了后续RO膜、蒸发器等的污堵,另一方面也大大提高了结晶盐的品质。 纳滤装置进水依次经过纳滤保安过滤器、纳滤高压泵及纳滤装置,并在纳滤进水管分别投加还原剂、碱、阻垢剂等,防止纳

滤膜的结垢和污堵。为提高纳滤膜的回收率,纳滤装置设计为一级三段,每段均设有段间加压泵。纳滤产水进入纳滤水箱,纳滤浓水则回流至调节池再次进行处理。 三、膜浓缩单元 1. 膜浓缩技术选择 为了减少脱硫废水进蒸发结晶单元的水量,节省整套废水处理系统运行成本,可先对脱硫废水进行膜浓缩,浓缩液再进入蒸发结晶单元资源化处理;目前,根据煤化工废水处理行业经验,针对脱硫废水膜浓缩拟采用卷式反渗透(RO)。 2.膜浓缩(RO)单元介绍 膜浓缩单元流程简图如下: 工艺描述: (1)脱硫废水经两级混凝沉淀预处理后,由废水收集调节池均质后,通过水泵提升,进入超滤膜组,去除废水中细小SS 及胶体,使反渗透膜浓缩单元长期、稳定运行,超滤产水进入超滤产水箱,超滤系统利用超滤产水反洗,反洗水回至调节至去除SS后循环处理; (2)超滤产水箱废水通过水泵提升至离子交换树脂单元,通过离子交换树脂单元进一步降低废水中钙、镁离子后,再进入

高盐废水零排放最新的解决方法

高盐废水零排放解决方案 一、高盐废水是什么 高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。含盐废水的产生途径广泛,水量也逐年增加。去除含盐污水中的有机污染物对环境造成的影响至关重要。采用生物法进行处理,高浓度的盐类物质对微生物具有抑制作用,采用物化法处理,投资大,运行费用高,且难以达到预期的净化效果。采用生物法对此类废水进行处理,仍是目前国内外研究的重点。 二、高盐废水的成分 高盐废水不同于其他其他类型的废水,其中成分差异并不会太大,所含盐类物质多为CI-、SO42-、Na+、Ca2+等盐分物质。虽然这些离子都为微生物提供良好的成长环境,但是如果这些成分浓度太高,就会对微生物的产生抑制和毒害作用。主要表现在盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质锋利;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥

易上浮流失,从而严重影响生物处理系统的净化效果。 三、高盐废水的主流处理手段 面对高盐废水,从物理化学和生物两方面入手,主流处理手段有:①浓缩蒸发处理法、②膜渗透除盐法、③电解除盐法、④耐盐菌生化处理法。 ①浓缩蒸发处理法 优势:处理量大,对处理水质要求不高, 劣势:运行成本高 ②膜渗透处理法 优势:原理简单,只适用于小量高盐废水处理 劣势:设备娇贵,易堵易污染,无法大量处理废水 ③电解除盐法 优势:原理简单,只适用于小量高盐废水处理 劣势:只能处理废水中的含盐类,所含的其他物质会造成你根本电解不下去 ④耐盐菌生化处理法 优势:成本较低,效果一般 劣势:对处理水质要求苛刻,受废水中有机物影响较大。 就目前技术而言,只有①浓缩蒸发处理法能理想地处理高盐废水。但是由于浓缩蒸发需要大量热量,传统蒸发器使用烧炉存在有烧炉内温度不发精确控制、热能传递流失等众多缺陷,虽然可以做到高盐废水处理或零排放,但是运行成本非常昂贵。

高浓度含盐废水生化处理

高浓度含盐废水处理 水处理技术:1 高盐废水产生途径 1.1海水代用排放的废水 所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。 在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。 城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。 1.2工业生产废水 一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。 1.3 其他高盐废水 船舶压舱水 废水最小化生产中产生的污水 大型船舰上产生的生活污水 2 无机盐对微生物的抑制原理 2.1 抑制原理含盐废水主要毒物是无机毒物,即高浓度的无机盐。有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(ρ(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。 2.2 淡水微生物在不同盐度下的存活率不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。这是盐度对微生物的一种选择。将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。因此,当盐度超过20g/,一般认为用不同淡水微生物无法进行处理。 3 适盐微生物的分类与利用 耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。 嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。按照最佳生长盐度范围可以分为三类。

高盐废水零排放解决方案

高盐废水零排放解决方案 高盐废水顾名思义,是指高含盐量有机废水。这种废水的产生渠道非常广,如印染、造纸、化工和农药等,生产过程中都会产生高含盐有机废水。那么把高盐废水处理零排放呢?依斯倍作为一家专业废水处理零排放企业,做过多个废水处理零排放项目,包括像胜斐迩、环球等等,那么下面就给大家简单介绍下高盐废水零排放解决方案 面对高盐废水,从物理化学和生物两方面入手,主流处理手段有: ①浓缩蒸发处理法 优势:处理量大,对处理水质要求不高。 劣势:运行成本高。 ②膜渗透处理法 优势:原理简单,只适用于小量高盐废水处理。

劣势:设备娇贵,易堵易污染,无法大量处理废水。 ③电解除盐法 优势:原理简单,只适用于小量高盐废水处理。 劣势:只能处理废水中的含盐类,所含的其他物质会造成你根本电解不下去。 ④耐盐菌生化处理法 优势:成本较低,效果一般。 劣势:对处理水质要求苛刻,受废水中有机物影响较大。 高盐废水零排放解决方案 就目前技术而言,只有浓缩蒸发处理法能比较理想的处理高盐废水。 但是由于浓缩蒸发需要大量热量,传统蒸发器使用烧炉存在有烧炉内温度不发精确控制、热能传递流失等众多缺陷,虽然可以做到高盐废水处理或零排放,但是运行成本非常昂贵。 这时候,“MVR蒸发器”应时而被研发出来,不同于传统蒸发器,MVR蒸发器内部为排列的细管,管内部为废水,外部

