计量学-联立方程组模型的参数估计
四计量经济学联立方程模型的单方程估计方法

• 所谓单方程估计方法,指每次只估计模型系统中 的一个方程,依次逐个估计。 • 所谓系统估计方法,指同时对全部方程进行估计, 同时得到所有方程的参数估计量。
• 联立方程模型的单方程估计方法不同于单方程模 型的估计方法 。
⒊间接最小二乘法也是一种工具变量方法
• ILS等价于一种工具变量方法:依次选择X作为 (Y0,X0)的工具变量。
• 数学证明见《计量经济学—方法与应用》(李子 奈编著,清华大学出版社,1992年3月)第126— 128页。 • 估计结果为:
0 X 0 ILS
Y1 0 Y0 1 X0
00
Y00 00 1 X0
Y00 00 X 00 00 X 00 X 0 0
X0 00 00 * 00 X 0 0 X0
四、三种方法的等价性证明
⒈三种单方程估计方法得到的参数估计量
* 0 X0 X0 0 IV
1
Y
0
X 0
X
* 0
0
X 0
1
X
* 0
X 0 Y1
⒋讨论
• 该估计量与OLS估计量的区别是什么?
• 该估计量具有什么统计特性? • (k- k1)工具变量与(g1-1)个内生解释变量的 对应关系是否影响参数估计结果?为什么? • IV是否利用了模型系统中方程之间相关性信息?
• 对于过度识别的方程,可否应用IV ?为什么?
⒊ IV参数估计量
• 方程的矩阵表示为
0 Y1 (Y0 , X 0 ) 1 0
计量经济学-练习题及答案.

