数学演讲稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发现数学之美,尽享数学之趣“Enjoy every day”享受每一天,这句《泰坦尼克》中的Jack 的经典台词真可谓一语道破生活的真谛——把生活看作是一个享受的过程,真正发现生活的可爱之处。不知在座的各位有没有足球迷,现在奥运会亚洲区预选赛正踢的红红火火,各国球队使尽浑身解数,为的就是那一张奥运会入场券。回首米卢率领中国足球队打进世界杯,又何尝不是得益于“快乐足球”的理念呢?生活如此,比赛如此,学习亦是如此。孔子曰:“学有三境——知学者不如好学者,好学者不如乐学者。”而这个乐又何尝不是学生学习的最大动力呢?
数学,作为一门逻辑性极强的学科,其性质决定了她是神秘的、深奥的,她比起其他的学科来似乎更枯燥一些、无味一些。但她又的的确确的是美丽的、耐人寻味的,她是思想与思想的大胆碰撞,是智慧与智慧的平等交流,更是情感与情感的浸润融合。一次,我无意中问学生:数学美吗?他们疑惑的摇摇头说:“那有什么美不美的?”我提示性的举了个例子说:“长方形(银行卡)、正方形(手绢)、圆形(表),都是非常简洁的形状,但它带给我们的不只是简洁、大方,给予我们更多的是方便,这就是数学的实用美。”一句话激起千层浪,孩子们一下子炸开了锅,有的说:“这个小闹钟,它只有1到12十几个数字,却能使人们视它为金,给人以联想,这叫数学的奇异美。”有的说:“看这张银行卡,就像一个移动小金库,使我们不用身带巨款在大街上晃来晃去,只需记着密码就可敲定。就是这么几个数字,就是这么简单!化繁为简,化难为易,力求简洁、直观。这叫数学的简洁美。”还有的说:“音乐美吧,数学的功劳,哆来咪就是1,2,3,七个数字的变化组合就能奏出世上最美、最动听的声音,这叫数学的和谐美。”……当孩子们将这数不尽的美的一小部分挖掘出来、呈现出来时,他们就已经为这数的美震撼了。而当他们尝到成功的喜悦时就更开心了,他们总是喜欢用自己的方式去享
受成功。每次做对一道题他们都大声叫着“耶……”,有的还挥舞着小手做出“V”字形,那热情决不亚于获得奥运冠军,看得出他们对这种宣泄方式非常在意。如果我们鼓励他们说:“正确的同学还可以再大声一点,如果全班都做对了老师和你们一起耶!”那将是什么场面!孩子们得到的仅仅是做对一道题的奖励吗?不!我想他们得到更多的是探索数学奥秘的无尽动力。
无尽的数学知识正像辽阔的海洋,那大海深处蕴含着一个五彩缤纷的世界。让我们一起带着孩子们畅游其中,为这无垠海洋中数不尽的奇珍的美而陶醉,甚而我们或者我们的学生会有幸步入龙宫,见到更加奇伟怪丽、五彩斑斓的景象,一窥数学的美境。哥德巴赫猜想激励着人们不断去探索或研究,它的证明将会给人带来无尽的惊奇、无穷的乐趣;数学史上的许多高峰也正等待后人们去攀登。山越高,路才越奇,越奇才越有惊美的发现。
平淡中见新奇、新奇中才有艺术。明明在“意料之外”但又在“情理之中”。未曾料到才能引人人胜,峰回路转,柳暗花明,这也正是数学的魅力、数学的美。
我不是擅长格律的诗人,但我愿意谱写享受数学的绝妙诗歌。我不是擅长丹青的画师,但我愿意为享受数学涂抹一笔亮色。我不是擅长音律的舞者,但我愿意为享受数学狂舞亦歌。我不是热衷探险的勇者,但我愿意在享受数学的漫漫道路上不断探索……
我与小学数学
有一句著名的格言:数学比科学大得多,因为它是科学的语言。首次提出这种见解者是大约400年前伟大的自然科学家伽利略。他是世界上第一个使用数学语言:v=32t(这里32表示32英尺,相当于9.76米,已和重力加速度g的值接近)来表述自由落体运动,从数量关系上深刻地揭示了重力场中自由落体运动的内在规律。在人类长期实践中总结、概括发展起来的数学,为人类理性本能中所固有,并在人类特性和人类历史中占有着不亚于语言、艺术或宗教的地位。特别是今天,数学方法和科学技术已"形影不离",正产生着翻天覆地的影响。在现代认识和实践活动中,人们更多、更强烈地谈论着数学的作用,把我们所处的时代称为"知识数学化"的时代。一些物理学家声称:数学在其知识和活动领域中不单是计算的工具,如若没有数学,连认识生产进行过程也是不可能的。数学在当代已变成了社会的生产力。现在就那些尚未应用数学研究方法而只作定性分析的领域,诸如自然现象、经济学、医疗卫生、组织生产、经营管理等等,都在急速地寻求数量上的规律并且广泛地应用严格的数学方法。
今日知识的数学化不是说要把全部认识都归结为建立逻辑的和计算的图式上,也不是不许进行试验和直接观察。数学化的目的在于:
从准确列举的前提中得出逻辑的结果,这些结果也包括直接观察可得到的;把通常沉积下许多次要影响的极复杂的过程变为可进行逻辑和数学分析的过程;除掉已确定的事实外,借助数学的分析确定新的规律;获得借助计算预报现象过程的可能性,与现象的实际过程不但取得质量上的一致,而且还取得数量上的一致。
总之,知识的数学化不仅在于利用已经是现成的数学方法和结果,而且在于创立一个特有的数学方式,使其能准确又完全地描述我们周围的现实世界,并将获得的结果应用到实践活动中去。数学源于实践,并在实践中得到检验;知识与实践活动,都有赖于数学这一强有力的工具的帮助。当18世纪初人们对机械运动有着迫切而深刻的研究时,促使牛顿等人创立了宏伟的数学分析体系,并成了近200年来自然科学和工程科学取得惊人进步的基础。本世纪初,当研究热、磁和电现象的转换,致使建立波动光学已经成熟时,旧的数学工具已不能描述这种传递、转换关系,于是促成了新的数学语言--数学物理方程的建立。今天,人类已进入自然科学的迅猛发展和认真更新工程思维的新阶段,研究和实践活动的新领域:电光学、宇航工程、原子能的利用、电子计算机和信息技术工程、生物工程、系统工程等提出了大量急待解决的数学课题,旧的数学工具已显得无能为力,一些新兴的数学工具便应运而生。诸如当控制论和最优化思想进入数学后,使常规数学走向"异常数学"的研究,近20年来出现的非标准分析,突变理论和模糊数学都属于这个范畴。凡此等等,可以看出实践促进了数学的发展,数学又指导着实践活动的完善。伴随着知识和实践活动的数学化,必然引起思维的数学化,即使人们的思维准确,使意见和结论具有更严格的逻辑性。