为蒸汽,在产品由上而下的流动过程中由于管内面积增大而是产品呈膜状流动,以增加受热面积,通过真空泵在效体内形成负压,降低产品中水的沸点,从而达到浓缩,高盐废水蒸发温度为60℃左右。降低传统蒸发器需大量加热过程和热能流失的情况。

高盐废水处理方案

在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。所以采用生化工艺来处理。 当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。 方案分析: 1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。 2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。 3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。 4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。

煤化工高含盐废水的处理方法及设备选型注意事项

煤化工高含盐废水的处理方法及设备选型注意事项 神宁集团煤制油化工项目,对产生的生活、生产、含油、合成污水分别进行预处理后,进入高浓盐水处理工艺,处理后再生水回用于循环水系统和除盐水站作为补充水,蒸发器排放盐卤排至蒸发塘晒干,最终实现废水“零排放”,保证项目安全环保运行。 标签:煤制油化工;高含盐废水;处理方法及设备选型 随着煤制油化工项目经济效益的不断提高,项目建设速度也在不断加快,导致工业用水量日趋增大,随之带来的废水排放问题日益突出,目前黄河流域盐含量累积已接近生态红线,水资源的短缺及环保法律法规的不断健全,煤化工行业废水的处理及回收利用问题已成为制约行业可持续发展的瓶颈问题。本文结合神宁煤制油项目水处理工艺对目前水处理行业现状、工艺及关键设备选型注意事项进行探究,希望对企业实现减排及零排放提供一些有价值的理论参考。 一、水处理现状 现代煤化工含盐废水回收处理多从预处理除杂、高盐废水预浓缩、有机物去除、高盐废水分质结晶4个方面展开,回用过程产生的高盐废水具有有机物、盐浓度高,成分复杂,处理难度大、投资运行成本高的特点。目前,国内大唐克旗、新疆庆华、中煤图克、伊犁新天、神华宁煤等煤化工项目多采用自然蒸发、机械压缩蒸发、多效蒸发工艺,进一步处理高盐废水,产生的混合结晶盐组成复杂难以利用,新获得环评批复的煤化工项目多数选择分盐结晶技术路线,神华宁煤在建水处理项目建成后可验证分盐结晶技术路线的经济性和工业实施的可操作性。 二、高含盐水处理方法 (一)膜分离法 膜分离法是处理高含盐废水最常见的一种处理方法,分为反渗透膜法和纳滤膜法。具体如下:第一,反渗透膜法,主要是利用反渗透膜对废水混合液进行过滤,将废水中所含有的一些盐物质以及分子量大于100的有机物进行去除,处理过的废水清水回收率一般在70%左右,虽然使用该方法可以得到较为纯净的产水,但是这种过滤方法易形成生物或化学堵塞,需定期进行冲洗或化学清洗,这种行为会缩短反渗透膜的使用年限,从而增加了废水处理的成本[1];第二,纳滤膜法,该方法是近几年新应用于水处理行业的一种过滤高含盐废水的膜分离法,其过滤效果与上述我们所提到的反渗透膜相比还有待改进,该方法在处理废水时,可以将废水中分子量在200-1000之间的有机物质进行过滤,纳滤膜现多用于分盐场所,通过膜的特性将一、二价盐进行分离,然后配合蒸发或冷冻结晶系统进行分质分盐结晶。 (二)热浓缩法

新型高盐废水零排放处理技术

Creative W t Technology China C ti Water T h l Chi
创源环保
Zero?Liquid?Discharge,?Clean Creative?Water?Technology Water,?Higher?Profits Water, Higher Profits 零排放, 纯净,?高回收 China

Contents?目录
? Company?introduction?公司简介 ? Technology description 技术描述 Technology?description?技术描述 ? Product?overview?产品一览 ? Results?and?advantages?处理效果和优势

Company?History?|?公司历史
C Company 公司 y
Start of technology development by p y Stephen Shelley |Stephen Shelly发明技术 Founding of Creative Water Technology Ltd |澳大利亚CWT公司 成立 Nov ‘11: Set-up of CWT p China |创源环保(北京) 在中国成立 May ‘12: Start of Lab unit in China | C |2012年5月, 年 月 中国实验室开始运 营
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
Commer rcial 商业 业
1st test plants: aluminum smelting, green energy and wool scouring |第一台试验设备在 铝冶炼 绿色能源和 铝冶炼,绿色能源和 毛织品洗涤厂中使用
2010: First Fi t commercial i l contracts: Metal Recycling, Leather and Food Processing |2010年首次在金属 回收业、皮革和食品 加工工业签订商业合 同
Sept 2011: Contract with GEA for manufacturing of g equipment |2011年9月与 GEA签署合同, 为我公司制造设 备
Nov ‘11: N ‘11 Sign first contract in Sichuan, China |在中国四川 签署第一份 合同

高浓度含盐的废水处理方法

高浓度含盐废水的处理方法 水处理技术:1 高盐废水产生途径 1.1海水代用排放的废水 所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。 在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。 城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。 1.2工业生产废水 一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。 1.3 其他高盐废水 船舶压舱水 废水最小化生产中产生的污水 大型船舰上产生的生活污水 2 无机盐对微生物的抑制原理 2.1 抑制原理 含盐废水主要毒物是无机毒物,即高浓度的无机盐。 有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。 ①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物

相关文档
最新文档