一、解释概念:多重共线性 SRF 解释变量的边际贡献一阶偏相关系数自相关最小方差准则 OLS 偏相关系数 WLS Ut二阶偏相关系数技术方程式零阶偏相关系数经验加权法虚拟变量不完全多重共线性多重可决系数边际贡献的F检验 OLSE PRF 阿尔蒙法 BLUE复相关系数滞后效应异方差性高斯-马尔可夫定理可决系数二.单项选择题:1、计量经济学的研究方法一般分为以下四个步骤()A.确定科学的理论依据、模型设定、模型修定、模型应用B.模型设定、估计参数、模型检验、模型应用C.搜集数据、模型设定、估计参数、预测检验D.模型设定、模型修定、结构分析、模型应用2、简单相关系数矩阵方法主要用于检验()A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性3、在某个结构方程恰好识别的条件下,不适用的估计方法是( )A . 间接最小二乘法 B.工具变量法C. 二阶段最小二乘法D.普通最小二乘法4、在利用月度数据构建计量经济模型时,如果一年里的12个月全部表现出季节模式,则应该引入虚拟变量个数为()A. 4B. 12C. 11D. 65、White 检验可用于检验()A.自相关性 B. 异方差性C.解释变量随机性 D.多重共线性6、如果回归模型违背了无自相关假定,最小二乘估计量是( )A.无偏的,有效的 B. 有偏的,非有效的C.无偏的,非有效的 D. 有偏的,有效的7、已知DW统计量的值接近于2,则样本回归模型残差的一阶自相关系数近似等于( )A. 0B. –1C. 1D. 48、在简单线性回归模型中,认为具有一定概率分布的随机变量是( )A.内生变量B.外生变量C.虚拟变量D.前定变量9、应用DW检验方法时应满足该方法的假定条件,下列不是其假定条件的为()A.解释变量为非随机的B.被解释变量为非随机的C.线性回归模型中不能含有滞后内生变量D.随机误差项服从一阶自回归10、二元回归模型中,经计算有相关系数=0.9985 ,则表明()A.X2和X3间存在完全共线性B. X2和X3间存在不完全共线性C. X2对X3的拟合优度等于 0.9985D.不能说明X2和X3间存在多重共线性11、在DW检验中,存在正自相关的区域是()A. 4-dL <d<4 B. 0<d<dLC. dU <d<4-dUD. dL<d<dU,4-dU<d<4-dL12、库伊克模型不具有如下特点()A. 原始模型为无限分布滞后模型,且滞后系数按某一固定比例递减B.以一个滞后被解释变量Yt-1代替了大量的滞后解释变量Xt-1,Xt-2,…,从而最大限度的保证了自由度C.滞后一期的被解释变量Yt-1与Xt的线性相关程度肯定小于Xt-1,Xt-2,…的相关程度,从而缓解了多重共线性的问题D.由于,因此可使用OLS方法估计参数,参数估计量是一致估计量13、在具体运用加权最小二乘法时,如果变换的结果是, 则Var(ut)是下列形式中的哪一种?( )14、将内生变量的前期值作解释变量,这样的变量称为()A、虚拟变量B、控制变量C、政策变量D、滞后变量15、在异方差的情况下,参数估计值仍是无偏的,其原因是()A.零均值假定不成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立1、经济计量模型是指( )A.投入产出模型B.数学规划模型C.包含随机方程的经济数学模型D.模糊数学模型2、对于回归模型Yt =α+α1Xt+ α2Yt-1+ut,检验随机误差项是否存在自相关的统计量为( )3、下列说法正确的有()A.时序数据和横截面数据没有差异B. 对总体回归模型的显著性检验没有必要C. 总体回归方程与样本回归方程是有区别的D. 判定系数R2不可以用于衡量拟合优度4、在给定的显著性水平之下,若 DW 统计量的下和上临界值分别为 dL和 dU,则当时,可认为随机误差项( )A.存在一阶正自相关B.存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定5、在线性回归模型中,若解释变量X1i 和X2i 的观测值成比例,即有X1i=k X2i,其中k为非零常数,则表明模型中存在( )A. 异方差B. 多重共线性C. 序列自相关D. 设定误差6、对联立方程组模型估计的方法主要有两类,即()A. 单一方程估计法和系统估计法B. 间接最小二乘法和系统估计法C. 单一方程估计法和二阶段最小二乘法D. 工具变量法和间接最小二乘法7、已知模型的形式为 ,在用实际数据对模型的参数进行估计的时候,测得DW统计量为0.6453,则广义差分变量是( )8、调整后的判定系数与判定系数之间的关系叙述不正确的有()A. 与均非负B.判断多元回归模型拟合优度时,使用C.模型中包含的解释变量个数越多,与R2就相差越大D.只要模型中包括截距项在内的参数的个数大于1,则 < R29、对多元线性回归方程的显著性检验,所用的F统计量可表示为()10、在回归模型中,正确地表达了随机扰动项序列相关的是()A. COV (μi ,μj)≠0,i ≠ j B. COV (μi,μj) = 0,i ≠ jC. COV (Xi ,Xj) =0, i≠j D. COV (Xi,Xj)≠0, i ≠ j11、在DW检验中,存在负自相关的判定区域是()12、下列说法正确的是()A.异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总体现象D.时间序列更易产生异方差13、设x1 ,x2为回归模型的解释变量,则体现完全多重共线性是()14、下列说法不正确的是()A.自相关是一种随机误差现象B.自相关产生的原因有经济变量的惯性作用C.检验自相关的方法有F检验法D.修正自相关的方法有广义差分法15、利用德宾 h 检验自回归模型扰动项的自相关性时,下列命题正确的是()A. 德宾h检验只适用一阶自回归模型B. 德宾h检验适用任意阶的自回归模型C. 德宾h 统计量渐进服从t分布D. 德宾h检验可以用于小样本问题1、以下变量中可以作为解释变量的有()A、外生变量B、滞后内生变量C、虚拟变量D、前定变量E、内生变量2、在简单线性回归模型中,认为具有一定概率分布的随机数是( )A、内生变量B、外生变量C、虚拟变量D、前定变量3、计量经济模型中的内生变量()A.可以分为政策变量和非政策变量B.是可以加以控制的独立变量C.其数值由模型所决定,是模型求解的结果D.和外生变量没有区别4、在下列各种数据中,()不应作为经济计量分析所用的数据。
计量经济学之联立方程模型

计量经济学之联立方程模型引言联立方程模型(Simultaneous Equation Model,简称SEM)是计量经济学中的一个重要分析工具,用于研究多个经济变量之间的相互关系。
通过建立一组方程,可以理解变量之间的联动效应,并进行预测和政策分析。
本文将介绍联立方程模型的基本概念、建模步骤和常见的估计方法等内容。
基本概念联立方程模型的定义联立方程模型是指由多个方程组成的一种数学模型,用于描述多个经济变量之间的关系。
每个方程都包含一个因变量和若干个解释变量,以及一个误差项。
联立方程模型的核心思想是通过解方程组,得到各个变量的估计值,进而分析它们之间的关系。
基本假设在建立联立方程模型时,需要对变量之间的关系进行假设。
常见的基本假设有:1.线性关系假设:方程中的变量之间的关系是线性的。
2.独立性假设:各个方程中的误差项是独立的,即它们之间不存在相关性。
3.零条件均值假设:解释变量的条件均值为零,即解释变量的期望与误差项无关。
4.同方差假设:各个方程中的误差项方差相等。
建模步骤建立联立方程模型的步骤如下:步骤一:确定变量根据研究主题和数据可获得的变量,确定需要建立模型的变量集合。
步骤二:构建方程根据经济理论和实际问题,构建联立方程模型的方程形式。
每个方程包含一个因变量和若干个解释变量。
步骤三:参数估计通过收集数据,对联立方程模型进行参数估计。
常用的估计方法有最小二乘估计(Ordinary Least Squares,简称OLS)和广义矩估计(Generalized Method of Moments,简称GMM)等。
步骤四:模型诊断对估计得到的模型进行诊断,检验模型的拟合优度、参数显著性和误差项的假设等。
常见的诊断方法有虚拟变量检验、异方差性检验和序列相关性检验等。
步骤五:模型解释与政策分析根据估计得到的模型结果,解释各个变量之间的关系,并进行政策分析。
可以利用模型进行预测和模拟,评估不同政策对经济变量的影响。
计量学-联立方程组模型

