圆柱体与圆锥体之间的关系

合集下载

圆柱与圆锥 比例

圆柱与圆锥 比例

圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。

如左下图所示:即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。

其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。

7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

设一个圆柱底面半径为r,高为h,则体积V:V=πr2h;如S为底面积,高为h,体积为V:V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch(注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。

特征:圆柱的底面都是圆,并且大小一样。

9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

如又上图。

10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

该直角边叫圆锥的轴。

11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。

一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3ShS是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径12.圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。

(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。

圆锥的表面积由侧面积和底面积两部分组成。

S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。

圆柱与圆锥体之间的关系

圆柱与圆锥体之间的关系

2、在一个圆柱体与一个圆锥体中, 它们的底面积和体积分别相等 (同底等积)时,如图,它们的 高之间存在什么关系?
3 1
圆柱体体积 = 底面积 × 高
圆锥体体积 = 底面积 × 高 ×
1 3
即:圆柱体的高等于圆
锥体高的 ,或圆锥体 1
的高等于圆3 柱体高的3
倍。
选择练习②:
一个圆柱与一个圆锥的底面积相 等,体积也相等。圆柱的高是 12厘米,则圆锥的高是( )厘 米
选择练习③:
一个圆柱与一个圆锥的体积和 高分别相等,如果圆锥的底面 积是4.5平方厘米,那么圆柱 的底面积是( )平方厘米。
①1 ②4.5 ③1.5 ④13.5
能力提升练习。
1、等底等高的一个圆 锥体与一个圆柱体,体 积和是72立方分米,圆 锥体积是( )立方分
米,圆柱体积是( )
立方分米。
2、一个圆柱体和一个 圆锥体等底等高,圆柱 、一个圆柱形橡皮泥, 底面积是12cm3,高是 5cm。如果把它捏成底面 一样的圆锥体,那么这个 圆锥的高是( )。
7、将一个底面半径是 4dm,高是6dm的圆 柱体零件熔铸成一个底 面直径为4dm的圆锥 体零件,则圆锥体零件 的高是( )dm。
课后练习:
1、有两个底面积和体积分别相等的圆柱和圆 锥,如果圆锥的高是15厘米,圆柱的高是 ( )厘米。
2、一段圆柱形木头,削成一个最大的圆锥体, 削去的体积是44cm3,则削成的圆锥的体积是 ( )。
3、一个圆锥形橡皮泥,底面积是12cm2,高 是5cm。如果把它捏成高一样的圆柱体,那 么这个圆锥的底面积是( )。
4、一个圆柱和一个圆锥等底等高,体积和是 160dm3,圆锥的体积是( )。
①、36 ②、48 ③、12 ④6

圆柱和圆锥体积之间的关系探究实验过程

圆柱和圆锥体积之间的关系探究实验过程

圆柱和圆锥体积之间的关系探究实验过程1. 引言1.1 概述本实验旨在探究圆柱和圆锥体积之间的关系,并通过实验得出相关结论。

圆柱和圆锥作为几何体中常见的形状,其体积计算是数学和物理领域中的重要问题。

深入研究这一问题可以帮助我们更好地理解不同几何体形状的特性以及它们之间的关联。

1.2 研究背景在数学中,求解几何体的体积是一个基本而重要的问题。

而对于常见的几何体而言,圆柱和圆锥就是其中最具代表性的两种形状之一。

例如,在建筑设计或工程项目中,需要对柱形容器和圆锥形容器进行容量估算;在物理实验中,需要计算流体在管道或喷泉等装置中所占据的空间等等。

因此,了解如何计算以及如何确定这些几何形状之间可能存在的关联是十分重要和有意义的。

1.3 实验目的本实验旨在通过测量不同大小的圆柱和圆锥并计算其体积来探究它们之间是否存在一定的关系。

具体目标包括:- 推导圆柱体积的计算公式;- 推导圆锥体积的计算公式;- 分析比较圆柱和圆锥的相似性质;- 实际测量不同大小的圆柱和圆锥的体积,以验证推导得出的公式是否准确;- 对实验结果进行分析,探讨圆柱和圆锥的体积之间可能存在的关系。

通过对上述目标进行实验研究,我们将进一步了解圆柱和圆锥这两种常见几何形状,加深对它们特性及其体积之间关联性的理解,并为未来有关几何体形状计算或工程设计等方面提供一定的参考依据。

