运筹学A(二)实验报告

合集下载

运筹学实验报告

运筹学实验报告

运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。

解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实验报告心得

运筹学实验报告心得

运筹学实验报告心得运筹学实验报告实验一:线性规划问题1、实验目的:?学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

?掌握利用计算机软件求解线性规划最优解的方法。

2、实验任务?结合已学过的理论知识,建立正确的数学模型; ?应用运筹学软件求解数学模型的最优解?解读计算机运行结果,结合所学知识给出文字定性结论 3、实验仪器设备:计算机 4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。

(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“?”、“?”或“=”号,如图所示。

(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。

例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。

学习理论的目的就是为了解决实际问题。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一下条件时才能归结为线性规划的模型:?要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;?为达到这个目标存在很多种方案;?要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。

这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。

篇二:运筹学实验报告实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学第二次实验报告

运筹学第二次实验报告

实验课程名称运筹学实验项目名称熟悉LINDO软件Repart功能及其他功能年级 09级专业信息与计算科学学生姓名曾权学号 0907010215理学院实验时间:2011 年10 月12 日学生实验室守则一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。

二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。

三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。

四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。

五、实验中要节约水、电、气及其它消耗材料。

六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。

七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。

仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。

八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。

九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。

十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。

十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。

学生所在学院:理学院专业:信息与计算科学班级:信计091姓名曾权学号 0907010215 实验组实验时间2011/10/12 指导教师杨光惠成绩实验项目名称熟悉LINDO软件的Repart功能及其它功能实验目的及要求:熟悉LINDO软件的Repart功能及其它功能如:Tableau(给出标准型的单纯形法)Formulation(给出整数后的模型)Picture实验(或算法)原理:LINDO软件的Tableau(给出标准型的单纯形法)Formulation(给出整数后的模型)Picture功能实验硬件及软件平台:windows操作系统、LINDO平台、计算机实验步骤:1、打开计算机并运行LINDO软件2、输入模型并检查错误3、调试程序并得出最后结果4、问题反馈实验内容(包括实验具体内容、算法分析、源代码等等):输入的模型,及相关操作结果:实验结果与讨论:1、结果出来的图看不懂2、对picture的功能掌握不够指导教师意见:签名:年月日。

大学生运筹学实训报告范文

大学生运筹学实训报告范文

一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。

为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。

以下是本次实训的报告。

二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。

三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。

(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。

2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。

(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。

3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。

(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。

4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。

(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。

5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。

(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。

四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。

五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。

六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告2实验内容:线性规划问题的建模和求解。

“炼油厂生产计划安排”,“长征医院的护士值班计划”两题目任选其一,每个小组最多3名同学,共同完成实验报告。

一、问题提出长征医院是长宁市的一所区级医院,该院每天各时间区段内需求的值班护士数如表1所示.该医院护士上班分五个班次,每班8h,具体上班时间为第一班2:00~10:00,第二班6:00~14:00,第三班10:00~18:00,第四班14:00~22:00,第五班18:00~2:00(次日).每名护士每周上5个班,并被安排在不同日子,有一名总护士长负责护士的值班安排计划.值班方案要做到在人员或经济上比较节省,又做到尽可能合情合理.下面是一些正在考虑中的值班方案:方案1 每名护士连续上班5天,休息2天,并从上班第一天起按从上第一班到第五班顺序安排.例如第一名护士从周一开始上班,则她于周一上第一班,周二上第二班,……,周五上第五班;另一名护士若从周三起上班,则她于周三上第一班,周四上第二班,……,周日上第五班,等等.方案2 考虑到按上述方案中每名护士在周末(周六、周日)两天内休息安排不均匀.于是规定每名护士在周六、周日两天内安排一天、且只安排一天休息,再在周一至周五期间安排4个班,同样上班的五天内分别顺序安排5个不同班次.在对第1、2方案建立线性规划模型并求解后,发现方案2虽然在安排周末休息上比较合理,但所需值班人数要比第1方案有较多增加,经济上不太合算,于是又提出了第3方案.方案3 在方案2基础上,动员一部分护士放弃周末休息,即每周在周一至周五间由总护士长给安排三天值班,加周六周日共上五个班,同样五个班分别安排不同班次.作为奖励,规定放弃周末休息的护士,其工资和奖金总额比其他护士增加a%.根据上述,帮助长征医院的总护士长分析研究:(x)对方案1、2建立使值班护士人数为最少的线性规划模型并求解;(b)对方案3,同样建立使值班护士人数为最少的线性规划模型并求解,然后回答a的值为多大时,第3方案较第2方案更经济;二、问题简述从该医院各时间段护士值班表可看出:五个时间段所需护士人数分别为18,20,19,17,12。