11
1 21 1 22
,
21
1 12 1 22
,
12
23 1 22
,
22
3 1 22
,
13
3 1 22
23
32 1 22
29
需要注意的是,并不是联立方程组模型引进越 多的变量,方程或整个模型的识别性越强越好。
例如若在上面的供给函数中再加入一个认为与
这种产品的供给有关的气温变量 作解释变量,
联立方程组模型
1
本章简单介绍联立方程组模型计量分 析,包括联立方程组模型的基本概念、 假设、识别性和参数估计等。
2
第一节 联立方程组模型及其假设 第二节 联立方程组模型的识别性 第三节 联立方程组模型的参数估计
3
第一节联立方程组模型及其假设
一、联立方程组模型的基本概念 联立方程组模型是方程组形式的计量经
当然这需要符合一定条件,就是后面要 讨论的联立方程组模型的识别性。
12
二、联立方程组模型的假设 (一)联立方程组模型的一般表示法
一般用Y1,,Yg 分别表示有g个方程的联立方程 组模型的g个内生变量,用 X1,, X K 表示模型 的K个前定变量
13
模型的结构式表示为:
Y1t Y 12 2t Y 1g gt 11X1t 1K X Kt 1t
济模型。 用一个简单的微观市场均衡模型说明联
立方程组模型的基本情况,以及它们所 涉及的基本概念。
4
这个微观市场均衡模型包括一个供给函 数、一个需求函数、以及一个均衡方程 ,具体如下:
QtS 1 2 Pt 3Pt1 1t QtD 1 2Pt 3Yt 2t
QtS QtD
5
称被决定的 Pt 和 Qt 为模型的“内生变量”。 联立方程组模型的内生变量对应单方程模型中 的被解释变量。
67联立方程计量经济学模型的系统估计方法.pptx

⑵ 求随机误差项方差—协方差矩阵的估计量
ei ei1
ei 2
ein
ij
eie j (n gi 1 ki )(n g j 1 k j )
(ij )
I
⑶ 用GLS估计原模型系统
Y Z ~
得到结构参数的3SLS估计量为:
(Z 1Z ) 1 Z 1Y (Z ( I ) 1 Z ) 1 Z ( I ) 1Y
⑷这反过来说明,3SLS方法主要优点是考虑了模型系 统中不同结构方程的随机误差项之间的相关性。
三、完全信息最大似然法简介 (FIML,Full Information Maximum Likelihood)
⒈概念
• 另一种已有实际应用的联立方程模型的系统估 计方法。
• Rothenberg和Leenders于1964年提出一个线性 化的FIML估计量。
• 对数或然函数对于待估计参数取极大值的一阶 条件,求解该方程系统,即可得到结构参数的 FIML估计量。
• 研究的重点是如何求解非线性方程系统。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。20. 8.620.8.6Thursday, August 06, 2020
⒉三阶段最小二乘法的步骤
⑴ 用2SLS估计结构方程
Yi Z i i ~ i
得到方程随机误差项的估计值。
Zi Y0i Xi0
Y0i
X
i 0
i 0
OLS
Y0i
X
i 0
X ( X X ) 1 X Y0i
估计
Zi Y0i
X
i 0
i (ZiZi ) 1 ZiYi
计量经济学简答题