2. 圆柱和圆锥体积计算方法介绍2.1 圆柱体积公式推导圆柱是一种由两个平行且相等的圆面及其之间的曲面组成的立体图形。

要计算圆柱的体积,我们可以使用下面的公式:V = πr^2h其中,V表示圆柱的体积,π是一个常数(约等于3.14159),r是圆柱底部半径,h是圆柱的高度。

这个公式可以通过如下步骤进行推导:首先,我们将圆柱展开成一个矩形,并计算该矩形的面积。

假设矩形的长度为L,宽度为w,则矩形的面积为A = Lw。

然后,我们来考虑这个矩形与原始圆柱之间的关系。

如果我们将这个矩形沿着宽度方向“卷曲”成一个管状物,并将其与半径r对齐,那么这个管状物实际上就是原始圆柱内表面所覆盖的一部分。

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。

练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。

1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。

(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。

圆锥的体积典型例题及答案

圆锥的体积典型例题及答案

圆锥的体积答案典题探究例1.圆锥的体积是它等底等高圆柱体积的,所以圆柱的体积比它等底等高的圆锥体积大.×.(判断对错)考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:因为一个圆柱的体积是与它等底等高的圆锥体积的3倍,所以圆柱体积比与它等底等高的圆锥体积大2倍.解答:解:因为一个圆柱的体积是与它等底等高的圆锥体积的3倍,所以圆柱体积比与它等底等高的圆锥体积大:(3﹣1)÷2=2倍.故答案为:×.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下体积有3倍或的关系.例2.如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.√.(判断对错)考点:圆锥的体积.专题:立体图形的认识与计算.分析:因为等底等高的圆柱体的体积是圆锥体体积的3倍,所以如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.据此解答即可.解答:解:因为等底等高的圆柱体的体积是圆锥体体积的3倍,所以如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.说法正确.故答案为:√.点评:本题要结合圆柱的体积和圆锥的体积计算公式进行判断.例3.一个圆锥体的底面半径是3分米,高是6分米,它的体积是56.52立方分米.考点:圆锥的体积.专题:立体图形的认识与计算.分析:圆锥的体积公式:V=sh=πr2h,已知底面半径是3分米,高是6分米.据此解答.解答:解:×3.14×32×6=×3.14×9×6=56.52(立方分米)答:它的体积是56.52立方分米.故答案为:56.52.点评:本题主要考查了学生对圆锥体积公式的掌握.例4.一个圆锥和一个圆柱等底等高,它们的体积相差20立方厘米,那么圆柱的体积是30立方厘米.考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:等底等高的圆柱的体积是圆锥体积的3倍,因此它们的体积差除以2就是圆锥的体积,用圆锥的体积乘3就是圆柱的体积.解答:解:20÷2=10(立方厘米);10×3=30(立方厘米).答:圆柱的体积是30立方厘米.故答案为:30立方厘米.点评:本题考查的目的是使学生理解掌握:等底等高的圆柱与圆锥之间的体积关系,即等底等高的圆柱是圆锥体积的3倍.据出关系可以解决有关的实际问题.例5.一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米.如果把它捏成同样高的圆锥,这个圆锥的底面积是多少?考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:根据题意可知,圆柱形橡皮泥捏成圆锥形后,体积不变,根据v=sh,所以先求出橡皮泥的体积,然后根据“s=v×3÷h”求出圆锥的高.解答:解:橡皮泥的体积:12×5=60(cm3),圆锥的高:60×3÷5=36(cm2);答:圆锥的底面积是36厘米2.点评:此题主要考查圆柱的体积公式及有关圆锥体积公式的应用.例6.把三角形ABC沿着边AB或BC分别旋转一周,得到两个圆锥(如图1、图2),(单位:厘米)谁的体积大?大多少立方厘米?考点:圆锥的体积.专题:压轴题.分析:由图1可知,圆锥的底面半径是3厘米,高是6厘米,由图2可知,圆锥的底面半径是6厘米,高是3厘米,利用公式解答即可.解答:解:(1)3.14×32×6÷3=3.14×9×6÷3=56.52(立方厘米);(2)3.14×62×3÷3=3.14×36×3÷3=113.04(立方厘米);113.04﹣56.52=56.52(立方厘米);答:图2的体积大,大56.52立方厘米.点评:此题主要考查圆锥体积的计算,可以直接利用公式解答.演练方阵A档(巩固专练)一.选择题(共15小题)1.(•长寿区)一个圆柱体和一个圆锥体的底面积相等,圆锥的高是圆柱高的3倍.则圆锥的体积()圆柱的体积.A.小于B.等于C.大于D.无选项考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:根据题干,设圆柱和圆锥的底面积相等是S,设圆柱的高是h,则圆锥的高是3h,由此利用圆柱和圆锥的体积公式求出它们的体积即可解答.解答:解:设圆柱和圆锥的底面积相等是S,设圆柱的高是h,则圆锥的高是3h,圆柱的体积是:Sh,圆锥的体积是:S×3h=Sh,所以圆柱的体积与圆锥的体积相等.故选:B.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.2.(•北京模拟)如果一个圆锥体的底面半径扩大2倍,高缩小为原来的一半,它的体积是原来体积的()A.2倍B.一半C.不变考点:圆锥的体积.分析:根据圆锥的体积公式,v=sh÷3,圆锥体的底面半径扩大2倍,它的底面积就扩大4倍,因为圆的半径扩大2倍圆的面积就扩大4倍,高缩小为原来的一半,由此得解.解答:解:圆锥体的底面半径扩大2倍,它的底面积就扩大4倍,又知高缩小为原来的一半,由此得此它的体积就扩大2倍.