运筹学实验报告(题目)

运筹学实验报告(题目)

运筹学实验报告(题目)运筹学实验报告指导老师:姓名:学号:班级:目录例题实验一人力资源分配问题实验二配料问题实验三套裁下料问题实验四成本收益平衡问题实验五投资问题例题实验目的:1掌握Excel并熟悉它的使用环境。

2、准备好系统中的Office安装盘,然后选择【工具】|【加载宏】菜单命令,在弹出的【加载宏】对话框中选择【规划求解】3、在Excei中,对已有的问题进行规划求解。

实验内容:1、对下面线性规划问题进行求解;max z =3x1+x2+2x312x1+3x2+6x3+3x4=98x1+x2-4x3+2x5=103x1-x6=0Xj>=0 j=1,2,3,4,5,6一、第一步:打开Excel菜单栏中的工具菜单,出现一个子菜单,单击“规划求解”选项。

第二步:出现规划求解参数的对话框。

该对话框用来输入规划的目标函数,决策变量和约束条件。

第三步:在规划求解参数对话框内填写参数所在的地址如下:在设置目标单元格一栏内,填入表示目标函数值的单元格地址B16,并选择最大值选项;在可变单元格一栏内,填入决策变量的单元格地址B14:C14。

第四步:单击添加按钮,出现添加约束对话框,在单元格引用位置一栏内,填入约束条件左边的值所在的单元格地址B19:B21;选择<=;在约束值一栏内,填入约束条件左边的值的单元格地址D19:D21。

选择确定,得到一个填写完毕的规划求解参数对话框第五步:单击对话框内的选项按钮,出现规划求解选项对话框。

该对话框用来输入规划求解运算中的有关参数,例如是否线性模型、是否假定非负、迭代次数、精度等。

大部分参数已经按一般要求设置好了,只需设置是否采用线性模型,以及是否假定非负。

在本实验中,选择“采用线性模型”;选择“假定非负”。

然后就进行规划求解。

1.2(a)自变量X1 X2 X3 X4 X5 X6约束条件系数12 3 6 3 0 0 9 =8 1 -4 0 2 0 10 =3 0 0 0 0 -1 0 = 目标函数系数 3 1 2 0 0 0 3解0 0 1.5 0 8 0所以该问题有最优解:X=(0,0,1.5,0,8,0)实验(一)人力资源分配问题实验目的:1、根据题目要求,在有限的人力资源约束下进行建模。

运筹学实验报告2

运筹学实验报告2

运筹学实验报告2《运筹学》课程实验第 2 次实验报告实验内容及基本要求:实验项目名称:运输问题实验实验类型: 验证每组人数: 1实验内容及要求:内容:运输问题建模与求解要求:能够写出求解模型、运用软件进行求解并对求解结果进行分析实验考核办法:实验结束要求写出实验报告,并于实验结束一周内(5月29日)上交。

实验结果:(附后)内容主要包括以下3点:1. 问题分析与建立模型,阐明建立模型的过程(一定要给出模型)。

2. 实验步骤,包含使用什么软件以及详细的实验过程。

3. 实验结果及其分析。

成绩评定:该生对待本次实验的态度 ?认真 ?良好 ?一般 ?比较差。

本次实验的过程情况 ?很好 ?较好 ?一般 ?比较差对实验结果的分析 ?很好 ?良好 ?一般 ?比较差文档书写符合规范程度 ?很好 ?良好 ?一般 ?比较差综合意见: 成绩指导教师签名刘长贤日期 2012.5.31实验背景:某农民承包了五块土地工206亩,打算种小麦、玉米和蔬菜三种农作物。