(2)模型回归系数估计量的方差会很大,从而使模型参数的显著性检验失效。
(3)模型参数的估计量对删除或增添少量的观测值及删除一个不显著的解释变量都可能非常敏感。
5.计量模型的检验包括几个方面?
模型的检验主要包括经济意义检验,统计检验,计量经济学检验和模型的预测检验四个方面。
过程是:(1)利用OLS法估计结构方程中所有内生变量的简化式方程。
(2)利用估计出的简化式方程计算内生变量的估计值。
(3)用内生变量的估计值替代解释变量中的内生变量,再利用OLS法估计变量替代后的结构方程。
4.模型存在多重共线性可能产生的后果主要有哪些?
2.在计量经济模型中为什么要引入随机误差项?
(1)对模型中省略的变量用随机误差项来统统反映。
(2)用随机误差项来反映一些随机因素的影响。
(3)用随机误差项来反映统计误差。
(4)模型形式的误差。
3.试述联立方程模型的参数估计的二段最小二乘估计法的原理与估计过程。
原理是:寻找一个变量Y^来替代模型方程中解释变量中的内生变量Y,然后对替代后的结构方程用OLS法进行估计。
(2)t检验的可靠性降低
(3)增大模型的预测误差
8.什么是序列相关性,其表现形式是什么?
(1)序列相关性是对模型的随机误差项来说的,当模型的随机误差项在不同的样本点之间不相互独立的,也即模型违背了基本假定3的时候,则此就称模型存在序列相关性。
(2)序列相关性表现于一阶序列相关性和高阶序列相关性,此二种情况下的表现形式可以表示如下
6.一元线性回归模型的基础假设主要有哪些?
答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有,解释变量是非随机的,如果是随机变量,则与随即干扰项不相关。
计量学-联立方程组模型的参数估计

因此第一个结构式方程参数的间接最小二乘估
计,与简约式参数的最小二乘估计的关系为:
βˆ1 Πˆ Γˆ 1
也就是
ˆ11 ˆ12
ˆ1K1
0
0
XX
1
XY
1
ˆ12
ˆ1g1
0
0
9
分别由分块矩阵 和
Y Y1 Y11 Y12
Yi XΠi ui , i 2,, g1
对它们分别作最小二乘估计,得:
Πˆ i XX1XYi , i 2,, g1
因此这些内生变量的估计量为:
Yˆi XΠˆ i XXX1XYi , i 2,, g1
29
它们可以合并为:
Yˆ10 Yˆ 2 Yˆ 3 Yˆ g1
XXX1 X Y2 Y3 Yg1
以简约式的第l个方程为例:
Ylt l1 X1t l 2 X 2t lK X Kt ult
该方程的系数构成行向量 Πl l1,,lK
,它的最小二乘估计量为:
Πˆ l XX1XYl
6
这些参数估计向量可以合并成下列简约式 模型参数的估计量矩阵:
Πˆ
Πˆ 1Πˆ 2 Πˆ g
ˆˆ 1211
X X11 X12
表示 Y 和X 。
X11
X12 X11
ˆ11
X12
ห้องสมุดไป่ตู้
ˆ1K1
0
X11
0
X12 Y1
Y11
1
ˆ12
Y12
ˆ1g1
0
0
10
X11X11
X12X11
ˆ11
X11X12
ˆ1K1
X11Y1
X12X12
计量第12章联立方程模型

VS
假设条件
为了使模型具有可解性和可估计性,需要 设定一些假设条件。这些条件可能包括变 量的线性关系、误差项的独立性、同方差 性等。这些假设条件的选择应根据实际问 题和数据的特征来确定。
参数估计方法
最小二乘法(OLS)
最小二乘法是联立方程模型中最常用的参数估计方法之一。它通过最小化残差平方和来估 计模型的参数。这种方法简单易行,但在存在异方差性、自相关等问题时,可能导致估计 结果不准确。
联立方程模型的估计需要使用复 杂的计算方法和软件,对研究者 的计量经济学知识要求较高。
改进方向探讨
模型识别方法的改进
01
通过引入新的识别方法或改进现有数据收集和处理技术的提升
02 利用现代数据收集和处理技术,提高数据的质量和可
获得性,从而扩大联立方程模型的应用范围。
递归模型
模型中某些变量可以由其他变量唯一确定。
非递归模型
模型中所有变量相互依赖,无法由其他变量 唯一确定。
建模目的与意义
分析经济政策变化对经济系统的 影响。
描述经济系统中多个变量之间的 相互关系。
目的
01
03 02
建模目的与意义
• 预测经济变量的未来走势。
建模目的与意义
01
意义
02
提供了一种全面、系统的分析方法,有助于深入了解经济系统的运行 规律。
计量第12章联立方程模型
目录
• 联立方程模型概述 • 联立方程模型的构建 • 联立方程模型的识别与估计 • 联立方程模型的应用举例 • 联立方程模型与其他模型的关系 • 联立方程模型的优缺点及改进方向
01
联立方程模型概述
定义与特点
定义
联立方程模型(Simultaneous Equation Models)是一组 相互依赖的线性方程,用于描述经济系统中多个变量之间的 相互关系。
计量经济学模拟试题(六套)及答案