故选A.点评:此题的解答主要根据因数与积的变化规律来解答,3.(•福田区模拟)一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米.A.12B.36C.4考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:一个圆柱和一个圆锥的底面直径相等,则它们的底面积就相等,根据圆柱和圆锥的体积公式即可解答.解答:解:一个圆柱和一个圆锥的底面直径相等,则它们的底面积就相等,圆柱的体积=底面积×高,圆锥的体积=×底面积×高,圆锥的高是圆柱的3倍,所以圆柱和圆锥的体积相等,也是12立方分米.故选:A.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.4.(•临川区模拟)用一个高是30厘米的圆锥体容器装满水,倒入和它等底等高的圆柱体容器中,水的高度是()厘米.A.10B.90C.20考点:圆锥的体积;圆柱的侧面积、表面积和体积;立体图形的容积.分析:由于水的体积没变,倒入和它等底等高的圆柱体容器中,水在圆柱体的容器的高是圆锥高的,由此解答即可.解答:解:30×=10(厘米);答:水的高是10厘米;故选:A.点评:此题考查的目的是,理解和掌握等底等高圆柱和圆锥,圆锥的体积是圆柱体积的.5.(•广州模拟)大小两个圆柱的高相等,大圆柱的半径是小圆柱半径的2倍,大小两个圆柱的体积比是()A.1:2B.1:4C.4:1D.2:1考点:圆锥的体积;比的意义;圆柱的侧面积、表面积和体积.分析:根据圆柱体的体积公式,v=sh,再利用因数与积的变化规律即可解答.解答:解:两个圆柱的高相等,大圆柱的半径是小圆柱半径的2倍,因为圆的半径扩大2倍圆的面积就扩大4倍,由此得出大圆柱的体积是小圆柱的4倍,即大小两个圆柱的体积比是:4:1.故选:C.点评:此题主要考查圆柱和圆锥的体积计算,及圆的半径扩大2倍圆的面积就扩大4倍.6.(•保靖县)右图中圆锥体积是圆柱体积的,那么圆锥的高是()cm.A.2B.6C.18考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据题干可得:圆柱与圆锥的底面积相等,圆锥体积是圆柱体积的;因为等底等高的圆锥的体积是圆柱的体积的,由此可得这个圆柱与圆锥的高相等.解答:解:根据题干分析可得:圆柱与圆锥的底面积相等,圆锥体积是圆柱体积的;因为等底等高的圆锥的体积是圆柱的体积的,由此可得这个圆柱与圆锥的高相等,也是6厘米.故选:B.点评:此题考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.7.(•和平区)一个圆柱和一个圆锥,底面积和高分别相等.若圆柱的体积是2.4立方米.则圆锥的体积是()立方米.A.0.8B.3.6C.4.8D.7.2考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据题意,根据圆锥的体积等于与它等底等高的圆柱体积的,已知圆柱的体积是2.4立方米,据此解答.解答:解:2.4×=0.8(立方米),答:圆锥的体积是0.8立方米.故选:A.点评:此题主要根据等底等高的圆锥的体积是圆柱体积的,再根据一个数乘分数的意义,用乘法解答.8.(•北京)把一个圆柱削成一个和它等底等高的圆锥,削去部分的体积是圆柱体积的()A.3倍B.2倍C.考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:因为圆柱的体积等于和它等底等高的圆锥体积的3倍,所以削去部分的体积是圆锥体积的2倍,是圆柱的体积的(1﹣);据此解答即可.解答:解:由分析可知:把一个圆柱形的木块削成一个和它等底等高的圆锥,削去部分体积是这个圆柱体积的:1﹣=.答:削去部分的体积是圆柱体积的.故选:C.点评:此题利用“圆柱的体积等于和它等底等高的圆锥体积的3倍”这一知识点来解答.9.(•铁山港区模拟)如果圆锥体的底面半径扩大2倍,高不变,那么这个圆锥体的体积扩大()倍.A.2B.4C.8考点:圆锥的体积;积的变化规律.专题:立体图形的认识与计算.分析:根据圆锥的底面积和体积公式和积的变化规律即可判断.解答:解:(1)圆锥的底面积=πr2,底面半径扩大2倍,根据积的变化规律可得:圆锥的底面积就扩大2×2=4倍,(2)圆锥的体积=×底面积×高,高一定时,根据积的变化规律可得:底面积扩大4倍,圆锥的体积就扩大4倍,故选:B.点评:此题考查了积的变化规律在圆锥的体积公式中的灵活应用.10.(•宝安区)一个圆柱和一个圆锥的体积和底面积分别相等,圆柱的高与圆锥的高的比是()A.1:1B.1:2C.1:3D.3:1考点:圆锥的体积;比的意义;圆柱的侧面积、表面积和体积.专题:比和比例;立体图形的认识与计算.分析:根据圆柱的体积公式V=sh,圆锥的体积公式V=sh,当圆柱和圆锥的体积、底面积分别相等时,圆柱的高是圆锥的高的,由此求出圆柱的高,进而做出选择.解答:解:因为,圆柱的体积公式V=sh,圆锥的体积公式V=sh,所以,当圆柱和圆锥的体积、底面积分别相等时,圆柱的高是圆锥的高的,故选:C.点评:此题主要考查了利用圆柱与圆锥的体积公式,推导出在体积、底面积分别相等时,圆柱的高与圆锥的高的关系.11.(•广汉市模拟)一个长方体和一个圆锥体的底面积和高分别相等,长方体体积是圆锥体积的()A.3倍B.2倍C.D.无法确定考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:长方体的体积=底面积×高;圆锥的体积=×底面积×高,由此公式即可得出长方体体积与圆锥的体积的倍数关系.解答:解:长方体的体积=底面积×高;圆锥的体积=×底面积×高,若它们的底面积和高分别相等,则:长方体的体积是圆锥的体积的3倍,故选:A.点评:此题考查了长方体和圆锥的体积公式的灵活应用,得出结论:等底等高的长方体体积是圆锥的体积的3倍.12.(•天河区)一个圆柱和一个圆锥等底等高,圆柱的体积是240立方厘米,圆锥的体积是()立方厘米.A.640B.800C.720D.80考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:由圆锥体积公式的推导可知,当一个圆柱和一个圆锥等底等高时,则圆锥的体积应是圆柱体积的;也就是说,把圆柱的体积看作单位“1”,是3份,圆锥的体积是1份,已知圆柱体积是240立方厘米,用240除以3即得圆锥的体积.