各种农作物的计划播种面积(亩)以及每块土地各种不同农作物的亩产量(公斤)如表1所示。

问如何安排种植计划,可使总产量最高,表1 每块土地种植不同农作物的亩产数量土地块别计划1 2 34 5 播种作物种类面积小麦 500 600650 1050 80086850 800 700 900 95070 玉米1000 950 850550 70050 蔬菜44 32 46 36 48土地亩数一(问题分析与建立模型 1.问题分析:总产量为目标函数maxZ;计划播种面积和土地亩数是约束条件;每块土地种植的不同农作物的亩产数量是决策变量2数学模型:目标函数1112131415MaxZ,500x,600x,650x,1050x,800x,2122232425 850x,800x,700x,900x,950x,1000x31,950x32,850x33,550x34,700x35约束条件x,x,x,x,x,861112131415x,x,x,x,x,702122232425x,x,x,x,x,503132333435x,x,x,36112131x,x,x,48122232x,x,x,44132333x,x,x,32142434 x,x,x,46152535xi,j,0,i,1,2,3,4,5;j,1,2,3二(实验步骤1.根据数学模型和题目要求,使用Excel软件建立如下表格2.单元格名称指定:选中要指定名称的单元格,点击“插入-名称-定义/指定”,则可对上图中的“亩产数量(=Sheet1!$C$3:$G$5),种植量(=Sheet1!$C$8:$G$10),实际面积(=Sheet1!$H$8:$H$10),计划面积(=Sheet1!$J$8:$J$10),实际亩数(=Sheet1!$C$11:$G$11),土地亩数(=Sheet1!$C$13:$G$13),总产量(=Sheet1!$L$12)”进行名称的指定3.单元格赋值:(1)利用“求和”函数对“实际面积”和“实际亩数”相应的单元格进行赋值,例如H8=SUM(小麦),C11=SUM(土地1)(2)利用“SUMPRODUCT”函数对“总产量”对应的单元格L12进行赋值,由于之前指定了单元格名称,故总产量=SUMPRODUCT(亩产数量,种植量) (3)由于当前各决策变量的值为0,故相应的实际面积,实际亩数,总产量为0 4.单击“工具”>“加载宏”>“规划求解”设置相关参数,如下图目标单元格为总产量可变单元格为每块土地种植的不同农作物对应的单元格约束条件为实际面积=计划面积;实际亩数=计划亩数5.设置完目标单元格、可变单元格和约束条件后,点击“选项”,选定“采用线性模型”和“假定非负”,点击“确定”进行规划求解,结果如下图三(实验结果及分析由上图可知:应这样安排种植计划能使总产量最大1.在土地1上种植34亩玉米和2亩蔬菜2.在土地2上种植48亩蔬菜3.在土地3上种植44亩小麦4.在土地4上种植32亩小麦5.在土地5上种植10亩小麦和36亩玉米。

运筹学实验报告2

运筹学实验报告2

实验报告《运筹学》2015~2016学年第一学期学院(部)管理学院指导教师阎瑞霞班级代号 1511131姓名/学号周云佳2同组人无提交时间成绩评定实验目的:加强学生分析问题的能力,锻炼数学建模的能力。

掌握WinQSB/Matlab 软件中线性规划、灵敏度问题的求解和分析。

用 WORD 书写实验报告:包括详细规划模型、试验步骤和结果分析。

实验内容:题1:某厂的一个车间有1B ,2B 两个工段可以生产123,,A A A 三种产品,各工段开工一天生产三种产品的数量和成本,以及合同对三种产品的每周最低需求量由表1给出。

问每周各工段对该生产任务应开工几天,可使生产合同的要求得到满足,并使成本最低。

建立模型。

表1生产定额(吨/天)工段B生产合同每周最低需求量(吨)ib iA 产品1A 2A 3A 1B 2B 11311310002000599成本(元/天)建立模型:WinQSB录入模型界面:运行结果界面:结果分析:决策变量:X1,X2最优解:X1=3,X2=2;目标系数:C1=1000,C2=2000;最优值:7000;其中X1贡献3000,X2贡献4000;检验数,或称缩减成本:0,0。

即当非基变量增加一个单位时,目标值的变动量。

目标系数的允许减量和允许增量;目标系数在此范围变量时,最优基不变。

约束条件约束条件:C1,C2,C3左端:5,11,9右端:5,9,9松弛变量或剩余变量:该端等于约束左端与约束优端之差;为0表示资源达到限制值。

题2:明兴公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,这三种产品都要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。

有关情况见表2;公司中可利用的总工时为:铸造8000小时,机加工12000小时和装配10000小时。

建立模型:解;假设公司选择甲产品自产X1件,外包协作X2件,乙产品自产X3件,外包协作X4件,丙产品生产X5件,则有;maxZ=15X1+13X2+10X3+9X4+7X5. 5X1+10X3+7X5<=80006X1+6X2+4X3+4X4+8X5<=120003X1+3X2+2X3+2X4+2X5<=10000X1-5>=0WinQSB录入模型界面:运行结果界面:结果分析:(1)X*=(1600,0,0,600,0), Z*=29400元,即:公司为了获得最大利润29400元,甲、乙、丙三种产品各生产1600件、600件、0件。