模拟试题一一、单项选择题1. 一元线性样本回归直线可以表示为( )A .i 10i X Y u i ++=ββ B. i X )(Y E 10i ββ+= C. i 1i e X Y ++=∧∧i ββD.i X 10iYββ+=∧2. 如果回归模型中的随机误差存在异方差性,则参数的普通最小二乘估计量是( ) A .无偏的,但方差不是最小的 B 。
有偏的,且方差不少最小 C .无偏的,且方差最小 D 。
有偏的,但方差仍最小3. 如果一个回归模型中包含截距项,对一个具有k 个特征的质的因素需要引入( )个虚拟变量 A .(k-2) B 。
(k —1) C 。
k D.K+14. 如果联立方程模型中某结构方程包含了模型系统中所有的变量,则这个方程是( ) A .恰好识别的 B .不可识别的 C .过渡识别的 D .不确定5. 平稳时间序列的均值和方差是固定不变的,自协方差只与( )有关A .所考察的两期间隔长度B .与时间序列的上升趋势C .与时间序列的下降趋势D .与时间的变化6. 对于某样本回归模型,已求得DW 统计量的值为1,则模型残差的自相关系数ρ∧近似等于( )A .0B .0.5C .—0。
5D .17. 对于自适应预期模型i 110t )1(X Y u Y r r r t t +-++=-ββ,估计参数应采取的方法为( )A .普通最小二乘法B .甲醛最小二乘法C .工具变量法D .广义差分法8. 如果同阶单整变量的线性组合是平稳时间序列,则这些变量之间的关系就是( ) A .协整关系 B .完全线性关系 C .伪回归关系 D .短期均衡关系9. 在经济数学模型中,依据经济法规认为确定的参数,如税率、利息率等,称为( ) A .定义参数 B .制度参数 C .内生参数 D .短期均衡关系10. 当某商品的价格下降时,如果其某需求量的增加幅度稍大雨价格的下降幅度,则该商品的需求( )A .缺乏弹性B .富有弹性C .完全无弹性D .完全有弹性二、多项选择题1。
计量经济学-第六章:联立方程计量经济模型

It
2122Yt1
23Gt
v2t
Yt 3132Yt133Gtv3t
3.简化式模型的矩阵表示
Ct 1112Yt113Gtv1t
It
2122Yt1
23Gt
v2t
Yt 3132Yt133Gtv3t
C t
Y It Yt11 Nhomakorabea12
13
21
22
23
31
32
33
1
X
Y G
t
结构式模型的导出的结果:
C Itt001100 1 1001111112( 111 1 21)11YYt t1111111 111G Gttu11ut111t 1uu1212tt111u2u21tt Yt 10 1011121Yt11111Gt 1u1 t 1 u2t1
而简化式模型的一般表示:
Ct 1112Yt113Gtv1t
Ct 0 1Yt u1t It 0 1Yt 2Yt1 u2t
Yt Ct It Gt
◇联立方程模型中方程、变量及其属性 方程包括:随机方程、确定性方程 按变量性质:内生变量、外生变量 按因果关系:解释变量、被解释变量 内生变量:是随机变量,内生变量之间相互影响, 内生变量还受到外生变量的影响 外生变量:是确定性变量,对内生变量产生影响 先决变量:外生变量、滞后内生变量
2.模型的一般表示方法 对于联立方程模型,可描述为: g个内生变量(g个方程),内生变量用向量Y表示; k个先决变量,先决变量用向量X表示; 则结构式模型矩阵表示为:
参数矩阵为:
U
◇写出下列简单宏观计量经济模型的矩阵形式:
Ct 0 1Yt u1t It 0 1Yt 2Yt1 u2t
《计量经济学》-联立方程模型