解答:解:一个圆柱和一个圆锥等底等高,那么圆锥体积是圆柱体积的;圆锥的体积:240÷3=80(立方厘米);答:圆锥的体积是80立方厘米.故选:D.点评:此题是考查圆柱、圆锥的关系,要明确等底等高的圆柱和圆锥体积有3倍或的关系.13.(•东兰县模拟)把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A.扩大3倍B.缩小3倍C.扩大6倍D.缩小6倍考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:根据题意知道,在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形和圆柱形的关系,即可得到答案.解答:解:根据等底等高的圆锥形的体积是圆柱形体积的,又因为,在捏橡皮泥的过程中,它的总体积不变,所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A.点评:解答此题的关键是,根据题意,结合等底等高的圆锥形的体积是圆柱形体积的,即可得到答案.14.(•宿城区模拟)一个圆柱与一个圆锥体体积相等,底面积也相等.已知圆柱的高是9厘米,则圆锥的高是()厘米.A.3B.9C.27D.54考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式V=sh及圆锥的体积公式V=sh,知道当圆柱和圆锥的底面积和体积相等时,圆柱的高与圆锥的高的比是1:3,再根据圆柱的高为9厘米,由此即可求出圆锥的高.解答:解:因为,圆柱的体积公式是:V=sh,则h=圆锥的体积公式是:V=sh,则h=圆柱和圆锥的底面积和体积相等时圆柱的高与圆锥的高的比是:=:1:3圆锥的高为:9×3=27(厘米)答:圆锥的高为27厘米.故选:C.点评:解答此题的关键是,根据圆柱和圆锥的体积公式,得出圆柱和圆锥的高的关系.15.(•广州)底面积相等的圆柱和圆锥,它们的体积比是2:1,圆锥的高是9厘米,圆柱的高是()厘米.A.3B.6C.9考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:平面图形的认识与计算.分析:由圆柱和圆锥的体积公式可得:圆柱的高:圆锥的高=2:3,由此即可解决.解答:解:由底面积相等的圆柱和圆锥的体积比是2:1可得:圆柱的高:圆锥的高=2:3,设圆柱的高为x厘米,根据题意可得:x:9=2:33x=2×93x=18x=6;答:圆柱的高是6厘米.故选:B.点评:此题是考查圆柱与圆锥体积公式的综合应用,利用公式的各种变换即可解决问题.二.填空题(共13小题)16.一个圆锥的高一定,它的底面半径和体积不成比例.考点:圆锥的体积;辨识成正比例的量与成反比例的量.分析:因为圆的半径和圆的面积不成比例,所以圆锥的底面半径和体积也不成比例.解答:解:根据公式:v=sh,因为圆的半径和圆的面积不成比例,所以圆锥的底面半径和体积也不成比例.故答案为:不成.点评:解答此题关键是判断圆的半径和面积不成比例.17.(•上高县模拟)圆锥的底面半径扩大3倍,高缩小3倍后,圆锥的体积不变.×.(判断对错)考点:圆锥的体积;积的变化规律.专题:立体图形的认识与计算.分析:圆锥的体积=πr2h,设原来圆锥的半径为2,高为3,则变化后的圆锥的半径为6,高为1,由此利用公式分别计算出它们的体积即可解答.解答:解:设原来圆锥的半径为2,高为3,则变化后的圆锥的半径为6,高为1,原来圆锥的体积是:×22×3=()×4=4π变化后的圆锥的体积是:π×62×1×1=12π4π:12π=即变化后圆锥的体积是原来体积的,所以本题错误.故答案为:×.点评:此题考查了圆锥的体积公式的灵活应用.18.(•蓝田县模拟)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高4厘米,那么圆锥体的高是12厘米.考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式V=sh及圆锥的体积公式V=sh,知道当圆柱和圆锥的底面积和体积相等时,圆柱的高与圆锥的高的比是1:3,再根据圆柱的高为4厘米,由此即可求出圆锥的高.解答:解:因为,圆柱的体积公式是:V=sh圆锥的体积公式是:V=sh圆柱和圆锥的底面积和体积相等时圆柱的高与圆锥的高的比是1:3圆锥的高为:4×3=12(厘米)答:圆锥的高为12厘米.故答案为:12.点评:解答此题的关键是,根据圆柱和圆锥的体积公式,得出圆柱和圆锥的高的关系.19.(•肃州区模拟)一个圆锥与一个长方体的底面积相等,高也相等,则长方体体积是圆锥体体积的3倍.√.(判断对错)考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:长方体的体积=底面积×高;圆锥的体积=×底面积×高,由此公式即可得出长方体体积与圆锥的体积的倍数关系.解答:解:长方体的体积=底面积×高;圆锥的体积=×底面积×高,若它们的底面积和高分别相等,则:长方体的体积是圆锥的体积的3倍.故答案为:√.点评:此题考查了长方体和圆锥的体积公式的灵活应用,得出结论:等底等高的长方体体积是圆锥的体积的3倍.20.圆柱体的体积是3立方米,与它等底等高的圆锥体体积是9立方米.×(判断对错)考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:平面图形的认识与计算.分析:等底等高的圆锥的体积是圆柱体积的,把圆柱的体积看作单位“1”,根据一个数乘分数的意义,用乘法求出圆锥的体积,然后与9立方米进行比较即可.据此判断.解答:解:3×=1(立方米),答:与它等底等高的圆锥体体积是1立方米.故答案为:×.点评:此题主要考查等底等高的圆锥与圆柱体积直接关系的灵活运用.21.如图,把直角三角形以直角边为轴快速旋转一周,得到的立体图形的体积最大是50.24立方厘米.(π取3.14)考点:圆锥的体积;作旋转一定角度后的图形.专题:立体图形的认识与计算.分析:根据圆锥的定义,把一个直角三角形以直角边为轴快速旋转一周,得到的立体图形是圆锥体,要使得到的圆锥的体积最大,也就是以3厘米的直角边为轴旋转,即得到的圆锥的底面半径是4厘米,高是3厘米,根据圆锥的体积公式:v=sh,把数据代入公式解答即可.