运筹学(二)实 验 报 告

运筹学(二)实 验 报 告

《运筹学(二)》实验报告2011~2012学年第二学期学院(部):姓名/学号:实验目的:加强学生分析问题的能力,锻炼数学建模的能力。

利用所学知识,设计动态规划和决策树算法,并完成程序设计。

实验内容:题1(动态规划):(投资问题)现有资金5百万元,可对3个项目进行投资。

假设2#项目的投资不得超过3百万元,1#和3#项目的投资均不得超过4百万元,3#项目至少要投资1百万元。

投资5年后每个项目预计可获得的收益由表1给出。

问如何投资可获得最大的收益。

表1实验过程参考答案:建立模型:MATLAB程序代码:题2:在某单人理发店顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。

求(1)顾客来理发不必等待的概率;(2)理发店内顾客平均数;(3)顾客在理发馆内平均逗留时间;(4)若顾客在店内平均逗留时间超过1.25小时,则店主将考虑增加设备及理发员,问平均到达率提高多少时店主才做这样考虑呢?MATLAB程序代码:function[PO,Ls,Lp,Ws,Wq]=model6lenda=input('请输入到达速率:');mhu=input('请输入服务速率:');rho=lenda/mhu;PO=1-rho;Ls=lenda/(mhu-lenda);Lq=Ls-rho;Ws=1/(mhu-lenda);Wq=Ws-1/mhu;POLsLqWsWq结果分析:>> model6请输入到达速率:1/20请输入服务速率:1/15PO =0.2500Ls =3.0000Lq =2.2500Ws =60.0000Wq =45.0000ans =0.25001.PO=0.252.Ls=33.Ws=604.lenda=4/75(人/分钟)5.题3:某企业为了扩大某产品的生产,拟建设新厂。

据市场预测,产品销路好的概率为0.7,销路差的概率为0.3。

有三种方案可供企业选择:方案一、新建大厂,需投资300万元。

运筹学实验报告

运筹学实验报告

《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。

由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。

各人完成相应任务时间如下表。

请为公司制定一个总工时最小的指派方案。

实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。

又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。

方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。

规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。

南邮运筹学实验报告2农作物

南邮运筹学实验报告2农作物

南邮运筹学实验报告2农作物
本次运筹学实验我们选择研究农作物的种植和生产问题。

通过收集和分析大量数据,我们设定了一些变量,并利用线性规划模型得出了最佳种植和生产方案。

首先,我们考虑了各类农作物的种植面积、产量、市场需求、生产成本、销售价格等因素。

根据市场需求和销售价格,我们确定了需要种植的各类农作物的比例。

接着,我们考虑了各项生产成本,包括人工费用、种子费用、农药和肥料费用等。

通过对这些成本进行分析,我们得出了每亩种植各类农作物的总成本。

最后,我们以市场需求和销售价格作为约束条件,以各项生产成本作为目标函数,利用线性规划模型得出了最优的种植和生产方案。

经过计算和比较,我们得出了最佳方案的具体数据,包括各类农作物的种植面积、产量、市场需求、生产成本、销售价格等。

这些数据将对农业生产和经济发展有着重要的意义。

总之,通过本次运筹学实验,我们掌握了一些基本数据分析和线性规划模型的知识,并能够将其应用到实际问题中。

这将为我们未来的学习和工作带来很大的帮助。

运筹学实训实验报告

运筹学实训实验报告

一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。

随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。

为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。

二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。

三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。

2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。

3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。

4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。

四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。

(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。

(3)求解:运用Excel规划求解器求解最优解。

2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。

(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。

(3)求解:运用Lingo软件求解最优解。

3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。

(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。

运筹学实验报告2

运筹学实验报告2

运筹学实验报告2交通与汽车工程学院课程名称: 运筹学(汽车) 课程代码: 7100570 学院(直属系): 交通与汽车工程学院年级/专业/班: 2009级物流管理3班学生姓名: 学号: 实验总成绩: 任课教师: 黎青松开课学院: 交通与汽车工程学院实验中心名称: 物流管理实验室第 2 组西华大学实验报告西华大学实验报告开课学院及实验室:交通与汽车学院计算机中心实验时间: 年月日学生姓名学号实验成绩课程名称运筹学(汽车学院) 课程代码 8245050 实验项目名称炼油厂计划、菜篮子工程项目代码指导教师黎青松项目学分实验课考勤 10% 实验工作表现 20% 实验报告 70% 1、实验目的1.1训练建模能力1.2.应用EXCEL建模及求解的方法应用;1.3通过实验进一步掌握运筹学有关方法原理、求解过程,提高学生分析问题和解决问题能力。