γ 2k
X
kt
u2t
L L L L L L
bg1Y1t b Y g2 2t L b Y gg gt γ X g1 1t γ X g2 2t L γ X gk kt ugt
结构方程的个数等于内生变量的个数,称为完备模型
10
结构型的矩阵表示(一)
b11 b12 L
b21
b22
L
L L L
c5
a2b1 a b
,
c6
a3b1 a b
17
1.结构方程的识别
恰好识别:通过简化模型的参数估计值和参数关系式可以得到 结构方程的参数估计值的惟一解,该结构方程恰好识别
过度识别:通过简化模型的参数估计值和参数关系式可以得到 结构方程的参数估计值的多个解,该结构方程过度识别
不可识别:通过简化模型的参数估计值和参数关系式可以得不 到结构方程的参数估计值,该结构方程不可识别
u1t
u2
t
Ut
u
BYt ΓXt Ut
或
B
Γ
Yt Xt
Ut
12
2. 简化型
Ct
a1b2 1 a1
b1
Yt 1
a1 1 a1
b1
Gt
u1t
a1u2t b1u1t 1 a1 b1
It
b2 ( 1
1 a1 ) a1 b1
Yt
1
b1 1 a1 b1
Gt
u2 t
第九章
联立方程模型
主要内容
联立方程模型的概念 联立方程模型的形式 模型的识别 联立方程模型的参数估计
2
一. 联立方程模型的概念
由若干个单一线性经济计量方程构成联立方程组,描述整个经 济系统的模型称为联立方程经济计量模型,简称联立方程模型
联立方程计量经济学模型的识别与估计

CWYKW tPtttGt1O300000\0y21010001100(00010容易验证该矩阵的秩为5,与整个模型w G T T Y tGt t t t1t1竹000000V1V2V2E1000000000000000),从而是可以识别的。
°202300Gt 0 0 1 0 0)联立方程计量经济学模型的识别与估计Klein于1950年建立的旨在分析美国两次世界大战间经济发展的小型宏观计量经济学模型如下:消费:c t=%+〜n t+僞耳i+〜(%+%)+%投资:人=兀+久存+侑耳1+峡1+纭工资:叫=卩0+人(Y t+T t叫丿+卩2(I1+T t1“Gt1)+泾+妆收入:Y t=C t+I t+G t T t利润:n t=y t w pt w Gt资本存量:£=—+仪i其中,Y,C,/,%,%,〃,K,G,T,t分别代表收入、消费、投资、私人工资、政府工资、利润、资本存量、政府支出、税收与时间。
1)模型的识别该模型中的内生变量共6个,分别为Y,C,I,W p,n,K,外生变量分别为为“G,G,T,t,先决变量共9个,分别为为岭1〃…,K1,W Gt,G t,Tt,t,咚1,—对于该模型的识别过程如下:对于消费方其中未包含的变量在其他方程中对应系数所组成的矩阵I Y K K w G T T Y tt t t t1Gt1t t t1t1100传0000000V10V20V1E E V31100011000010*******(1011000000)容易验证该矩阵的秩为5,与整个模型系统的内生变量减1后相等,从而是可以识别的。
另一方面,由于k心=103=7>2=31=21,因此,消费方程是过度识别的。
对于投资方程,其中未包含的变量在其他方程中对应系数所组成的矩阵为:另一方面,由于k心=103=7>1=21=9t1,因此,投资方程是过度识别的。
对于工资方程,其中未包含的变量在其他方程中对应系数所组成的矩阵为:cIn K tttt10线001B0111000010(0101容易验证该矩阵的秩为5,与整个模型系统的内生变量减1后相等,从而是可以识别的。
李子奈(第二版)_计量经济学考试与答案

李子奈(第二版)_计量经济学考试与答案计量经济学习题及答案一、单项选择题(本大题共25小题,每小题1分,共25分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.对联立方程模型进行参数估计的方法可以分两类,即:( )A.间接最小二乘法和系统估计法B.单方程估计法和系统估计法C.单方程估计法和二阶段最小二乘法D.工具变量法和间接最小二乘法 2.当模型中第i个方程是不可识别的,则该模型是( )A.可识别的B.不可识别的C.过度识别D.恰好识别 3.结构式模型中的每一个方程都称为结构式方程,在结构方程中,解释变量可以是前定变量,也可以是( )A.外生变量B.滞后变量C.内生变量D.外生变量和内生变量 4.已知样本回归模型残差的一阶自相关系数接近于-1,则DW统计量近似等于( )A.0B.1C.2D.4其中Xi为随机变量,Xi与Ui相关则的普通最小二乘估计量( ) 5.假设回归模型为A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致 6.对于误差变量模型,模型参数的普通最小二乘法估计量是( )A.无偏且一致的B.无偏但不一致C.有偏但一致D.有偏且不一致 7.戈德菲尔德-匡特检验法可用于检验( )A.异方差性B.多重共线性C.序列相关D.设定误差 8.对于误差变量模型,估计模型参数应采用( )A.普通最小二乘法B.加权最小二乘法C.广义差分法D.工具变量法 9.系统变参数模型分为( )A.截距变动模型和斜率变动模型B.季节变动模型和斜率变动模型C.季节变动模型和截距变动模型D.截距变动模型和截距、斜率同时变动模型10.虚拟变量( )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素11.单方程经济计量模型必然是( )A.行为方程B.政策方程C.制度方程D.定义方程 12.用于检验序列相关的DW 统计量的取值范围是( )A.0?DW?1B.,1?DW?1C. ,2?DW?2D.0?DW?4 13.根据判定系数R2与F统计量的关系可知,当R2=1时有( )A.F=1B.F=,1C.F=?D.F=014.在给定的显著性水平之下,若DW统计量的下和上临界值分别为dL和du,则当dL<DW<du时,可认为随机误差项( )A.存在一阶正自相关B.存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定15.经济计量分析的工作程序( )A.设定模型,检验模型,估计模型,改进模型B.设定模型,估计参数,检验模型,应用模型C.估计模型,应用模型,检验模型,改进模型D.搜集资料,设定模型,估计参数,应用模型16.前定变量是( )的合称。
联立方程模型分析和检验