解答:解: 3.14×42×3,= 3.14×16×3,=50.24(立方厘米);答:得到的立体图形的体积最大是50.24立方厘米.故答案为:50.24.点评:此题考查的目的是理解圆锥的定义,掌握圆锥体积的计算方法.22.一个圆锥体,高扩大2倍,底面半径缩小2倍,体积大小不变.×.考点:圆锥的体积.专题:立体图形的认识与计算.分析:设原圆锥的底面半径为2r,高为h,则变化后的圆锥的底面半径为r,高为2h,由此根据圆锥的体积公式分别求出变化前后的圆锥的体积,即可解答.解答:解:设原圆锥的底面半径为2r,高为h,则变化后的圆锥的底面半径为r,高为2h,则:原来圆锥的体积是:×π×(2r)2×h=πr2h;变化后的圆锥的体积是:×π×r2×2h=πr2h;所以变化前后的体积之比是:πr2h:πr2h=2:1;答:一个圆锥体,高扩大2倍,底面半径缩小2倍,则体积会缩小2倍.故答案为:×.点评:此题主要考查了圆锥的体积公式的计算应用,分别求出这个圆锥变化前后的体积即可解答.23.把一个圆柱体剥成一个最大的圆锥,剥去部分的体积是圆锥体积的2倍.√(判断对错)考点:圆锥的体积.专题:立体图形的认识与计算.分析:根据把“一个圆柱体剥成一个最大的圆锥”,实际是把一个圆柱体切削成一个和它等底等高的圆锥;根据等底等高的圆锥体是圆柱体的,得出剥去部分的体积是圆柱的,即剥去部分是圆锥体积的2倍.解答:解:由分析可知:把一个圆柱体剥成一个最大的圆锥,剥去部分的体积是圆锥体积的2倍;故答案为:√.点评:解答此题的关键是,知道如何把一个圆柱体剥成一个最大的圆锥,得出剥成的圆锥与圆柱的关系,进而得出剥去部分的体积与圆柱的关系.24.高1米,底面周长是18.84米的圆锥形沙堆的体积是9.42立方米.考点:圆锥的体积.专题:立体图形的认识与计算.分析:沙堆的形状是圆锥形的,由底面周长是18.84米先求得底面半径,再利用圆锥的体积计算公式V=πr2h求得体积,问题得解.解答:解:×3.14×(18.84÷3.14÷2)2×1=×3.14×32×1=3.14×3=9.42(立方米);答:这个圆锥形沙堆的体积是9.42立方米.故答案为:9.42.点评:此题主要考查圆锥的体积计算公式V=πr2h,运用公式计算时不要漏乘.25.(•北京)圆锥的体积等于与它等底等高的圆柱的体积的三分之一.考点:圆锥的体积.专题:立体图形的认识与计算.分析:圆锥的体积等于等底等高的圆柱体积的,据此解答即可.解答:解:圆锥的体积等于与它等底等高的圆柱的体积的三分之一.故答案为:等底等高.点评:此题考查的目的是使学生牢固掌握圆柱和圆锥的体积之间的关系.26.(•紫金县)把圆柱体削成一个最大的圆锥体,圆锥体体积是削去部分的.正确.(判断对错)考点:圆锥的体积.分析:根据等底等的圆柱体与圆锥的体积关系,圆锥的体积是圆柱体体积的,由此得出答案.解答:解:把圆柱体的体积看作“1”,与它等底等高的圆锥的体积是圆柱体的,削求部分是圆柱体的.1﹣=;÷=×=;答:圆锥体体积是削去部分的.故答案为:正确.点评:此题考查的你的在于理解和掌握圆柱体与圆锥体积之间的关系,及圆锥的体积计算.27.(•福田区模拟)圆锥的底面半径是6厘米,高是20厘米,它的体积是0.0007536立方米.考点:圆锥的体积.分析:圆锥的体积=πr2h,由此代入数据即可计算出这个圆锥的体积.解答:解:×3.14×62×20,=×3.14×36×20,=753.6(立方厘米),=0.0007536(立方米),答:它的体积是0.0007536立方米.故答案为:0.0007536.点评:此题考查了圆锥的体积公式的计算应用,要求学生熟记公式即可解答.28.(•贵州模拟)如图,旋转一周所得图形的体积是37.68立方厘米.考点:圆锥的体积.专题:立体图形的认识与计算.分析:旋转一周所得图形是一个圆锥,该圆锥的底面半径是3厘米,高是4厘米,进而根据“圆锥的体积=πr2h”进行解答即可.解答:解:×3.14×32×4=9.42×4=37.68(立方厘米);答:体积是37.68立方厘米;故答案为:37.68.点评:解答此题应根据圆锥的特征和圆锥的体积计算方法V=πr2h进行解答.B档(提升精练)一.选择题(共15小题)1.(•安徽模拟)圆柱和圆锥的底面积、体积分别相等,圆锥的高是圆柱的高的()A.B.C.2倍D.3倍考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式,V=sh=πr2h,与圆锥的体积公式,V=sh=πr2h,知道在底面积和体积分别相等时,圆柱的高是圆锥的高的,即圆锥的高是圆柱高的3倍,据此解答即可得到答案.解答:解:因为,圆柱的体积是:V=πr2h1,圆锥的体积是:V=πr2h2,πr2h1=πr2h2,所以,h1=h2,即h2=3h1.故答案为:D.点评:此题主要是利用圆柱与圆锥的体积公式,推导出在底面积和体积分别相等时,圆柱的高与圆锥的高的关系.2.(•广州模拟)把底面积是18平方厘米,高是2厘米的圆柱形零件削成最大的圆锥,削成的圆锥体积是()立方厘米.A.12B.18C.24D.36考点:圆锥的体积.分析:根据题意,削成的最大圆锥的底面积是18平方厘米,高是2厘米,可直接利用圆锥的体积公式计算即可得到答案.解答:解:×18×2,=6×2,=12(立方厘米);答:削成最大的圆锥体积是12立方厘米.故选:A.点评:此题主要考查的是圆锥的体积公式:V=sh.3.(•高碑店市)圆锥体的底面积和高都扩大到原来的2倍,则体积扩大到原来的()倍.A..2B.、4C.、8考点:圆锥的体积.专题:立体图形的认识与计算.分析:根据圆锥的体积公式=底面积×高×,根据积的变化规律可知,圆锥体的底面积和高都扩大到原来的2倍,那么体积就会扩大到原来的(2×2)倍,列式解答即可得到答案.解答:解:2×2=4,答:圆锥体的底面积和高都扩大到原来的2倍,则体积扩大到原来的4倍.故选:B.点评:此题主要考查的是圆锥体的体积公式和积的变化规律的应用.4.(•福田区模拟)一个圆锥体的底面半径扩大3倍,高缩小3倍,则体积()A.扩大3倍B.扩大6倍C.缩小3倍D.不变考点:圆锥的体积.分析:设原圆锥的底面半径为r,高为3h,则变化后的圆锥的底面半径为3r,高为h,由此根据圆锥的体积公式分别求出变化前后的圆锥的体积,即可解答.解答:解:设原圆锥的底面半径为r,高为3h,则变化后的圆锥的底面半径为3r,高为h,则:原来圆锥的体积是:×π×r2×3h=πr2h;变化后的圆锥的体积是:×π×(3r)2×h=3πr2h;。