2、实验设备、仪器及材料计算机、Excel3、实验内容3.1炼油厂产计划安排问题例一炼油厂的生产计划某炼油厂的工艺流程图如图 1-1所示。

炼油厂输入两种原油(原油 1和原油2)。

原油先进入蒸馏装置,每桶原油经蒸馏后的产品及份额见表1-1,其中轻、中、重石脑油的辛烷值分别为90、80和70。

1西华大学实验报告石脑油部分直接用于发动机油混合,部分输入重整装置,得辛烷值为115的重整汽油。

1桶轻、中、重石脑油经重整后得到的重整汽油分别为0.6、0.52、0.45桶。

蒸馏得到的轻油和重油,一部分直接用于煤油和燃料油的混合,一部分经裂解装置得到裂解汽油和裂解油。

裂解汽油的辛烷值为105。

1桶轻油经裂解后得0.68桶裂解油和0.28桶裂桶汽油;1桶重油裂解后得0.75桶裂解油和0.2桶裂解汽油。

其中裂解汽油用于发动机油混合,裂解油用于煤油和燃料油的混合。

渣油可直接用于煤油和燃料油的混合,或用于生产润滑油。

1桶渣油经处理后可得0.5桶润滑油。

混合成的高档发动机油的辛烷值应不低于 94,普通的发动机油辛烷值不低于84。

运筹学实验报告2

运筹学实验报告2
国际商学院实验报告
专业班级:专业信管姓名:_ ___学号:___成绩:________
课程名称:运筹学
指导师:
实验项目:用EXCEL软件求解线性规划模型-大M法法
实验日期:
本课程共____次实验
本次实验为第_2__次
实验目的:
1.熟悉大M算法。
2.熟练使用EXCEL软件之规划求解功能求解非典则式线性规划模型。
2.10
最优化结果:
X*=(1.67,1.67,0,0)T Z*=13.33
灵敏度分析:
(1)价格灵敏度分析:由于C变化只影响检验数。因此,当σj=(cj+△C j)-CBB-1pj≤0时,最优解保持不变。
-2≤△C1≤+∞, -0.615≤△C2≤10, -∞≤△C3≤0.444,-∞≤△C3≤3.333
2.11
此问题无可行解。
实验内容:
求解下列线性规划模型:
P25例2.9;P26例2.10;P27例2.11
实验结果(实验体会):
2.9
最优化结果:
X*=(0,2,2)T Z*=10
灵敏度分析:
(1)价格灵敏度分析:由于C变化只影响检验数。因此,当σj=(cj+△C j)-CBB-1pj≤0时,最优解保持不变。
-1≤△C1≤+∞,-1≤△C2≤+∞,-1≤△C3≤+∞,
(3)影子价格分析:影子价格(阴影价格)是模型中某个约束条件的右端项增加(或减少)一个单位而导致的目标值的增量(或减量),它是最优单纯形表中松弛变量检验数的相反数。它的大小反映了资源在系统内的稀缺程度。影子价格越高,这种资源越稀缺,而影子价格为0的约束资源为赋余资源。影子价格也是一种机会成本,对资源的购买决策具有重要的参考价值。当资源的实际价格低于影子价格时,可以适当购进该种资源以增加收益;当资源的实际价格高于影子价格时,可以适当售出该种资源。本例中3种资源的影子价格依次为0,3,-1。

运筹学实验报告 2

运筹学实验报告 2

运筹学实验报告学院:专业班级:姓名:学号:实验一线性规划一、实验目的学习WinQSB软件的基本操作,利用Linear Programming功能求解线性规划问题。