联立方程模型的特点:
(1)联立方程组模型是由若干个单一方程模型有 机结合而成的。
(2)联立方程模型中可能同时包含随机方程和确 定性方程,但必须含有随机方程。
(3)有的变量在某个方程为解释变量,而在另一 个方程中可能为被解释变量,因此解释变量有可 能是随机的不可控变量。
(4)解释变量可能与随机干扰项相关,违反OLS 基本假定。
扰项相关,若用OLS法估计每个方程,则参数的估 计量将是有偏的和不一致的。
这种由于联立方程模型内生变量作为解释变量与随 机干扰项相关、不独立,而引起的参数估计量是有 偏且不一致,称为联立方程偏倚性。
第二节 联立方程模型的分类
一、结构式模型(Structural Model)
根据经济理论和行为规律建立的、描述经济变量之 间直接结构关系的计量经济学方程系统称为结构式 模型。
重要的不可缺少的一部分变量,用以反映经 济系统的动态性与连续性。
➢ 前定变量只能作为解释变量。 ➢ 前定变量与模型中的随机干扰项是独立的。
联立方程模型必须是完整的。 方程个数=内生变量个数 否则联立方程模型是无法估计参数的。
消费方程 投资方程 收入方程
C t 01Ytu1t
It01 Y t2 Y t 1 u 2 t
量,这就违背了解释变量与随机干扰项不相关的假
定。将第一个方程和第二个方程代入第三个方程 , 得 Y t 0 1 Y t u 1 t 0 1 Y t 2 Y t 1 u 2 t G t
整理后,得
Y t 1 0 1 0 1 1 1 2 1 Y t 1 1 1 1 1 G t 1 u 1 t 1 u 2 t1
Yt Ct It Gt
消费方程 投资方程 收入方程
C Itt 0011YYttu12tYt1u2t
四章联立方程模型