圆柱与圆锥的关系、切面加工圆锥与圆柱及等体积变形

圆柱与圆锥的关系、切面加工圆锥与圆柱及等体积变形

数学学科讲义圆柱与圆锥的关系、切面加工圆柱与圆锥等体积变形专题三:圆柱和圆锥的关系1.一个圆锥的体积是6.3立方厘米,与它等底等高的圆柱的底面积是7平方厘米,圆柱的高应该是()厘米。

2.一个圆锥的体积是n立方厘米,和它等底等高的圆柱体的体积是()立方厘米。

3.一个圆柱比与它等底等高圆锥的体积多10 dm³,这个圆柱的体积是()dm³,圆锥的体积是()dm³。

4.一个圆柱与一个圆锥等底等高,圆柱体积比圆锥体积多20立方分米,这个圆柱的体积是()立方分米。

5.一个圆柱与一个圆锥的底面积和体积都相等,已知圆锥的高是9厘米,圆柱的高是( )厘米。

6.一个圆柱与一个圆锥等高等体积,已知圆柱的底面积是21cm²,圆锥的底面积是( ) cm²。

7.一个长方体木料,横截面是边长10厘米的正方形.从这根木料上截下6厘米长的一段,切削成一个最大的圆锥,圆锥的体积是()立方厘米,削去部分体积是()立方厘米8.一个圆柱和一个圆锥的底面积和体积分别相等,圆锥的高1.8分米,圆柱的高是()分米。

9.一个圆柱和一个圆锥等底等高,它们的体积之差是124cm3,那么圆锥的体积是()cm3。

10.等底等体积的圆柱和圆锥,圆锥高8厘米,圆柱高()厘米。

11.一个圆柱和一个圆锥等底等高,它们体积之和是12立方分米,圆锥的体积是( )立方分米。

12.把一个圆柱体切削成一个最大的圆锥后,体积减少了2.8m³,削成的圆锥的体积是()m³13. 一个圆柱底面积是6m²,把它削成一个最大的圆锥,削去部分的体积是12立方米,这个圆柱的高是多少米?14. 一个圆柱形木桩如图,要把它削成一个最大的圆锥,圆锥的体积是多少?削去的体积是多少?15. 一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。

如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?专题四:圆柱和圆锥的切面1. 把两个完全一样的半圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。

什么叫做圆柱体和圆锥体_New

什么叫做圆柱体和圆锥体_New

什么叫做圆柱体和圆锥体什么叫做圆柱体和圆锥体?在小学数学教材中,对圆柱和圆锥都没有下明确的定义,为了更好地驾驭教材,作为数学教师,有必要较为确切地掌握圆柱和圆锥概念。

圆柱:以矩形的一边所在直线为轴,其余各边绕轴旋转而成的曲面所围成的几何体,叫做圆柱体,简称圆柱。

圆柱可以看成一个矩形A1AOO1,统一边O1O 旋转一周形成的旋转体(如下图)。

O1O称为圆柱的轴,垂直于轴的边旋转而成的两个圆面,叫做圆柱的底面,平行于轴的边旋转而成的曲面,叫做圆柱的侧面,无论旋转到什么位置,这条边都叫做圆柱的母线。

圆柱两个底面之间的距离,叫做圆柱的高。

当两个底面中心的连线垂直于底面时,这种圆柱叫做直圆柱。

在小学里,所说的圆柱,一般都指直圆柱。

圆柱的侧面展开成的图形是一个长方形。

圆柱具有以下几个性质:(1)圆柱的轴过两个底面的圆心,并且垂直于两个底面;(2)用垂直于圆柱的轴的平面去截圆柱,所得的截面是和底面相等的圆;(3)用一个过圆柱的轴的平面去截圆柱,所得的截面是一个矩形,它的两条对边是圆柱的两条母线,另外两条对边,分别是两个底面圆的直径;(4)用一个平行于圆柱的轴的平面去截圆柱,所得的平面是个矩形,它的两条对边是圆柱的两条母线,另外两条对边,分别是两个底面圆的弦。

《圆锥体的初步认识及体积计算》教学内容:圆锥体初步认识及体积公式的探究教学目的:1、通过学生的实际操作活动认识圆锥,理清圆柱和圆锥的区别,掌握圆锥的特征。

2、理解并掌握圆锥体积的计算方法,并能正确应用。

3、培养学生的空间观念。

教学过程:(一)复习旧知,导入新课:1、出示一张长方形的纸,问;以一条边所在的直线为轴旋转一周会形成什么立体图形?说一说它的特征及体积公式的推导过程。

(电脑演示形成的圆柱体,学生清晰的看到形成的过程,直观形象。

)2、出示一张直角三角形的纸,请同学猜一猜,如果以它的一条直角边所在的直线为轴旋转一周又会形成什么立体图形?(学生回答后,电脑演示形成圆锥体的过程。

解析初二数学教材中的圆锥与圆柱

解析初二数学教材中的圆锥与圆柱

解析初二数学教材中的圆锥与圆柱圆锥与圆柱是初二数学教材中的重要内容,对于学生来说可能会有一些困惑。

本文将从几何形体的定义、性质、计算公式等方面对圆锥与圆柱进行解析,帮助学生更好地理解和掌握这两个几何形体的知识。

一、圆锥的定义和性质1.1 圆锥的定义圆锥是由一个平面和一个顶点在平面之外的线段所围成的几何形体。

平面称为底面,顶点称为顶点,线段称为母线。

1.2 圆锥的性质(1)顶点到底面的距离称为高,用h表示;(2)底面的形状可以是任意的,比如圆形、正方形等;(3)若底面为圆形,则圆锥称为圆锥体;(4)底面的半径称为底面半径;(5)若底面为正多边形,则圆锥也相应地称为正多边锥。