掌握线性规划的基本理论与求解方法,重点在于单纯形法的应用以及灵敏度分析方法。

二、实验内容安装WinQSB软件,了解WinQSB软件在Windows环境下的文件管理操作,熟悉软件界面内容,掌握操作命令。

利用Linear Programming功能建立线性模型,输入模型,求解模型,并对求解结果进行简单分析。

三、实验步骤1.将WinQSB文件复制到本地硬盘;在WinQSB文件夹中双击setup.exe。

2.指定安装WinQSB软件的目标目录(默认为C:\ WinQSB)。

3.安装过程需要输入用户名和单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中。

4.熟悉WinQSB软件子菜单内容及其功能,掌握操作命令。

5.求解下面线性规划问题:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。

已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。

该厂应如何安排生产,使利润收入为最大?表1产品名称规格要求单价(元/kg)A 原材料C不少于50%原材料P不超过25%50B 原材料C不少于25%原材料P 不超过50%35D 不限25表2原材料名称每天最多供应量(kg)单价(元/kg)C P H 10010060652535列出该线性规划问题的模型如下:以A C 表示产品A 中C 的成分,A P 表示产品A 中P 的成分,依次类推。

则约束条件为:A C +BC +D C ≤100 A P +B P +D P ≤100 A H +B H +D H ≤60在约束条件中共有9个变量,为计算和叙述方便,分别用x 1,…,x 9表示。

令x 1=A c , x 2=A p , x 3=A H , x 4=B C , x 5=B P , x 6=B H , x 7=D C , x 8=D P , x 9=D H . 则:启动程序 开始→程序→WinQSB →Linear and Integer Programming ,点击菜单栏File 中的New Problem 项,建立新问题。

实验二运筹学

实验二运筹学

实验二线性规划模型的对偶问题及灵敏度分析一、实验目的:进一步掌握线性规划模型的基本原理,理解线性规划的对偶问题,掌握R软件在线性规划问题灵敏度分析中的运用。

二、实验内容:(1)教材P127 习题1。

利用线性规划的最终单纯形表,对目标函数系数和约束方程的常数项进行灵敏度分析,并在R软件中验证你的计算结果;(2)教材P131 习题11。

写出该问题的对偶问题,并用R 软件求解原问题和对偶问题。

指出二者最优解与对偶价格之间的联系。

(3)建立教材P130 习题7的数学模型并用R软件分析。

三、实验要求:(1)利用线性规划基本原理对所求解问题建立数学模型;(2)熟练写出线性规划问题的对偶问题;(3)给出R软件中的输入并求解;(4)对目标函数系数及约束方程的常数项进行灵敏度分析四、实验报告要求:实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。

(1)maxz=20X1+8X2+6X38X1+3X2+2X3<=2502X1+X2<=504X1+3X3<=150X 1,X2,X3>=0> library(lpSolve)> obj<-c(20,8,6)> mat<-matrix(c(8,3,2,2,1,0,4,0,3),nrow=3,byrow=T) > dir<-c("<=","<=","<=")> rhs<-c(250,50,150)> x<-lp("max",obj,mat,dir,rhs,compute.sens=1)> x$status;x$solution;x$objval[1] 0[1] 0 50 50[1] 700> x$sens.coef.from;x$sens.coef.to[1] -1e+30 6e+00 3e+00[1] 2.4e+01 1.0e+30 1.0e+30C1范围是(-∞,24),C2范围是(6,+∞),C3范围是(3,+∞)> library(lpSolve)> obj<-c(20,8,6)> mat<-matrix(c(8,3,2,2,1,0,4,0,3),nrow=3,byrow=T) > dir<-c("<=","<=","<=")> rhs<-c(250,50,150)> x<-lp("max",obj,mat,dir,rhs,compute.sens=1)> x$status;x$solution;x$objval[1] 0[1] 0 50 50[1] 700> x$duals;x$duals.from;x$duals.to[1] 0 8 2 -4 0 0[1] -1.000000e+30 7.105427e-15 -2.842171e-14 0.000000e +00 -1.000000e+30 -1.000000e+30[1] 1.0e+30 5.0e+01 1.5e+02 2.5e+01 1.0e+30 1.0e+30b1,b2,b3的对偶价格分别为0、8、2;b1范围为(250,∞),b2范围为(0, 50),b3范围为(0, 150)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
运筹学A(二)
学号:200934010103
姓名:沈佳宁
学院:交通运输工程学院
指导教师:朱灿
二○一一年五月
一、课程简介:
本实验是《运筹学》课程教学的课程实践的一部分。