方法:将简化式方程转化成最终型方程,再 对各期外生变量求偏导数;
(1)最终型方程: 例题:将消费函数转化成最终型方程 (2)乘数分析: 短期乘数、中期乘数、累计乘数、长期乘数 例题:计算国民收入的各期乘数
二、 经济预测
1.联立方程模型预测的步骤
内生解释变量可能与误差项相关,使得OLS估 计成为有偏估计。
二、递归系统模型的估计
1.递归系统模型的特点
1)内生变量的结构系数矩阵为下三角阵; 例: (P214例7)
2)每个方程中的内生(解释)变量与误差项不相关;
2.递归系统模型的估计—OLS
三、恰好识别模型的估计—ILS
1.间接最小二乘法的原理 2.间接最小二乘法的步骤 例题:均衡价格模型的估计
联立方程模型的估计方法:
1.单方程估计法
递归系统模型——OLS 恰好识别模型——ILS (间接最小二乘法) 过度识别模型——2SLS(二段最小二乘法)★
2.系统估计法
似乎不相关回归——SUR 三段最小二乘法——3SLS
第三节 联立方程模型的参数估计
一、联立方程偏误
1.问题的来源——方程的联立性 2.联立方程偏误
(1)估计模型的简化式方程; (2)预测外生变量; (3)由最终型方程预测内生变量;
例题:宏观经济模型 3.预测功效评价:
(1)预测的均方误差(绝对误差) (2)相对均方误差(相对误差)
三、 政策评价
内容:分析政策变量的影响 1.政策评价模型的构造: 2.政策目标仿真---模拟仿真法:
分析:政策变量所产生的不同影响; 政策变量 模型 内生变量 应用: (1)模拟仿真不同政策方案所产生的结果; (2)评价已实行的政策效果;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找到合适的工具变量 :选择与 相关性较强 的 作为估计第一个方程参数的工具变量。
根据工具变量法估计公式,第一个方程的参数 的工具变量法估计为
的工具变量法估计则为
(二)推导工具变量法估计的一般公式
仍然设估计联立方程组模型的第一个方 程,并设它是一个过度可识别的方程。
该方程用与单方程多元线性回归分析相 似的观测向量方程可表示为
两阶段最小二乘估计的公式为
根据数据的二阶矩矩阵,公式中的各个二阶矩 数值分别为:
将工具变量观测方程组模型为
并已根据50组观测数据计算到二阶矩矩阵
估计第一个方程中的参数 和 。
若用 作为工具变量,可得第一个方程的工具 变量法估计:
即两个参数的工具变量法估计分别为:
四、两阶段最小二乘估计
阶段一:寻找理想工具变量
阶段二:用第一个阶段找到的工具变量进行工具 变量法估计 。
例
假设已经根据20组观测数据计算出如下 的二阶矩矩阵
求市场供求均衡模型
第一个方程的参数估计。 首先确定
市场均衡模型第一个方程三个参数的间 接最小二乘估计向量 :
根据这些参数估计,得到该方程的回归 直线为:
三、工具变量法估计
(一)用例子说明联立方程组模型参数的工具变 量法估计: 一个三方程联立方程组模型为
(2)根据结构式参数与简约式参数的关系 解结构式参数的间接最小二乘估计
模型的结构式参数和简约式参数总体上 有关系:
第一个结构式方程的参数与简约式参数 之间有关系式:
因此第一个结构式方程参数的间接最小二乘估 计,与简约式参数的最小二乘估计的关系为:
也就是
分别由分块矩阵
和
表示 和 。
这就是联立方程组模型的恰好可识别方 程参数的间接最小二乘估计的一般式。
化为简约式为: 结构式参数和简约式参数之间的关系为:
或 假设需要估计的结构式方程是恰好可识别的,
因此可以采用间接最小二乘法估计参数。
(1)用最小二乘估计简约式的参数。
以简约式的第l个方程为例:
该方程的系数构成行向量 ,它的最小二乘估计量为:
这些参数估计向量可以合并成下列简约式 模型参数的估计量矩阵:
再对该方程运用普通最小二乘估计,得 到两阶段最小二乘估计
这就是两阶段最小二乘估计的一般公式 。
例 :以上一个例子的模型和相关数据二阶矩矩阵 为例,求第一个方程两个参数的两阶段最小二 乘法估计。
首先,用最小二乘法估计第一个方程的内生解 释变量 的简约式参数,得到
因此 对全体前定变量的回归直线为:
二、间接最小二乘估计
1、基本思想
对于恰好可识别的联立方程组模型方程,结 构式参数与简约式参数有一一对应关系。由于 简约式参数不存在内生解释变量的问题,最小 二乘估计是有效的。
通过简约式参数的最小二乘估计间接得到结构 式参数的估计。这种估计方法称为“间接最小 二乘估计”。
2、间接最小二乘估计一般步骤和公式的推导。 设联立方程组模型的结构式为:
(一)利用下面的方程说明两阶段最小二乘估计 的思路和方法,仍然讨论其中过度可识别的第 一个方程的参数估计。
作为工具变量,比 和 都理想。 根据这种思路先估计 的简约式方程:
得到最小二乘估计回归方程:
把 作为工具变量对第一个方程进行工具变 量法估计,得到 的两阶段最小二乘估计为:
方程中的常数项仍可用通常的方法估计 :
(二)联立方程组模型参数两阶段最小二 乘估计的一般公式
设一般联立方程组模型的第一个方程是 过度可识别的。
设方程的观测向量方程形式为
这个方程中出现的 以外的内生变量的简 约式观测向量方程形式为
对它们分别作最小二乘估计,得:
因此这些内生变量的估计量为:
它们可以合并为: 用 代替第一个方程中的 ,得到
计量学-联立方程组模型 的参数估计
2020年4月29日星期三
一、最小二乘估计及其问题
可以用普通最小二乘法估计参数的情况: 联立方程组模型的方程没有内生解释变量; 内生解释变量与方程的误差项没有强相关性。
例:递归模型
如果联立方程组模型的方程,既非解释 变量全部是外生变量或前定变量,也不 像递归模型那样解释变量与误差项都没 有相关性,那么普通最小二乘估计得到 的参数估计量既非无偏的,也不是一致 估计。