1.3 圆锥体和斜面锥圆锥体指的是底面为圆形的圆锥。

而斜面锥是指顶点不在底面正上方的圆锥。

二、圆柱的定义和性质2.1 圆柱的定义圆柱是由一个平面和一个平行于它的平面内的闭合曲线绕平面移动而生成的几何形体。

2.2 圆柱的性质(1)若底面为圆形,则圆柱称为圆柱体;(2)圆柱有两个相等的平面底面;(3)与底面平行的面称为轴面;(4)轴面的距离称为高,用h表示;(5)底面半径称为底面半径。

三、圆锥与圆柱的计算公式3.1 圆锥的体积公式圆锥的体积公式为:V = 1/3 * π * r² * h,其中V表示圆锥的体积,π取近似值3.14,r表示底面半径,h表示高。

3.2 圆柱的体积公式圆柱的体积公式为:V = π * r² * h,其中V表示圆柱的体积,π取近似值3.14,r表示底面半径,h表示高。

3.3 圆锥的表面积公式圆锥的表面积公式为:S = π * r * (r + l),其中S表示圆锥的表面积,r表示底面半径,l表示斜高。

3.4 圆柱的表面积公式圆柱的表面积公式为:S = 2π * r * (r + h),其中S表示圆柱的表面积,r表示底面半径,h表示高。

四、例题解析以下是一道关于圆锥的例题解析:例题:一个圆锥的底面半径为4 cm,母线长为6 cm,求圆锥的体积和表面积。

圆柱和圆锥(全部整合)

圆柱和圆锥(全部整合)

D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C

(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4

圆柱和圆锥数学规律

圆柱和圆锥数学规律

第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆。

3.(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

6.圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形。

8.圆柱的底面是圆形,不是椭圆。

9.沿高剪开时,圆柱的侧面展开图是一个长方形。

10.从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。

11.如果圆柱的侧面展开图是个正方形,那么该圆柱的高就等于它的底面周长,大约是其底面直径长度的3倍。

12.圆柱的侧面积=底面周长×高。

如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13.(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。

14.圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。

16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。

(2)已知圆柱的底面直径和高,求圆柱的表面积时,可以根据公式:S表=πdh+πd2÷2直接求出圆柱的表面积。

圆柱和圆锥的公式

圆柱和圆锥的公式

圆柱和圆锥的公式和应用一:圆柱和圆锥圆的周长=圆柱和圆锥底面的周长圆的周长=2×圆周率×半径半径=圆的周长÷圆周率÷2c=2∏rr=c÷∏÷2圆的周长=圆周率×直径直径=圆的周长÷圆周率c=∏dd= c÷∏圆的面积=圆柱和圆锥地面的面积圆的面积=圆周率×半径的平方s底=∏×r×r二:圆柱侧面积圆柱侧面积=底面周长×圆柱的高S侧=c×h因为:c=2∏rc=∏d所以圆柱侧面积还可以写出:s侧=2∏r h 或s侧=∏d h知道圆柱侧面积和圆柱的高,怎么求底面周长、底面直径和底面半径?底面周长=圆柱侧面积÷圆柱的高C=s侧÷h底面直径=圆柱侧面积÷圆柱的高÷圆周率d=s侧÷h÷∏底面半径=圆柱侧面积÷圆柱的高÷圆周率÷2r=s侧÷h÷∏÷2三:圆柱的外表积:外表积:圆柱的外表积=底面周长×高+底面面积×2S表=c×h+ ∏×r×r×2典型情况:做一个油桶需要多少平方米的铁皮。

〔需要计算一个侧面积+二个底面面积〕特殊情况:一、〔1〕做无盖的水桶需要多少平方米的铁皮。

〔2〕圆柱形的游泳池或水池在四周和底部抹水泥或贴瓷砖。

〔只要计算一个侧面积+一个底面积〕二、(1) 做通风管、落水管、烟囱需要多少铁皮。

〔2〕压路机前轮压过的路面面积。

〔只要计算一个侧面积〕四:圆柱的体积圆柱的体积=底面面积×高V柱=s底×h圆柱底面面积=圆柱体积÷圆柱的高S底=v÷h圆柱的高=圆柱的体积÷圆柱底面面积H= v÷S底五:圆锥的体积圆锥的体积=圆锥底面积×高÷3V锥=s底×h÷3圆锥的底面积=圆锥的体积×3÷圆锥的高S底=v×3÷h圆锥的高=圆锥的体积×3÷圆锥的底面积h=v×3÷S底六:圆柱和圆锥面积和体积计算时的注意事项1、看清楚题目中的单位一不一样,最好在所有单位下面画出横线。

人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件

人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件
答:这座房子的体积是31.4m3。
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。