本实验是使用与教材配套的教学软件和计算机通用软件进行运筹学建模求解的实践环节。

上机实验以WinQSB为主,进行问题描述、数据处理、模型建立与求解。

通过实验使学生掌握使用相应软件辅助解决运筹学问题的基本方法,巩固课程学习内容,为进一步学以致用打下基础。

二、实验目的:
1)熟练掌握运筹学软件的相关操作。

2)学会使用软件求解运筹学中常见的数学模型,如求解最小树,最短路,最大流,排队论,存储论和对策论等问题。

三、实验任务:
Ⅰ、图与网络分析:
1)求解最小树问题:要求编题求解
2)求解最短路问题:运用网络图求解最短路问题
3)求解最大流问题:运用网络图求解最短路问题
4)求解最小费用最大流问题
5)网络计划时间参数的计算
Ⅱ、排队论:模型M / M / C / ∞/ ∞
Ⅲ、存储论
Ⅳ、对策论
四、实验内容记录:
五、实验总结:
通过上机实践,熟练掌握了运筹学软件的基本操作方法,并能够运用运筹学软件求解运筹学中常见的数学模型。

实验内容记录如下:
1、最小数问题
6
V1V2
6 6 2 2
V67 V7 3 V3
8 3 4 3
V5 1 V4
第1步:生成表格
选择“程序→winQSB→Network Modeling→File→New Program”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:求解
从系统菜单选择“Solve and Analyze Solve the Problem”,生成如下运行结果:
支撑树的权=20
2、最短路问题
如图所示网络,各线段上的数字代表相应两节点间的距离,请求出从节点1到节点10之间的最短距离。

第1步:生成表格
选择“程序→winQSB→Network Modeling→File→New Program”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:运行
选择求最短路的起始节点和最后节点,点solve运行,也可点solve and Display Steps看求解过程,最后得结果:
易得:
1节点到10节点的最短路径为从Node1→Node2→Node5→Node9→Node10,总距离为29 2、最大流问题
第1步:生成表格
选择“程序→winQSB→Network Modeling→File→New Program”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:运行
选择求最短路的起始节点和最后节点,点solve运行,也可点solve and Display Steps 看求解过程,最后得结果:
即:1节点到7节点的最大流为14
4、网络计划时间参数的问题
第1步:生成表格
选择“程序→winQSB →PERT_CPM →File →New Program ”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:求解
从系统菜单选择“Solve and Analyze Solve the Problem”,生成如下运行结果:
5、排队论:模型M / M / C / ∞/ ∞
某运输公司有一个装卸队服务于卡车队,装卸每辆车所用时间服从平均时间为20分钟的指数分布,卡车到达时间服从平均时间为30分钟的泊松分布。

管理层想提高装卸队的效率,把装卸队分成两队,每队装卸每辆车所用时间服从平均时间为40分钟的指数分布,请问效率是否得到提高?
第1步:生成表格
选择“程序→win QSB→Qeueing Analysis→File→New Program”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:求解
从系统菜单选择“Solve and Analyze→Solve the Performance”,点击“Simulation”
第4步:再求解
将第2步中“20”改为“40”,重复第3步
明显:效率得到了提高
6、存储论
某电子设备厂对一种元件的需求为R=2000件/年,订货提前期为零,每次订货费为25元。

该元件每件成本为50元,年存储费为成本的20%。

如发生缺货,可在下批货到达时补上,但缺货损失费为每件每年30元。

求:
(1)经济订货批量及全年的总费用;
(2)如不允许发生缺货,重新求经济订货批量,并同(1)的结果进行比较。

选择“程序→win QSB→Inventory Theory and System→File→New Program”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:求解
从系统菜单选择“Solve and Analyze→Solve the Problem”,生成如下运行结果:
将第2步中“30”改为“M”,重复第3步
明显:如果不允许发生缺货,重新求经济订货批量,全年的总费用将增加
7、对策论
设矩阵对策G={S1,S2;A},其中S1={a1,a2,a3,a4},S2={b1,b2,b3,b4},赢得矩阵为
6 5 6 5
1 4
2 -1
A= 8 5 7 5
0 2 6 2
选择“程序→win QSB→ Decision Analysis →File→New Program”,弹出对话框:
第2步:输入数据
单击“OK”,并输入数据:
第3步:求解
从系统菜单选择“Solve and Analyze→Solve the Problem”,生成如下运行结果:
可得:最优纯策略:局中人1采用策略1(Strategy1-3);局中人2采用策略4(Strategy2-2);
赢得值:5。

相关文档
最新文档