这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ

圆柱体和圆锥之间的关系

圆柱体和圆锥之间的关系

圆柱体和圆锥之间的关系
圆柱和圆锥的关系如下:
1、如果是等底等高,则圆柱的体积是圆锥体积的3倍,反之,圆锥体积是圆柱体积的1/3。

2、如果高相等,体积相等,则圆锥底面积是圆柱底面积的3倍,反之,圆柱底面积是圆锥底面积的1/3。

如果底面积相等,体积相等,则圆锥的高是圆柱的高的3倍,反之,圆柱的高是圆锥的高的1/3。

圆柱体的体积公式体积=底面积×高锥体的体积底面面积×高÷3所以如果底面积和高都相同。

圆柱和圆锥的区别:
1、圆柱有两个底面,圆锥只有一个底面。

2、圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形。

3、在不同的底、高、底面积下,圆柱与圆锥面积和体积不同。

数学六年级下第二单元知识点

数学六年级下第二单元知识点

数学六年级下第二单元知识点数学六年级下第二单元知识1圆柱圆柱的定义以长方形ABcD的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AD长方形的一条边为轴,旋转360°所得的几何体就是圆柱。

其中AD 叫做圆柱的轴,AD的长度叫做圆柱的高,Dc的长度是圆柱的底面半径。

圆柱的表面积圆柱体表面的面积,叫做这个圆柱的表面积.圆柱的表面积=2×底面积+侧面积圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高设一个圆柱底面半径为r,高为h,则表面积S:S=2-S底+S侧=2-πr2+cH圆柱的体积圆柱所占空间的大小,叫做这个圆柱体的体积.圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h如S为底面积,高为h,体积为V:v=sh圆柱的侧面积圆柱的侧面积=底面周长乘高S侧=ch注:c为πd圆柱各部分的名称圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。

数学六年级下第二单元知识2圆锥圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh(V=1/3SH)圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。

圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。

圆柱与圆锥的关系与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。

体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。

六年级数学下册第三单元(圆柱与圆锥)知识点

六年级数学下册第三单元(圆柱与圆锥)知识点

六年级数学下册第三单元(圆柱与圆锥)知识点六年级数学下册第三单元(圆柱与圆锥)知识点【圆柱】圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

一、圆柱:圆柱由3个面围成。

(1)底面:圆柱的上、下两个面;(2)侧面:圆柱周围的面(上下底面除外);(3)高度:圆柱体两个底面之间的距离。

二、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱体的侧面是曲面。

(3)高度的特性:一个圆柱体的高度有无数种。

圆柱的侧面展开图:沿着高展开,展开图形是长方形。

长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch h=S侧÷CC= S侧÷hS侧=∏dh=2∏rh注:(1)当底面周长和高相等时,沿高展开图是正方形;(2)不沿高度铺展,铺展图案为平行四边形或不规则图案。

(3)无论如何展开都得不到梯形.四、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。

即S表= S侧+ S底×2=2∏rh+∏r²×2【解题方法】一.圆柱的切割:1.横切:切面是圆,表面积增加2倍底面积,即S增=2πr22.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh二、常见的圆柱解决问题:侧面积+两个底面积:油桶、米桶、罐桶类侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池只求侧面积:烟囱、灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装底面周长:压路机压过路面长度五、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

将圆柱体切割成近似的长方体,分割的份数越多,图形越接近长方体。

圆锥的体积公式推导_六年级数学下册

圆锥的体积公式推导_六年级数学下册
北师大版六年级下册
圆锥的体积公式推导
知识回顾
淘气利用圆片摆出下面的图案。
第n个图案用多少个圆片?请你用含有字 母的式子表示。
圆锥的体积公式推导
通过观察发现圆片数量为:1×1,2×2, 3×3,4×4,……即第几个图案圆片数量就是 “几×几”,那么第n个图案用n×n个圆片, n×n=n·n=n2
圆锥的体积公式推导
圆锥的体积公式推导
在一个含有字母的式子里,数字与字母,字 母与字母相乘时,乘号可以写作“ ”或省略 不写,数字写在字母的前面。
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
圆锥的体积公式推导
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。 2、小明今年b岁,再过十年是( b+10 )岁。 3、一堆货物x吨,运走24吨,还剩( x-24)吨。 4、水果店有x千克苹果,一共装6箱,平均每箱 装(x÷6)千克。
圆锥的体积公式推导
2.方程的解和解方程 (1)方程的解的意义:使方程左右两边相等的
未知数的值,叫作方程的解。 (2)解方程的意义:求方程的解的过程叫作解
方程。 (3)解方程的依据:等式的基本性质(等式的
左右两边同时加上或减去同一个数,等式 的左右两边仍然相等;等式的左右两边同 时乘或除以一个不为0的数,等式的左右两 边仍然相等)。
9x÷9=7.2÷9 x=0.8
0.8x+1.2x=25
解:(0.8+1.2)x=25 2x=25
2x÷2=25÷2 x=12.5
圆锥的体积公式推导
1.等式与方程 (1)等式的意义:表示相等关系的式子叫作等式。 (2)方程的意义:含有未知数的等式叫方程。 (3)等式与方程的关系:方程一定是等式,等式 不一定是方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱体与圆锥体之间的关系
一个圆柱体与一个圆锥体,在等底等高的情况下,圆锥的体积是圆柱的31,反过来说,圆柱的体积是圆锥的3倍.
在圆柱与圆锥体积相等,底面积也相等的情况下,它们的高有什么关系呢?
显然,圆柱的高应该与圆锥高的31相等,也就是圆柱高是圆锥高的3
1,反过来说,圆锥的高是圆柱高的3倍.
同学们可以想像这样一幅图来帮助理解和记忆,如右图.
在圆柱与圆锥体积相等,高也相等的情况下,底面积之间又有
怎样的关系呢?
显然,圆柱的底面积与圆锥的底面积的31相等,也就是圆柱底面积是圆锥底面积的31,反过来说,圆锥底面积的3倍.
可以用这样一幅图帮助理解与记忆,如右图.。

相关文档
最新文档